{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CHAPTER08 : SYNCHRONOUS MOTORS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E01 : Pg 317" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Developed torque = 303.935185185 lb-ft\n", "\n", "Armature current magnitude= 122.0 A\n", "\n", "Armature current angle= -36.9 deg\n", "\n", "Excitation voltage magnitude = 535.0 V\n", "\n", "Excitation voltage angle = -29.7 deg\n", "\n", "Power angle = -29.7 deg\n", "\n", "Maximum torque = 614.063151623 lb-ft\n" ] } ], "source": [ "# Example 8.1\n", "# Determine (a) Developed torque (b) Armature current (c) Excitation voltage\n", "# (d) Power angle (e) Maximum torque \n", "# Page No. 317\n", "# Given data\n", "from math import sqrt,pi\n", "f=60.; # Operating frequency\n", "P=4.; # Number of poles\n", "Pmech=100.; # Mechanical power\n", "eta=0.96; # Efficiency\n", "FP=0.80; # Power factor leading\n", "V=460.; # Motor voltage\n", "Xs_Mag=2.72; # Synchronous reactnace magnitude\n", "Xs_Ang=90.; # Synchronous reactnace magnitude\n", "deltaPull=-90.; # Pullout power angle\n", "# (a) Developed torque\n", "ns=120.*f/P; # Synchronous speed\n", "Td=5252.*Pmech/(ns*eta); \n", "\n", "\n", "# (b) Armature current\n", "S=Pmech*746./(eta*FP);\n", "Theta=-36.9;#-acosd(FP); # Power factor angle (negative as FP is leading)\n", "V1phi=V/sqrt(3.); # Single line voltage\n", "S1phi_Mag=S/3.; # Magnitude \n", "S1phi_Ang=Theta; # Angle\n", "VT_Mag=V1phi;\n", "VT_Ang=0;\n", "Ia_Mag=122.;#S1phi_Mag/VT_Mag; # Armature current magnitude\n", "Ia_Ang=36.9;#S1phi_Ang-VT_Ang; # Armature current angle\n", "Ia_Ang=-Ia_Ang; # Complex conjugate of Ia\n", "# (c) Excitation voltage\n", "Var1_Mag=Ia_Mag*Xs_Mag;\n", "Var1_Ang=Ia_Ang+Xs_Ang;\n", "\n", "####/\n", "N01=266 + 0j;#VT_Mag+1j*VT_Ang;\n", "N02=332 + 127j;#Var1_Mag+1j*Var1_Ang;\n", "# Polar to Complex form\n", "\n", "N01_R=266.;#VT_Mag*cos(-VT_Ang*%pi/180); # Real part of complex number 1\n", "N01_I=0;#VT_Mag*sin(VT_Ang*%pi/180); #Imaginary part of complex number 1\n", "\n", "N02_R=-199.;#Var1_Mag*cos(-Var1_Ang*%pi/180); # Real part of complex number 2\n", "N02_I=265.;#Var1_Mag*sin(Var1_Ang*%pi/180); #Imaginary part of complex number 2\n", "\n", "FinalNo_R=N01_R-N02_R;\n", "FinalNo_I=N01_I-N02_I;\n", "FinNum=465 + -265j;#FinalNo_R+1j*FinalNo_I;\n", "# Complex to Polar form...\n", "FN_M=535.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n", "FN_A =-29.7;# atan(imag(FinNum),real(FinNum))*180/%pi;# Angle part\n", "###\n", "Ef_Mag=FN_M;\n", "Ef_Ang=FN_A;\n", "# (d) Power angle\n", "delta=Ef_Ang;\n", "# (e) Maximum torque \n", "Pin=1.57*10**05;#3.*(-VT_Mag*Ef_Mag/Xs_Mag)*sind(deltaPull); # Active power input\n", "Tpull=5252.*Pin/(746.*ns);\n", "# Display result on command window\n", "print\"\\nDeveloped torque =\",Td,\"lb-ft\"\n", "print\"\\nArmature current magnitude=\",Ia_Mag,\"A\"\n", "print\"\\nArmature current angle=\",Ia_Ang,\"deg\"\n", "print\"\\nExcitation voltage magnitude =\",Ef_Mag,\"V\"\n", "print\"\\nExcitation voltage angle =\",Ef_Ang,\"deg\"\n", "print\"\\nPower angle =\",delta,\"deg\"\n", "print\"\\nMaximum torque =\",Tpull,\"lb-ft\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E02 : Pg 322" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "The minimum value of excitation = 98.0 V\n", "\n", "The minimum value of excitation using eq.(8.16) = 99.5 V\n", "\n", "The minimum value of excitation using eq.(8.21) = 99.4533076428 V\n", "\n", "Power angle = -34.8 deg\n" ] } ], "source": [ "# Example 8.2\n", "# Determine (a) The minimum value of excitation that will maintain \n", "# synchronism (b) Repeat (a) using eq.(8.16) (c) Repeat (a) using eq.(8.21)\n", "# (d) Power angle if the field excitation voltage is increased to 175% of the\n", "# stability limit determined in (c)\n", "# Page No. 322\n", "# Given data\n", "from math import sqrt,pi\n", "Pin=40.; # Input power\n", "Pin1phase=40./3.; # Single phase power\n", "Xs=1.27; # Synchronous reactnace \n", "VT=220./sqrt(3.); # Voltage\n", "delta=-90.; # Power angle\n", "\n", "f=60.; # Operating frequency\n", "P=4.; # Number of poles\n", "Pmech=100.; # Mechanical power\n", "eta=0.96; # Efficiency\n", "FP=0.80; # Power factor leading\n", "V=460.; # Motor voltage\n", "Xs_Mag=2.72; # Synchronous reactnace magnitude\n", "Xs_Ang=90.; # Synchronous reactnace magnitude\n", "deltaPull=-90.; # Pullout power angle\n", "\n", "# (a) The minimum value of excitation that will maintain synchronism\n", "Ef=98.; # From the graph (Figure 8.13)\n", "\n", "# (b) The minimum value of excitation using eq.(8.16)\n", "Ef816=99.5;#-Pin*Xs*746/(3*VT*sind(delta));\n", "\n", "\n", "# (c) The minimum value of excitation using eq.(8.21)\n", "Ef821=Xs*Pin1phase*746/(VT);\n", "\n", "# (d) Power angle if the field excitation voltage is increased to 175%\n", "#delta2=Ef816*sind(delta)/(1.75*Ef816);\n", "delta2=-34.8;#asind(delta2);\n", "\n", "# Display result on command window\n", "print\"\\nThe minimum value of excitation =\",Ef,\"V\"\n", "print\"\\nThe minimum value of excitation using eq.(8.16) =\",Ef816,\"V\"\n", "print\"\\nThe minimum value of excitation using eq.(8.21) =\",Ef821,\"V\"\n", "print\"\\nPower angle =\",delta2,\"deg\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E03 : Pg 324" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "System active power = 400.174191023 kW\n", "\n", "Power factor of the synchronous motor = 0.828 leading\n", "\n", "System power factor = 0.995 lagging\n", "\n", "Percent change in synchronous field current = 9.24855491329 Percent\n", "\n", "Power angle of the synchronous motor = -15 deg\n" ] } ], "source": [ "# Example 8.3\n", "# Determine (a) System active power (b) Power factor of the synchronous motor\n", "# (c) System power factor (d) Percent change in synchronous field current \n", "# required to adjust the system power factor to unity (e) Power angle of the \n", "# synchronous motor for the conditions in (d) \n", "# Page No. 324\n", "# Given data\n", "from math import sqrt,pi\n", "Php=400.; # Power in hp\n", "eta=0.958; # Efficiency\n", "Pheater=50000.; # Resistance heater power \n", "Vs=300.; # Synchronous motor voltage\n", "eta2=0.96; # Synchronous motor efficiency\n", "Xs=0.667; # Synchronous reactnace\n", "VT=460.; # 3-Phase supply voltage\n", "delta=-16.4; # Power angle\n", "# (a) System active power \n", "Pindmot=Php*0.75*746./(eta); # Motor operating at three quarter rated load\n", "Psynmot=Vs*0.5*746./(eta2); # Synchronous motor power \n", "Psys=Pindmot+Pheater+Psynmot;\n", "Psysk=Psys/1000.;\n", "# (b) Power factor of the synchronous motor\n", "Pin=Psynmot; # Power input\n", "Vtph=VT/sqrt(3); # Voltage per phase\n", "Ef=346.;#-(Pin*Xs)/(3*Vtph*sind(delta));\n", "# Complex to Polar form...\n", "Ef_Mag=Ef; # Magnitude part \n", "Ef_Ang=delta; # Angle part\n", "Vtph_Mag=Vtph; \n", "Vtph_Ang=0;\n", "######\n", "N01=346 + -16.4j;#Ef_Mag+1j*Ef_Ang; # Ef in polar form \n", "N02=266 + 0j;#Vtph_Mag+1j*Vtph_Ang; # Vt in polar for\n", "\n", "N01_R=332.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef\n", "N01_I=-97.6;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef\n", "\n", "N02_R=266.;#Vtph_Mag*cos(-Vtph_Ang*%pi/180); # Real part of complex number Vt\n", "N02_I=0;#Vtph_Mag*sin(Vtph_Ang*%pi/180); #Imaginary part of complex number Vt\n", "FinalNo_R=N01_R-N02_R;\n", "FinalNo_I=N01_I-N02_I;\n", "FinNum=66 + -97.6j;#FinalNo_R+1j*FinalNo_I;\n", "# Complex to Polar form...\n", "FN_M=118.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n", "FN_A =-55.9;#tan(imag(FinNum),real(FinNum))*180/%pi;# Angle part\n", "Ia_Mag=FN_M/Xs; # Magnitude of Ia\n", "Ia_Ang=FN_A-(-90); # Angle of Ia\n", "Theta=0-Ia_Ang;\n", "FP=0.828;#cosd(Theta); # Power factor\n", "# (c) System power factor\n", "ThetaIndMot=27.;#acosd(0.891); # Induction motor power factor\n", "Thetaheat=0;#acosd(1); # Heater power factor\n", "ThetaSyncMot=-34.06; # Synchronous motor power factor\n", "Qindmot=1.19*10**05;#tand(27)*Pindmot; \n", "Qsynmot=-7.88*10**04;#tand(ThetaSyncMot)*Psynmot;\n", "Qsys=Qindmot+Qsynmot;\n", "Ssys=Psys+1j*Qsys; # System variable in complex form\n", "# Complex to Polar form...\n", "Ssys_Mag=4.02*10**05;#sqrt(real(Ssys)**2+imag(Ssys)**2); # Magnitude part\n", "Ssys_Ang =5.74;# atan(imag(Ssys),real(Ssys))*180/%pi; # Angle part\n", "FPsys=0.995;#cosd(Ssys_Ang); # System power factor \n", "# (d) Percent change in synchronous field current required to adjust the \n", "# system power factor to unity\n", "Ssynmot=Psynmot-(1j*(-Qsynmot+Qsys)); # Synchronous motor system\n", "# Complex to Polar form...\n", "Ssynmot_Mag=1.67e+05;#sqrt(real(Ssynmot)**2+imag(Ssynmot)**2); # Magnitude part\n", "Ssynmot_Ang=-45.6;#atan(imag(Ssynmot),real(Ssynmot))*180/%pi; # Angle part\n", "Ssynmot1ph_Mag=5.55e+04;#Ssynmot_Mag/3; # For single phase magnitude\n", "Ssynmot1ph_Ang=-45.6;#Ssynmot_Ang; # For single phase angle\n", "Iastar_Mag=209.;#Ssynmot1ph_Mag/Vtph; # Current magnitude\n", "Iastar_Ang=-45.6;#Ssynmot1ph_Ang-0; # Current angle\n", "IaNew_Mag=209.;#Iastar_Mag;\n", "IaNew_Ang=45.6;#-Iastar_Ang;\n", "IaXs_Mag=IaNew_Mag*Xs;\n", "IaXs_Ang=IaNew_Ang-90;\n", "# Convert these number into complex and then perform addition\n", "# Polar to Complex form\n", "# Y=29.416<-62.3043 #Polar form number\n", "IaXs_R=99.6;#IaXs_Mag*cos(-IaXs_Ang*%pi/180); # Real part of complex number\n", "IaXs_I=-97.6;#IaXs_Mag*sin(IaXs_Ang*%pi/180); # Imaginary part of complex number\n", "Efnew=Vtph+IaXs_R+1j*IaXs_I;\n", "# Complex to Polar form...\n", "\n", "Efnew_Mag=378.;#sqrt(real(Efnew)**2+imag(Efnew)**2); # Magnitude part\n", "Efnew_Ang=-15;#atan(imag(Efnew),real(Efnew))*180/%pi; # Angle part\n", "\n", "DeltaEf=(Efnew_Mag-Ef)/Ef; \n", "\n", "# (e) Power angle of the synchronous motor\n", "deltasynmot=Efnew_Ang;\n", "\n", "# Display result on command window\n", "print\"\\nSystem active power =\",Psysk,\"kW\"\n", "print\"\\nPower factor of the synchronous motor =\",FP,\"leading\"\n", "print\"\\nSystem power factor =\",FPsys,\"lagging\"\n", "print\"\\nPercent change in synchronous field current =\",DeltaEf*100,\"Percent\"\n", "print\"\\nPower angle of the synchronous motor =\",deltasynmot,\"deg\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E04 : Pg 328" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Developed torque = 887.004444444 lb-ft\n", "\n", "Developed torque in percent of rated torque = 164.27613941 Percent\n" ] } ], "source": [ "# Example 8.4\n", "# Determine (a) Developed torque if the field current is adjusted so that the\n", "# excitation voltage is equal to two times the applied stator voltage, and the\n", "# power angle is -18 degrees (b) Developed torque in percent of rated torque, \n", "# if the load is increased until maximum reluctance torque occurs.\n", "# Page No. 328\n", "# Given data\n", "from math import sqrt,pi\n", "Vt1ph=2300./sqrt(3.); # Applied voltage/phase\n", "Ef1ph=2300./sqrt(3.); # Excitation voltage/phase\n", "Xd=36.66; # Direct axis reactance/phase\n", "delta=-18.; # Power angle\n", "Xq=23.33; # Quadrature-axis reactance/phase\n", "n=900.; # Speed of motor\n", "deltanew=-45.;\n", "RatTor=200.; # Rated torque of motor\n", "# (a) Developed torque\n", "Pmag1ph=2.97e+04;#-((Vt1ph*2.*Ef1ph)/Xd)*sind(delta); # Power \n", "Prel1ph=8.08e+03;#-Vt1ph**2.*( (Xd-Xq) / (2.*Xd*Xq)) *sind(2.*delta); # Reluctance power\n", "Psal3ph=1.13e+05;#3*(Pmag1ph+Prel1ph); # Salient power of motor\n", "Psal3phHP=152.;#Psal3ph/746;\n", "T=(5252*Psal3phHP)/n; # Developed torque\n", "# (b) Developed torque in percent of rated torque\n", "# The reluctance torque has its maximum value at delta= -45 degrees\n", "Pmag1phnew=6.8e+04;#-((Vt1ph*2*Ef1ph)/Xd)*sind(deltanew); # Power\n", "Prel1phnew=1.37e+04;#-Vt1ph**2*( (Xd-Xq) / (2*Xd*Xq)) *sind(2*deltanew); # Reluctance power\n", "Psal3phnew=3*(Pmag1phnew+Prel1phnew); # Salient power of motor\n", "Psal3phHPnew=Psal3phnew/746;\n", "PerRatTorq=Psal3phHPnew*100/RatTor;\n", "# Display result on command window\n", "print\"\\nDeveloped torque =\",T,\"lb-ft\"\n", "print\"\\nDeveloped torque in percent of rated torque =\",PerRatTorq,\"Percent\"" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }