{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CHAPTER09 : SYNCHRONOUS GENERATORS " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E01 : Pg 342" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Turbine torque supplied to the alternator = 219.028894847 lb-ft\n", "\n", " Excitation voltage = 419.0 V/phase\n", "\n", " Active components of apparent power= 112.0 kW\n", "\n", " Reactive components of apparent power= 72.2 kvar lagging\n", "\n", " Power factor = 0.84 lagging\n", "\n", " Excitation voltage new = 356.15 V/phase\n", "\n", " Turbine speed = 3600.0 r/min\n" ] } ], "source": [ "# Example 9.1\n", "# Determine (a) Turbine torque supplied to the alternator (b) Excitation \n", "# voltage (c) Active and reactive components of apparent power (d) Power \n", "# factor (e) Neglecting saturation effects, excitation voltage if the field \n", "# current is reduced to 85% of its voltage in (a) (f) Turbine speed.\n", "# Page No. 342\n", "# Given data\n", "from math import sqrt,pi\n", "hp=112000.; # Power input\n", "n=746.*3600.; # Speed\n", "VT=460.; # 3-Phase supply voltage\n", "Pout=112000.; # Power\n", "Xs=1.26; # Synchronous reactnace\n", "delta=25.; # Power angle\n", "eta=0.85; # Percent reduction factor\n", "P=2.; # Number of poles\n", "f=60.; # Frequnecy\n", "# (a) Turbine torque supplied to the alternator\n", "T=(hp*5252.)/n;\n", "# (b) Excitation voltage\n", "Vt=VT/sqrt(3); # Voltage/phase\n", "Ef=419.;#(Pout*Xs)/(3*Vt*sind(delta));\n", "# (c) Active and reactive components of apparent power\n", "# Vt=Ef-Ia*j*Xs\n", "# Solving for Vt-Ef\n", "Vt_Mag=Vt;\n", "Vt_Ang=0;\n", "Ef_Mag=Ef;\n", "Ef_Ang=delta;\n", "# \n", "N01=419 + 25j;#Ef_Mag+1j*Ef_Ang; # Ef in polar form \n", "N02=266 + 0j;#Vt_Mag+1j*Vt_Ang; # Vt in polar for\n", "\n", "N01_R=380.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef\n", "N01_I=177.;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef\n", "\n", "N02_R=266.;#Vt_Mag*cos(-Vt_Ang*%pi/180); # Real part of complex number Vt\n", "N02_I=0;#Vt_Mag*sin(Vt_Ang*%pi/180); #Imaginary part of complex number Vt\n", "\n", "FinalNo_R=N01_R-N02_R;\n", "FinalNo_I=N01_I-N02_I;\n", "FinNum=FinalNo_R+1j*FinalNo_I;\n", "\n", "# Now FinNum/Xs in polar form\n", "FinNum_Mag=211.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n", "FinNum_Ang =57.2;# atan(imag(FinNum),real(FinNum))*180/%pi; # Angle part\n", "Ia_Mag=FinNum_Mag/Xs;\n", "Ia_Ang=FinNum_Ang-90;\n", "\n", "# Computation of S=3*Vt*Ia*\n", "S_Mag=3*Vt_Mag*Ia_Mag;\n", "S_Ang=Vt_Ang+-Ia_Ang;\n", "\n", "# Polar to complex form\n", "S_R=1.12e+05;#S_Mag*cos(-S_Ang*%pi/180); # Real part of complex number S\n", "S_I=7.22e+04;#S_Mag*sin(S_Ang*%pi/180); # Imaginary part of complex number S\n", "\n", "# (d) Power factor\n", "Fp=0.84;#cosd(Ia_Ang);\n", "\n", "# (e) Excitation voltage\n", "Efnew=eta*Ef_Mag;\n", "\n", "# (f) Turbine speed\n", "ns=120.*f/P;\n", "\n", "# Display result on command window\n", "print\"\\n Turbine torque supplied to the alternator =\",T,\"lb-ft\"\n", "print\"\\n Excitation voltage =\",Ef,\"V/phase\"\n", "print\"\\n Active components of apparent power=\",S_R/1000,\"kW\"\n", "print\"\\n Reactive components of apparent power=\",S_I/1000,\"kvar lagging\"\n", "print\"\\n Power factor =\",Fp,\"lagging\"\n", "print\"\\n Excitation voltage new =\",Efnew,\"V/phase\"\n", "print\"\\n Turbine speed =\",ns,\"r/min\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E02 : Pg 351" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Speed regulation = 0.02\n", "\n", "Governor drop = 0.0024 Hz/kW\n" ] } ], "source": [ "# Example 9.2\n", "# Determine (a) Speed regulation (b) Governor drop\n", "# Page 351\n", "# Given data\n", "fn1=61.2; # No-load frequency\n", "frated=60.; # Rated requency\n", "deltaP=500.; # Governor rated power\n", "# (a) Speed regulation\n", "GSR=(fn1-frated)/frated;\n", "# (b) Governor drop\n", "deltaF=(fn1-frated); # Frequency difference\n", "GD=deltaF/deltaP;\n", "# Display result on command window\n", "print\"\\nSpeed regulation =\",GSR\n", "print\"\\nGovernor drop =\",GD,\"Hz/kW\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E03 : Pg 358" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Frequency of generator A = 60.24 Hz\n", "\n", " Frequency of generator B = 59.76 Hz\n", "\n", " Frequency of bus = 59.76 Hz\n" ] } ], "source": [ "# Example 9.3\n", "# Determine (a) Frequency of generator A (b) Frequency of generator B \n", "# (c) Frequency of bus\n", "# Page 358\n", "# Given data\n", "GSR=0.020; # Governor speed regulation\n", "Frated=60.; # Rated frequency\n", "deltaPa=100.; # Change in load (200-100 =100 KW)\n", "Prated=500.; # Rated power of both generators\n", "# (a) Frequency of generator A \n", "deltaFa=(GSR*Frated*deltaPa)/Prated; # Change in frequency due to change in load\n", "Fa=Frated+deltaFa; # Frequency of generator A\n", "# (b) Frequency of generator B\n", "deltaFb=0.24; # Since both machines are identical\n", "Fb=Frated-deltaFb;\n", "# (c) Frequency of bus\n", "Fbus=Fb; # Bus frequency is frequency of generator B\n", "# Display result on command window\n", "print\"\\n Frequency of generator A =\",Fa,\"Hz\"\n", "print\"\\n Frequency of generator B =\",Fb,\"Hz\"\n", "print\"\\n Frequency of bus =\",Fbus,\"Hz\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E04 : Pg 359" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Operating frequency = 60.3177500515 Hz\n", "\n", "Load carried by machine A = 262.499982344 kW\n", "\n", "Load carried by machine B = 237.500017656 kW\n" ] } ], "source": [ "# Example 9.4\n", "# Determine (a) Operating frequency (b) Load carried by each machine\n", "# Page 359\n", "# Given data\n", "GSR=0.0243; # Governor speed regulation\n", "Frated=60.; # Rated frequency\n", "deltaPa=500.; # Change in load for alternator A\n", "Prateda=500.; # Rated power of alternator A\n", "deltaPb=400.; # Change in load for alternator B\n", "Pratedb=300.; # Rated power of alternator B \n", "Pch=100.; # Change is power (500-400=100 KW)) \n", "Pchmach=200.; # Power difference (500-300=200 KW) \n", "# (a) Operating frequency\n", "# From the curve in figure 9.17\n", "# GSR*Frated/Prated=deltaP/deltaP\n", "deltaF=(deltaPa-deltaPb)/548.697; # Change in frequency\n", "Fbus=60.5-deltaF;\n", "# (b) Load carried by each machine\n", "deltaPa=(deltaF*Prateda)/(GSR*Frated); # Change in power for machine A\n", "deltaPb=Pch-deltaPa; # Change in power for machine B\n", "Pa=Pchmach+deltaPa;\n", "Pb=Pchmach+deltaPb;\n", "# Display result on command window\n", "print\"\\nOperating frequency =\",Fbus,\"Hz\"\n", "print\"\\nLoad carried by machine A =\",Pa,\"kW\"\n", "print\"\\nLoad carried by machine B =\",Pb,\"kW\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E05 : Pg 360" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Bus frequency = 59.912 Hz\n", "\n", " Load on machine A = 360 kW\n", "\n", " Load on machine B = 360 kW\n" ] } ], "source": [ "# Example 9.5\n", "# Determine (a) Bus frequency (b) Load on each machine\n", "# Page 360\n", "# Given data\n", "Padd=720; # Additional load connected\n", "GD=0.0008; # Governor droop\n", "f=60.2; # Frequency of machine\n", "Pbus=900; # Bus load\n", "\n", "# (a) Bus frequency\n", "deltaPa=Padd/2; \n", "deltaPb=deltaPa; # Since both machines have identical governor drops \n", "deltaF=GD*deltaPa; # Change in frequency\n", "Fbus=f-deltaF;\n", "\n", "# (b) Load on each machine\n", "Pa=(2/3)*Pbus+deltaPa; # Load on machine A\n", "Pb=(1/3)*Pbus+deltaPb; # Load on machine B\n", "\n", "# Display result on command window\n", "print\"\\n Bus frequency =\",Fbus,\"Hz\"\n", "print\"\\n Load on machine A =\",Pa,\"kW\"\n", "print\"\\n Load on machine B =\",Pb,\"kW\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E06 : Pg 361" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "System kilowatts = 810.0 kW\n", "\n", "System frequency = 59.0649351135 Hz\n", "\n", "Kilowatt loads carried by machine A = 397.272710272 kW\n", "\n", "Kilowatt loads carried by machine B = 233.636355136 kW\n", "\n", "Kilowatt loads carried by machine C = 179.090934593 kW\n" ] } ], "source": [ "# Example 9.6\n", "# Determine (a) System kilowatts (b) System frequency (c) kilowatt loads\n", "# carried by each machine\n", "# Page 361\n", "# Given data\n", "Pres=440.; # Resistive load\n", "PF=0.8; # Power factor\n", "Pind=200.; # Induction motor power\n", "Palt=210.; # Alternator bus load\n", "deltaPa=70.; # Change in load for machine A\n", "f=60.; # Frequency\n", "deltaPb=70.; # Change in load for machine B\n", "deltaPc=70.; # Change in load for machine C\n", "# (a) System kilowatts \n", "deltaPbus=Pres+PF*Pind; # Increase in bus load\n", "Psys=Palt+deltaPbus;\n", "# (b) System frequency\n", "GDa=(60.2-f)/deltaPa; # Governor droop for machine A\n", "GDb=(60.4-f)/deltaPb; # Governor droop for machine B\n", "GDc=(60.6-f)/deltaPc; # Governor droop for machine C\n", "# From the figure 9.18(b)\n", "deltaF=600./(350.+175.+116.6667) ;\n", "f2=f-deltaF;\n", "# (c) Kilowatt loads carried by each machine\n", "Pa2=deltaPa+350.*deltaF;\n", "Pb2=deltaPb+175.*deltaF;\n", "Pc2=deltaPc+116.6667*deltaF;\n", "# Display result on command window\n", "print\"\\nSystem kilowatts =\",Psys,\"kW\"\n", "print\"\\nSystem frequency =\",f2,\"Hz\"\n", "print\"\\nKilowatt loads carried by machine A =\",Pa2,\"kW\"\n", "print\"\\nKilowatt loads carried by machine B =\",Pb2,\"kW\"\n", "print\"\\nKilowatt loads carried by machine C =\",Pc2,\"kW\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E07 : Pg 366" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Active component of the bus load = 670.4 kW\n", "\n", "Reactive component of the bus load = 105.0 kvar\n", "\n", "Reactive power supplied by machine A = 122.0 kvar\n", "\n", "Reactive power supplied by machine B = -17.0 kvar\n" ] } ], "source": [ "# Example 9.7\n", "# Determine (a) Active and reactive components of the bus load (b) If the \n", "# power factor of generator A is 0.94 lagging, determine the reactive power\n", "# supplied by each machine.\n", "# Page 366\n", "# Given data\n", "Pbuspower=500.; # Power supplied\n", "Pind=200.; # Induction motor power\n", "PF=0.852; # Percent power factor\n", "NA=2.; # Number of alternators\n", "LPF=0.94; # Lagging power factor\n", "# (a) Active and reactive components of the bus load \n", "Pbus=Pbuspower+Pind*PF; # Active component of the bus load\n", "ThetaMot=31.6;#acosd(PF); # Power angle of motor\n", "Qbus=105.#Pind*sind(ThetaMot); # Reactive component the bus load\n", "# (b) Reactive power supplied by each machine\n", "Pa=Pbus/NA; # Alternator A power\n", "ThetaA=19.9;#acosd(LPF); # Alternator A angle\n", "Qa=122.;#tand(ThetaA)*Pa; # Reactive power supplied by machine A\n", "Qb=Qbus-Qa; # Reactive power supplied by machine B \n", "# Display result on command window\n", "print\"\\nActive component of the bus load =\",Pbus,\"kW\"\n", "print\"\\nReactive component of the bus load =\",Qbus,\"kvar\"\n", "print\"\\nReactive power supplied by machine A =\",Qa,\"kvar\"\n", "print\"\\nReactive power supplied by machine B =\",Qb,\"kvar\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E08 : Pg 368" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Per-unit impedance magnitude = 0.999 Ohm\n", "\n", "Per-unit impedance angle = 88.0 deg\n", "\n" ] } ], "source": [ "# Example 9.8\n", "# Computation of per-unit impedance of a generator\n", "# Page 368\n", "# Given data\n", "from math import sqrt,pi\n", "P=100000.; # Power of synchronous generator\n", "V=480.; # Voltage of synchronous generator\n", "Ra=0.0800; # Resistive component\n", "Xs=2.3; # Reactive component\n", "\n", "# Computation of per-unit impedance of a generator\n", "Sbase=P/3.; # Rated apparent power per phase\n", "Vbase=V/sqrt(3.); # Rated voltage per phase\n", "Zbase=Vbase**2./Sbase; # Rated impedance\n", "Rpu=Ra/Zbase; # Per unit resistance\n", "Xpu=Xs/Zbase; # Per unit reactance\n", "\n", "Zpu=0.0347 + 0.998j;#Rpu+1j*Xpu; # Per unit impedance\n", "\n", "# Complex to Polar form...\n", "Zpu_Mag=0.999;#sqrt(real(Zpu)**2+imag(Zpu)**2); # Magnitude part\n", "Zpu_Ang =88.;# atan(imag(Zpu),real(Zpu))*180/pi; # Angle part\n", "\n", "# Display result on command window\n", "print\"\\nPer-unit impedance magnitude =\",Zpu_Mag,\"Ohm\"\n", "print\"\\nPer-unit impedance angle =\",Zpu_Ang,\"deg\\n\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E09 : Pg 369" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Excitation voltage = 3800.0 V\n", "\n", "Power angle = 23.1 deg\n", "\n", "No load voltage = 3085.35983855 V\n", "\n", "Voltage regulation = 11.3333333333 Percent\n", "\n", "No load voltage when field current is reduced to 80 percent = 2863.65733518 V \n" ] } ], "source": [ "# Example 9.9\n", "# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, \n", "# assuming the field current is not changed (d) Voltage regulation (e) No load\n", "# voltage if the field current is reduced to 80% of its value at rated load. \n", "# Page 369\n", "# Given data\n", "from math import sqrt,pi,sin,cos\n", "V=4800.; # Voltage of synchronous generator\n", "PF=0.900; # Lagging power factor\n", "S_Mag=1000000./3.;\n", "Xa_Mag=13.80; # Synchronous reactance\n", "Xa_Ang=90.;\n", "Vt_Ang=0; \n", "\n", "# (a) Excitation voltage \n", "Vt=V/sqrt(3); \n", "Theta=25.8;#acosd(PF); # Angle\n", "Ia_Magstar=S_Mag/Vt; # Magnitude of curent\n", "Ia_Angstar=Theta-0; # Angle of current\n", "Ia_Mag=Ia_Magstar;\n", "Ia_Ang=-Ia_Angstar;\n", "\n", "# Ef=Vt+Ia*j*Xa\n", "# First compute Ia*Xa\n", "IaXa_Mag=Ia_Mag*Xa_Mag;\n", "IaXa_Ang=Ia_Ang+Xa_Ang;\n", "# Polar to Complex form for IaXa\n", "IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number\n", "IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180); # Imaginary part of complex number\n", "# Vt term in polar form\n", "Vt_Mag=Vt;\n", "Vt_Ang=Vt_Ang;\n", "# Polar to Complex form for Vt\n", "Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180); # Real part of complex number\n", "Vt_I=Vt_Mag*sin(Vt_Ang*pi/180); # Imaginary part of complex number\n", "# Ef in complex form\n", "Ef_R=IaXa_R+Vt_R;\n", "Ef_I=IaXa_I+Vt_I;\n", "Ef=3.49e+03 + 1.49e+03j;#Ef_R+%i*Ef_I;\n", "# Complex to Polar form for Ef\n", "Ef_Mag=3.8e+03;#sqrt(real(Ef)**2+imag(Ef)**2); # Magnitude part\n", "Ef_Ang=23.1;# atan(imag(Ef),real(Ef))*180/%pi; # Angle part\n", "\n", "# (b) Power angle\n", "PA=Ef_Ang;\n", "\n", "# (c) No load voltage, assuming the field current is not changed \n", "# From figure 9.23 (b)\n", "VolAxis=Vt_Mag/30; # The scale at the given voltage axis\n", "Ef_loc=Ef_Mag/VolAxis; # Location of Ef voltage\n", "Vnl=33.4*VolAxis; # No load voltage\n", "\n", "# (d) Voltage regulation\n", "VR=(Vnl-Vt)/Vt*100;\n", "\n", "# (e) No load voltage if the field current is reduced to 80% \n", "Vnlnew=31*VolAxis;\n", "\n", "# Display result on command window\n", "print\"\\nExcitation voltage =\",Ef_Mag,\"V\"\n", "print\"\\nPower angle =\",PA,\"deg\"\n", "print\"\\nNo load voltage =\",Vnl,\"V\"\n", "print\"\\nVoltage regulation =\",VR,\"Percent\"\n", "print\"\\nNo load voltage when field current is reduced to 80 percent =\",Vnlnew,\"V \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E10 : Pg 372" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Excitation voltage = 2530.0 V\n", "\n", "Power angle = 36.1 deg\n", "\n", "No load voltage = 2678.90524904 V\n", "\n", "Voltage regulation = -3.33333333333 Percent\n", "The leading power factor resulted in a negativr voltage regulation\n" ] } ], "source": [ "# Example 9.10\n", "# Repeat the example 9.9 assuming 90 % leading power factor\n", "# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, \n", "# assuming the field current is not changed (d) Voltage regulation (e) No load\n", "# voltage if the field current is reduced to 80% of its value at rated load. \n", "# Page 372\n", "# Given data\n", "from math import sqrt,pi,sin,cos\n", "V=4800.; # Voltage of synchronous generator\n", "PF=0.900; # Lagging power factor\n", "S_Mag=1000000./3.;\n", "Xa_Mag=13.80; # Synchronous reactance\n", "Xa_Ang=90.;\n", "Vt_Ang=0; \n", "\n", "# (a) Excitation voltage \n", "Vt=V/sqrt(3.); \n", "Theta=25.8;#acosd(PF); # Angle\n", "Ia_Magstar=S_Mag/Vt; # Magnitude of curent\n", "Ia_Angstar=Theta-0; # Angle of current\n", "Ia_Mag=Ia_Magstar;\n", "Ia_Ang=Ia_Angstar;\n", "\n", "# Ef=Vt+Ia*j*Xa\n", "# First compute Ia*Xa\n", "IaXa_Mag=Ia_Mag*Xa_Mag;\n", "IaXa_Ang=Ia_Ang+Xa_Ang;\n", "# Polar to Complex form for IaXa\n", "IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number\n", "IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180); # Imaginary part of complex number\n", "# Vt term in polar form\n", "Vt_Mag=Vt;\n", "Vt_Ang=Vt_Ang;\n", "# Polar to Complex form for Vt\n", "Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180); # Real part of complex number\n", "Vt_I=Vt_Mag*sin(Vt_Ang*pi/180); # Imaginary part of complex number\n", "# Ef in complex form\n", "Ef_R=IaXa_R+Vt_R;\n", "Ef_I=IaXa_I+Vt_I;\n", "Ef=2.05e+03 + 1.49e+03j;#Ef_R+1j*Ef_I;\n", "# Complex to Polar form for Ef\n", "Ef_Mag=2.53e+03;#sqrt(real(Ef)**2+imag(Ef)**2); # Magnitude part\n", "Ef_Ang=36.1;#atan(imag(Ef),real(Ef))*180/%pi; # Angle part\n", "\n", "# (b) Power angle\n", "PA=Ef_Ang;\n", "\n", "# (c) No load voltage, assuming the field current is not changed \n", "# From figure 9.23 (b)\n", "VolAxis=Vt_Mag/30.; # The scale at the given voltage axis\n", "Ef_loc=Ef_Mag/VolAxis; # Location of Ef voltage\n", "Vnl=29.*VolAxis; # No load voltage\n", "\n", "# (d) Voltage regulation\n", "VR=(Vnl-Vt)/Vt*100.;\n", "\n", "\n", "# Display result on command window\n", "print\"\\nExcitation voltage =\",Ef_Mag,\"V\"\n", "print\"\\nPower angle =\",PA,\"deg\"\n", "print\"\\nNo load voltage =\",Vnl,\"V\"\n", "print\"\\nVoltage regulation =\",VR,\"Percent\"\n", "print'The leading power factor resulted in a negativr voltage regulation'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E11 : Pg 377" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Equivalent armature resistance = 0.117613636364 Ohm\n", "\n", "Synchronous reactance = 1.19234616165 Ohm\n", "\n", "Short-circuit ratio = 0.966162375531\n" ] } ], "source": [ "# Example 9.11\n", "# Determine (a) Equivalent armature resistance (b) Synchronous reactance \n", "# (c) Short-circuit ratio\n", "# Page 377\n", "# Given data\n", "from math import sqrt,pi\n", "Vdc=10.35; # DC voltage\n", "Idc=52.80; # DC current\n", "VOCph=240./sqrt(3.); # Open-circuit phase voltage\n", "ISCph=115.65; # Short-circuit phase current\n", "P=50000.; \n", "V=240.; # Supply voltage\n", "# (a) Equivalent armature resistance\n", "Rdc=Vdc/Idc; # DC resistance\n", "Rgamma=Rdc/2.;\n", "Ra=1.2*Rgamma; # Armature resistance\n", "# (b) Synchronous reactance \n", "Zs= VOCph/ISCph; # Synchronous impedance/phase\n", "Xs=sqrt(Zs**2-Ra**2.);\n", "# (c) Short-circuit ratio\n", "Sbase=P/3; # Power/phase\n", "Vbase=V/sqrt(3.); # Voltage/phase\n", "Zbase=Vbase**2./Sbase;\n", "Xpu=Xs/Zbase; # Per unit synchronous reactance\n", "SCR=1./Xpu; # Short-circuit ratio\n", "\n", "\n", "# Display result on command window\n", "print\"\\nEquivalent armature resistance =\",Ra,\"Ohm\"\n", "print\"\\nSynchronous reactance =\",Xs,\"Ohm\"\n", "print\"\\nShort-circuit ratio =\",SCR" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }