"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#What current will flow when it is connected to a 240 V supply?\n",
"#Find also the power rating of the kettle.\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"V = 240; # in Volts\n",
"R = 30; # in ohms\n",
"\n",
"#calculation:\n",
"I = V/R\n",
"P = V*I\n",
"\n",
"#results\n",
"print \"Current(I):\", I,\"Ampere(A)\"\n",
"print \"Power(P):\", P,\"Watt(W)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current(I): 8.0 Ampere(A)\n",
"Power(P): 1920.0 Watt(W)"
]
}
],
"prompt_number": 10
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 11, page no. 17
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine (a) the p.d. across the winding, and (b) the power dissipated by the coil.\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"I = 5; # in ampere\n",
"R = 100; # in ohms\n",
"\n",
"#calculation:\n",
"V = I*R\n",
"P = I*R*I\n",
"\n",
"#results\n",
"print \"p.d(V):\", V,\"Volts(V)\"\n",
"print \"Power(P):\", P,\"Watt(W)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"p.d(V): 500 Volts(V)\n",
"Power(P): 2500 Watt(W)"
]
}
],
"prompt_number": 11
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 12, page no. 17
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the value of the resistance of each resistor.\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"I1 = 0.020; # in ampere\n",
"V1 = 20; # in Volts\n",
"I2 = 0.005; # in ampere\n",
"V2 = 16; # in Volts\n",
"\n",
"#calculation:\n",
"R1 = V1/I1\n",
"R2 = V2/I2\n",
"\n",
"#results\n",
"print \"Resistance(R1):\", R1,\"Ohms\"\n",
"print \"Resistance(R2):\", R2,\"Ohms\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resistance(R1): 1000.0 Ohms\n",
"Resistance(R2): 3200.0 Ohms"
]
}
],
"prompt_number": 12
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 13, page no. 18
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find the current taken by the lamp and its power rating\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"V = 240; # in Volts\n",
"R = 960; # in ohms\n",
"\n",
"#calculation:\n",
"I = V/R\n",
"P = I*V\n",
"\n",
"#results\n",
"print \"Current(I):\", I,\"Ampere(A)\"\n",
"print \"Power(P):\", P,\"Watt(W)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current(I): 0.25 Ampere(A)\n",
"Power(P): 60.0 Watt(W)"
]
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 14, page no. 18
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the current flowing in the load, the power consumed and the energy dissipated in 2 minutes\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"V = 12; # in Volts\n",
"R = 40; # in ohms\n",
"t = 120; # in sec\n",
"\n",
"#calculation:\n",
"I = V/R\n",
"P = I*V\n",
"E = P*t\n",
"\n",
"#results\n",
"print \"Current(I):\", I,\"Ampere(A)\"\n",
"print \"Power(P):\", P,\"Watt(W)\"\n",
"print \"Energy(E):\", E,\"Joule(J)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current(I): 0.3 Ampere(A)\n",
"Power(P): 3.6 Watt(W)\n",
"Energy(E): 432.0 Joule(J)"
]
}
],
"prompt_number": 15
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 15, page no. 18
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#How much energy is provided in this time?\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"V = 15; # in Volts\n",
"I = 2; # in ampere\n",
"t = 360; # in sec\n",
"\n",
"#calculation:\n",
"E = V*I*t\n",
"\n",
"#results\n",
"print \"Energy(E):\", E,\"Joule(J)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Energy(E): 10800 Joule(J)"
]
}
],
"prompt_number": 16
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 16, page no. 18
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Estimate the cost per week of electricity\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"V = 240; # in Volts\n",
"I = 13; # in ampere\n",
"t = 30; # in hours\n",
"p = 7; # in paise per kWh\n",
"\n",
"#calculation:\n",
"P = V*I\n",
"E = P*t/1000 # in kWh\n",
"C = E*p\n",
"\n",
"#results\n",
"print \"Cost per week:\", C,\" Paise(p)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cost per week: 655.2 Paise(p)"
]
}
],
"prompt_number": 17
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 17, page no. 19
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Find the power rating of the heater and the current taken from the supply.\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"V = 250; # in Volts\n",
"E = 3.6E6; # energy in J\n",
"t = 2400; # in sec\n",
"\n",
"#calculation:\n",
"P = E/t\n",
"I = P/V\n",
"\n",
"#results\n",
"print \"Power(P):\", P,\"Watt(W)\"\n",
"print \"Current(I):\", I,\"Ampere(A)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power(P): 1500.0 Watt(W)\n",
"Current(I): 6.0 Ampere(A)"
]
}
],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 18, page no. 19
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the power dissipated\n",
"#determine the energy used and the cost\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"R = 20; # in ohms\n",
"I = 10; # in ampere\n",
"t = 6; # in hours\n",
"p = 7; # in paise per kWh\n",
"\n",
"#calculation:\n",
"P = I*I*R\n",
"E = P*t/1000 # in kWh\n",
"C = E*p\n",
"\n",
"#results\n",
"print \"Power(P):\", P,\"Watt(W)\"\n",
"print \"Cost per week:\", C,\"Paise(p)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power(P): 2000 Watt(W)\n",
"Cost per week: 84.0 Paise(p)"
]
}
],
"prompt_number": 18
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 19, page no. 19
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the weekly cost of electricity to the business.\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"P1 = 3; # in kW\n",
"P2 = 150; # in Watt\n",
"n1 = 2; # no. of P1 Equips\n",
"n2 = 6; # no. of P2 Equips\n",
"t1 = 20; # in hours each per week\n",
"t2 = 30; # in hours each per week\n",
"p = 7; # in paise per kWh\n",
"\n",
"#calculation:\n",
"E1 = P1*t1*n1 # in kWh by two P1 eqips\n",
"E2 = P2*t2*n2/1000 # in kWh by six P2 eqips\n",
"Et = E1 + E2\n",
"C = Et * 7\n",
"\n",
"#results\n",
"print \"Cost per week:\", C,\"Paise(p)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cost per week: 1029.0 Paise(p)"
]
}
],
"prompt_number": 19
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
Example 20, page no. 20
"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#state which is most appropriate for the following appliances which are both connected to a 240 V supply \n",
"#(a) Electric toaster having a power rating of 1 kW (b) Electric fire having a power rating of 3 kW\n",
"from __future__ import division\n",
"#initializing the variables:\n",
"I1 = 5; # in Amp\n",
"I2 = 10; # in Amp\n",
"I3 = 13; # in Amp\n",
"P1 = 1000; # in Watts\n",
"P2 = 3000; # in Watts\n",
"V = 240; #in Volts\n",
"\n",
"#calculation:\n",
"It = P1/V\n",
"If = P2/V\n",
"\n",
"#results\n",
"print \"For the toaster,\", I1,\"A fuse is most appropriate\"\n",
"print \"For the Fire,\", I3,\"A fuse is most appropriate\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For the toaster, 5 A fuse is most appropriate\n",
"For the Fire, 13 A fuse is most appropriate"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}