{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 02 : Magnetic Circuits and Induction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1, Page No 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "U_o=4*math.pi*10**-7\n", "U_r=6000\n", "l_g=0.0006\n", "l_c=.40\n", "A_c=.04*.04\n", "B_c=1.2\n", "N=600\n", "\n", "#Calculataions\n", "i=(1/(U_o*N))*(((B_c*l_c)/U_r)+(B_c*l_g))\n", "phi=B_c*A_c\n", "lmda=N*phi\n", "A_g=(.04+l_g)**2\n", "B_g=phi/A_g\n", "\n", "#Results\n", "print(\"Neglecting fringing,current(A)=%.2f ohm\" %i)\n", "print(\"Flux(Wb)=%.4f \" %phi)\n", "print(\"Flux linkages(Wb-turns)=%.2f \" %lmda)\n", "print(\"Fringing taken into account,current(A)=%.2f \" %B_g)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Neglecting fringing,current(A)=1.06 ohm\n", "Flux(Wb)=0.0019 \n", "Flux linkages(Wb-turns)=1.15 \n", "Fringing taken into account,current(A)=1.16 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2, Page No 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "#Calculation of current reqd to produce flux in the given magnetic circuit.\n", "\n", "U_o=4*math.pi*10**-7\n", "U_r=4000\n", "N=600\n", "l_c=.30\n", "l_g=0\n", "dia=.02\n", "phi=.5*10**-3 #flux\n", "\n", "#Calculations\n", "A=(math.pi/4)*dia**2\n", "i=0;\n", "R=((l_c/U_r)+l_g)/(U_o*A)\n", "i=(phi*R)/N\n", "\n", "print(\"no air gap current(A) =%.4f \" %i)\n", "#l_g=0.001\n", "R=((l_c/U_r)+l_g)/(U_o*A)\n", "i=(phi*R)/N\n", "print(\"no air gap current(A) =%.4f \" %i)\n", "\n", "B_g=phi/A\n", "print(\"B(T) =%.4f \" %B_g)\n", "H_g=B_g/U_o\n", "\n", "AT_g=H_g*0.001\n", "\n", "print(\"AT_g =%.4f \" %AT_g)\n", "\n", "H_c=3000\n", "AT_c=H_c*0.30\n", "print(\"AT_c =%.4f \" %AT_c)\n", "\n", "i=(AT_g+AT_c)/N\n", "\n", "#Results\n", "print(\"from magnetisation data, current(A) =%.4f \" %i)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "no air gap current(A) =0.1583 \n", "no air gap current(A) =0.1583 \n", "B(T) =1.5915 \n", "AT_g =1266.5148 \n", "AT_c =900.0000 \n", "from magnetisation data, current(A) =3.6109 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3, Page No 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "#Determination of mmf of the exciting coil\n", "\n", "U_o=4*math.pi*10**-7\n", "A1=.0001\n", "A2=.0002\n", "l1=.025*10**-2\n", "l2=.02*10**-2\n", "phi=.75*10**-3\n", "\n", "#Calculations\n", "def reluctance(l,U_r,A):\n", "\tRe=l/(U_o*U_r*A)\n", "\treturn Re\n", "\n", "def mmf(R1,R2,R3):\n", "\tNi=phi*(R3+((R1*R2)/(R1+R2)))\n", "\treturn Ni\n", "\n", "R_g1=reluctance(l1,1,A1)\n", "R_g2=reluctance(l2,1,A1)\n", "R_g3=reluctance(l2,1,A2)\n", "print(\"when U_r=1,mmf(AT) =%.4f \" %mmf(R_g1,R_g2,R_g3))\n", "L1=l1*2*10**3\n", "L2=l2*10**3\n", "R_c1=reluctance(L1,5000,A1)\n", "R_c2=reluctance(L1,5000,A1)\n", "R_c3=reluctance(L2,5000,A2)\n", "\n", "#Results\n", "print(\"when U_r=5000,mmf(AT) =%.4f \" %mmf(R_c1+R_g1,R_c2+R_g2,R_c3+R_g3))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "when U_r=1,mmf(AT) =1259.9766 \n", "when U_r=5000,mmf(AT) =1680.3089 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4 Page No 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variablesimport math\n", "# Exciting current calculation needed to setup reqd flux\n", "\n", "U_o=4*math.pi*10**-7\n", "A1=800*10**-6\n", "A2=600*10**-6\n", "l1=1*10**-3 #air gap length\n", "l2=160*10**-3 #length of central limb\n", "l3=400*10**-3 #length of side limb\n", "phi=.8*10**-3\n", "N=500\n", "\n", "#Calculations\n", "def fd(A):\n", "\tB=phi/A\n", "\treturn B\n", "\n", "def mmf(l,B):\n", "\tF=l/B\n", "\treturn F\n", "\n", "#air gap\n", "B_g=fd(A1)\n", "F_g=mmf(l1,B_g)/U_o\n", "print(\"F_g(AT) =%.4f \" %F_g)\n", "#central limb\n", "B_c=B_g\n", "F_c=mmf(l2,B_c)/10**-3\n", "print(\"F_c(AT)=%.4f \" %F_c)\n", "#outer limb flux is divided into half\n", "B_o=fd(A2)/2\n", "F_o=mmf(l3,B_o)/(4*10**-3)\n", "print(\"F_o(AT)=%.4f \" %F_o)\n", "i=(F_g+F_c+F_o)/N # total mmf/no of turns\n", "\n", "#Results\n", "print(\"exciting current(A)=%.4f \" %i)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "F_g(AT) =795.7747 \n", "F_c(AT)=160.0000 \n", "F_o(AT)=150.0000 \n", "exciting current(A)=2.2115 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5, Page No 151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "# determination of excitation coil mmf\n", "U_o=4*math.pi*10**-7 \n", "A1=25*10**-4 \n", "A2=12.5*10**-4 \n", "A3=25*10**-4 \n", "l1=.5 #length of side limb(ab+cd)\n", "l2=.2 #length of central limb(ad)\n", "l3=.5 #length of side limb(dea)\n", "l4=.25*10**-3 #length of air gap\n", "phi=.75*10**-3 \n", "N=500 \n", "\n", "#Calculations\n", "def fd(A):\n", "\tB=phi/A\n", "\treturn B\n", "\t\n", "def flux(B,l):\n", "\tF=B*l/(U_o)\n", "\treturn F\n", "\t\n", "def fl(H,l):\n", "\tf=H*l\n", "\treturn f\n", "\n", "B_abcd=fd(A1) \n", "F_bc=flux(B_abcd,l4) \n", "print(\"B_abcd(T) =%.4f \" %B_abcd)\n", "H_ab=200 #for cast iron for B=0.3\n", "F_abcd=fl(H_ab,l1) \n", "F_ad=F_abcd+F_bc \n", "H_ad=F_ad/l2 \n", "print(\"H_ad(AT/m) =%.4f \" %H_ad)\n", "B_ad=1.04 #for cast iron for H=800\n", "phi_ad=B_ad*A2 \n", "phi_dea=phi+phi_ad \n", "B_dea=phi_dea/A3 \n", "H_dea=500 #for cast iron for B=.82\n", "F_dea=H_dea*l3 \n", "F=F_dea+F_ad \n", "\n", "#Results\n", "print(\"reqd mmf(AT) =%.4f \" %F)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "B_abcd(T) =0.3000 \n", "H_ad(AT/m) =798.4155 \n", "reqd mmf(AT) =409.6831 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7, Page No 152" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "#determination of self and mutual inductance b/w 2 coils\n", "\n", "U_o=4*math.pi*10**-7 \n", "U_r=1600 \n", "A1=4*10**-4 \n", "A2=4*10**-4 \n", "A0=2*10**-4 \n", "N1=500 \n", "N2=1000 \n", "\n", "#Calculations\n", "l1=.01*((6+0.5+1)*2+(4+2)) \n", "l2=.01*((3+0.5+1)*2+(4+2)) \n", "l0=.01*(4+2) \n", "\n", "def reluc(l,A):\n", "\tR=l/(U_o*U_r*A)\n", "\treturn R\n", "\t\n", "R1=reluc(l1,A1) \n", "R2=reluc(l2,A2) \n", "R0=reluc(l0,A0) \n", "\n", "def re(r0,r1,r2):\n", "\tre=r0+((r1*r2)/(r1+r2)) \n", "\treturn re\n", "\n", "print('coil 1 excited with 1A') \n", "R_1=re(R1,R0,R2) \n", "phi1=N1/R_1 \n", "phi2=phi1*R0/(R0+R2) \n", "L11=N1*phi1 \n", "print(\"self inductance(H) =%.4f \" %L11)\n", "M21=N2*phi2 \n", "print(\"mutual inductance(H) =%.4f \" %M21)\n", "print('coil 2 excited with 1A') \n", "R_2=re(R2,R0,R1) \n", "phi2=N2/R_2 \n", "L22=N2*phi2 \n", "print(\"self inductance(H) =%.4f \" %L22)\n", "M12=M21 \n", "\n", "#Results\n", "print(\"mutual inductance(H) =%.4f \" %M12)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "coil 1 excited with 1A\n", "self inductance(H) =0.7267 \n", "mutual inductance(H) =0.6460 \n", "coil 2 excited with 1A\n", "self inductance(H) =3.5529 \n", "mutual inductance(H) =0.6460 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8 Page No 163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "#determination of R_c,R_g,L,W_f\n", "\n", "U_o=4*math.pi*10**-7 \n", "U_r=6000 \n", "l_g=0.0006 \n", "l_c=.40 \n", "A_c=.04*.04 \n", "B_c=1.2 \n", "N=600 \n", "\n", "#Calculations\n", "def current(B_g):\n", "\ti=(1/(U_o*N))*(((B_c*l_c)/U_r)+(B_g*l_g))\n", "\treturn i\n", "\n", "print(\"neglecting fringing,current(A)= %.4f \" %current(B_c))\n", "\n", "phi=B_c*A_c \n", "print(\"flux(Wb)=%.4f \" %phi)\n", "\n", "def flux_linkage(phi):\n", "\tlmda=N*phi\n", "\treturn lmda\n", "\n", "print(\"flux linkages(Wb-turns)= %.4f \" %flux_linkage(phi))\n", "\n", "def reluc(l,U,A):\n", "\tR=l/(U_o*U*A)\n", "\treturn R\n", "R_c=reluc(l_c,U_r,A_c) \n", "print(\"R_c=%.4f \" %R_c)\n", "R_g=reluc(l_g,1,A_c) \n", "print(\"R_g=%.4f \" %R_g)\n", "\n", "L=N**2/(R_c+R_g) \n", "print(\"coil inductance(H)=%.4f \" %L)\n", "W_f=(N*phi)**2/(2*L) \n", "\n", "#Results\n", "print(\"energy stored in the magnetic field(J)=%.4f \" %W_f)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "neglecting fringing,current(A)= 1.0610 \n", "flux(Wb)=0.0019 \n", "flux linkages(Wb-turns)= 1.1520 \n", "R_c=33157.2798 \n", "R_g=298415.5183 \n", "coil inductance(H)=1.0857 \n", "energy stored in the magnetic field(J)=0.6112 \n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }