{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CHAPTER03 : TRANSFORMER CONNECTIONS OPERATION AND SPECIALITY TRANSFORMERS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E01 : Pg 98" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Load current = 8.0 A\n", "Incoming line current = 2.0 A\n", "Transformed current = 6.0 A\n", "Apparent power conducted = 1200.0 VA\n", "Apparent power transformed = 3600.0 VA\n" ] } ], "source": [ "# Example 3.1\n", "# Computation of (a) Load current (b) Incoming line current\n", "# (c) Transformed current (d) Apparent power conducted and apparent power transformed\n", "# Page No. 98\n", "# Given data\n", "NHS=400.; # Number of turns in the high side\n", "NLS=0.25*400.; # Number of turns in the low side\n", "VHS=2400.; # Voltage at the high side\n", "S=4800.; # Supply voltage\n", "\n", "# (a) Load current\n", "a=NHS/NLS; # Transformer turn ratio \n", "VLS=VHS/a; # Low side voltage \n", "ILS=S/VLS; # Load current\n", "\n", "# (b) Incoming line current\n", "IHS=ILS/a; \n", "\n", "# (c) Transformed current\n", "ITR=ILS-IHS;\n", "\n", "# (d) Apparent power conducted and apparent power transformed\n", "\n", "SCOND=IHS*VLS; # Apparent power conducted\n", "STRANS=ITR*VLS; # Apparent power transformed \n", "\n", "\n", "# Display result on command window\n", "print\"Load current =\",ILS,\"A\"\n", "print\"Incoming line current =\",IHS,\"A\"\n", "print\"Transformed current =\",ITR,\"A\"\n", "print\"Apparent power conducted =\",SCOND,\"VA\"\n", "print\"Apparent power transformed =\",STRANS,\"VA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E02 : Pg 100" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rated primary current = 41.6666666667 A\n", "Rated secondary current = 4.16666666667 A\n", "Apparent power rating = 110.0 KVA\n" ] } ], "source": [ "# Example 3.2\n", "# Computation of (a) Rated primary and secondary currents when connected as \n", "# autotransformer (b) Apparent power rating when connected as an autotransformer\n", "# Page No. 100\n", "# Given data\n", "S=10000.; # Supply voltage\n", "VLS=240.; # Voltage at the low side\n", "VHS=2400.; # Voltage at the high side\n", "Sw=10.; # Power rating\n", "# (a) Rated primary and secondary currents when connected as autotransformer \n", "ILSWINDING=S/VLS; # Rated primary current\n", "IHSWINDING=S/VHS; # Rated secondary current\n", "# (b) Apparent power rating when connected as an autotransformer\n", "a=VHS/VLS; # Magnetic drop across R1\n", "Sat=(a+1)*Sw; \n", "# Display result on command window\n", "print\"Rated primary current =\",ILSWINDING,\"A\"\n", "print\"Rated secondary current =\",IHSWINDING,\"A\"\n", "print\"Apparent power rating =\",Sat,\"KVA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E03 : Pg 102" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Actual output voltage supplied to the air conditioner is = 233.2 V\n", "Actual output voltage assuming utilization voltage as 246 V is = 230.617793194 V\n" ] } ], "source": [ "# Example 3.3\n", "# Computation of (a) Buck boost transformer parameters \n", "# (b) Repeating the same assuming utilization voltage as 246V\n", "# Page No. 102\n", "# Given data\n", "S=10000.; # Supply voltage\n", "VLS=212.; # Voltage at the low side\n", "VHSNEW=246.; # New voltage at the high side\n", "a1=1.100; \n", "a11=1.0667;\n", "# (a) Buck boost transformer parameters \n", "VHS=a1*VLS;\n", "# (b) Repeating the same assuming utilization voltage as 246V\n", "VLSNEW=VHSNEW/a11; \n", "# Display result on command window\n", "print\"Actual output voltage supplied to the air conditioner is =\",VHS,\"V\"\n", "print\"Actual output voltage assuming utilization voltage as 246 V is =\",VLSNEW,\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E04 : Pg 104" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Circulating current magnitude = 65.6 A\n", "Circulating current angle = -68.0 deg\n", "Circulating current as a percent of the rated current = 30.176 Percent\n", "Percent difference in secondary voltage = 2.22222222222 Percent\n" ] } ], "source": [ "# Example 3.4\n", "# Determine (a) Circulating current in the paralleled secondaries \n", "# (b) Circulating current as a percent of the rated current of transformer A \n", "# (c) Percent difference in secondary voltage that caused the circulating current\n", "# Page No. 104\n", "# Given data\n", "S=100000.; # Transformer A and B rating \n", "VLSA=460.; # Voltage at the low side of transformer A\n", "VLSB=450.; # Voltage at the low side of transformer A\n", "RPUA=0.0136; # Percent resistance of transformer A\n", "XPUA=0.0350; # Percent reactance of transformer A\n", "RPUB=0.0140; # Percent resistance of transformer B\n", "XPUB=0.0332; # Percent reactance of transformer B\n", "# (a) Circulating current in the paralleled secondaries \n", "IA= S/VLSA; # Rated low side current for transformer A\n", "IB= S/VLSB; # Rated low side current for transformer B\n", "ReqA=RPUA*VLSA/IA; # Equivalent resistance of transfomer A\n", "ReqB=RPUB*VLSB/IB; # Equivalent resistance of transfomer B\n", "XeqA=XPUA*VLSA/IA; # Equivalent reactance of transfomer A\n", "XeqB=XPUB*VLSB/IB; # Equivalent reactance of transfomer B\n", "# Impedance of the closed loop formed by two secondaries is\n", "Zloop=0.0571+0.14j;#ReqA+%i*XeqA+ReqB+%i*XeqB; \n", "# Complex to Polar form...\n", "Zloop_Mag=0.152;#sqrt(real(Zloop)**2+imag(Zloop)**2); # Magnitude part\n", "Zloop_Ang=68.;#atan(imag(Zloop),real(Zloop))*180/%pi; # Angle part\n", "Icirc_Mag=65.6;#(VLSA-VLSB)/Zloop_Mag; # Circulating current magnitude\n", "Icirc_Ang=-68.;#0- Zloop_Ang; # Circulating current angle\n", "\n", "# (b) Circulating current as a percent of the rated current of transformer A\n", "IcircA=Icirc_Mag*100/IA;\n", "# (c) Percent difference in secondary voltage that caused the circulating current\n", "PD=(VLSA-VLSB)*100/VLSB;\n", "# Display result on command window\n", "print\"Circulating current magnitude =\",Icirc_Mag,\"A\"\n", "print\"Circulating current angle =\",Icirc_Ang,\"deg\"\n", "print\"Circulating current as a percent of the rated current =\",IcircA,\"Percent\"\n", "print\"Percent difference in secondary voltage =\",PD,\"Percent\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E05 : Pg 107" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rated high side current of transformer A = 31.25 A\n", "Rated high side current of transformer B = 83.3333333333 A\n", "Percent of total bank current drawn by transformer A = 3070.0 Percent\n", "Percent of total bank current drawn by transformer B = 6980.0 Percent\n", "Maximum load that can be handled by the bank = 101.791530945 A\n" ] } ], "source": [ "# Example 3.5\n", "# Determine (a) Rated high side current of each transformer (b) Percent of the\n", "# total bank-current drawn by each transformer (c) Maximum load that can be \n", "# handled by the bank without overloading by one of the transformer\n", "# Page No. 107\n", "# Given data\n", "SA=75000.; # Transformer A rating\n", "SB=200000.; # Transformer B rating\n", "VHSA=2400.; # Voltage at the high side of transformer A\n", "VHSB=2400.; # Voltage at the high side of transformer B\n", "RPUA=1.64; # Percent resistance of transformer A\n", "XPUA=3.16; # Percent reactance of transformer A\n", "RPUB=1.10; # Percent resistance of transformer B\n", "XPUB=4.03; # Percent reactance of transformer B\n", "# (a) Rated high side current of each transformer\n", "IArated=SA/VHSA; # High side rated current transformer A\n", "IBrated=SB/VHSB; # High side rated current transformer B\n", "# (b) Percent of the total bank-current drawn by each transformer\n", "ZAper=1.64+3.16j;#RPUA+%i*XPUA; # Percent impadance for transformer A\n", "# Complex to Polar form...\n", "ZAper_Mag=3.56;#sqrt(real(ZAper)**2+imag(ZAper)**2); # Magnitude part\n", "ZAper_Ang=62.6;#atan(imag(ZAper),real(ZAper))*180/%pi; # Angle part\n", "\n", "ZBper=1.1+4.03j;#RPUB+%i*XPUB; # Percent impadance for transformer B\n", "# Complex to Polar form...\n", "ZBper_Mag=4.18;#sqrt(real(ZBper)**2+imag(ZBper)**2); # Magnitude part\n", "ZBper_Ang=74.7;#atan(imag(ZBper),real(ZBper))*180/%pi; # Angle part\n", "\n", "ZAbase=VHSA/IArated; # Base impedance of transformer A\n", "ZBbase=VHSB/IBrated; # Base impedance of transformer A\n", "\n", "ZeqA_Mag=ZAbase*ZAper_Mag/100; # Magnitude of equivalent impedance A\n", "ZeqA_Ang=ZAper_Ang; # Angle of equivalent impedance A\n", "\n", "ZeqB_Mag=ZBbase*ZBper_Mag/100; # Magnitude of equivalent impedance B\n", "ZeqB_Ang=ZBper_Ang; # Angle of equivalent impedance B\n", "\n", "YeqA_Mag=0.366;#1/ZeqA_Mag; # Magnitude of equivalent admittance A\n", "YeqA_Ang=-62.6;#0-ZeqA_Ang; # Angle of equivalent admittance A\n", "\n", "# Polar to Complex form\n", "YeqA_R=0.168;#YeqA_Mag*cos(-YeqA_Ang*%pi/180); # Real part of complex number\n", "YeqA_I=-0.325;#YeqA_Mag*sin(YeqA_Ang*%pi/180); # Imaginary part of complex number\n", "\n", "YeqB_Mag=0.831;#1/ZeqB_Mag; # Magnitude of equivalent admittance B\n", "YeqB_Ang=-74.7;#0-ZeqB_Ang; # Angle of equivalent admittance B\n", "\n", "# Polar to Complex form\n", "\n", "YeqB_R=0.219;#YeqB_Mag*cos(-YeqB_Ang*%pi/180); # Real part of complex number\n", "YeqB_I=-0.802;#YeqB_Mag*sin(YeqB_Ang*%pi/180); # Imaginary part of complex number\n", "YP=0.387+1.13j;#(YeqA_R - %i* YeqA_I)+(YeqB_R - %i* YeqB_I); # Parallel admittance\n", "\n", " # Complex to Polar form...\n", "YP_Mag=1.19;#sqrt(real(YP)**2+imag(YP)**2); # Magnitude part\n", "YP_Ang=71.;#atan(imag(YP),real(YP))*180/%pi; # Angle part\n", "\n", "IA=30.7;#YeqA_Mag/YP_Mag; # Transformer A load\n", "IB=69.8;#YeqB_Mag/YP_Mag; # Transformer A load\n", "IA=IA*100.;\n", "IB=IB*100.;\n", "\n", "# (c) Maximum load that can be handled by the bank without overloading by \n", "# one of the transformer\n", "Ibank=IArated/0.307;\n", "\n", "# Display result on command window\n", "\n", "print\"Rated high side current of transformer A =\",IArated,\"A\"\n", "print\"Rated high side current of transformer B =\",IBrated,\"A\"\n", "print\"Percent of total bank current drawn by transformer A =\",IA,\"Percent\"\n", "print\"Percent of total bank current drawn by transformer B =\",IB,\"Percent\"\n", "print\"Maximum load that can be handled by the bank =\", Ibank,\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E06 : Pg 109" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percent of total bank current drawn by transformer A = 55.1594746717 Percent\n", "Percent of total bank current drawn by transformer B = 44.8405253283 Percent\n" ] } ], "source": [ "# Example 3.6\n", "# Determine the percent of the total bank-current drawn by each transformer \n", "# Page No. 109\n", "# Given data\n", "ZaPU_R=0.0158; # Transformer A impedance real part\n", "ZaPU_I=0.0301; # Transformer A impedance imaginary part\n", "ZbPU_R=0.0109; # Transformer B impedance real part\n", "ZbPU_I=0.0398; # Transformer B impedance imaginary part\n", "SB=200000.; # Transformer B rating\n", "VHSA=2400.; # Voltage at the high side of transformer A\n", "VHSB=2400.; # Voltage at the high side of transformer B\n", "RPUA=1.64; # Percent resistance of transformer A\n", "XPUA=3.16; # Percent reactance of transformer A\n", "RPUB=1.10; # Percent resistance of transformer B\n", "XPUB=4.03; # Percent reactance of transformer B\n", "\n", "\n", "\n", "# Base impedance of transformer A\n", "ZaPU=0.0158 + 0.0301j;#ZaPU_R+%i*ZaPU_I;\n", "# Complex to Polar form...\n", "ZaPU_Mag=0.034;#sqrt(real(ZaPU)**2+imag(ZaPU)**2); # Magnitude part\n", "ZaPU_Ang=62.3;#atan(imag(ZaPU),real(ZaPU))*180/%pi; # Angle part\n", "\n", "# Base impedance of transformer B\n", "ZbPU=0.0109+0.0398j;#ZbPU_R+%i*ZbPU_I;\n", "# Complex to Polar form...\n", "ZbPU_Mag=0.0413;#sqrt(real(ZbPU)**2+imag(ZbPU)**2); # Magnitude part\n", "ZbPU_Ang=74.7;#atan(imag(ZbPU),real(ZbPU))*180/%pi; # Angle part\n", "\n", "# Admittance of transformer A\n", "YaPU_Mag=29.4;#1/ZaPU_Mag; # Magnitude of equivalent admittance A\n", "YaPU_Ang=-62.3;#0-ZaPU_Ang; # Angle of equivalent admittance A\n", "\n", "# Polar to Complex form\n", "\n", "YaPU_R=13.7;#YaPU_Mag*cos(-YaPU_Ang*%pi/180); # Real part of complex number\n", "YaPU_I=-26;#YaPU_Mag*sin(YaPU_Ang*%pi/180); # Imaginary part of complex number\n", "\n", "# Admittance of transformer B\n", "YbPU_Mag=24.2;#1/ZbPU_Mag; # Magnitude of equivalent admittance B\n", "YbPU_Ang=-74.7;#0-ZbPU_Ang; # Angle of equivalent admittance B\n", "# Polar to Complex form\n", "\n", "YbPU_R=6.4;#YbPU_Mag*cos(-YbPU_Ang*%pi/180); # Real part of complex number\n", "YbPU_I=-23.4;#YbPU_Mag*sin(YbPU_Ang*%pi/180); # Imaginary part of complex number\n", "\n", "# Parallel admittance\n", "YP=20.1+49.4j;#(YaPU_R-%i*YaPU_I)+(YbPU_R-%i*YbPU_I);\n", "# Complex to Polar form...\n", "YP_Mag=53.3;#sqrt(real(YP)**2+imag(YP)**2); # Magnitude part\n", "YP_Ang=67.9;#atan(imag(YP),real(YP))*180/%pi; # Angle part\n", "\n", "IA=YaPU_Mag/YP_Mag*100; # Percent current drawn by transformer A \n", "IB=100-IA; \n", "\n", "# Display the result on the command window\n", "print\"Percent of total bank current drawn by transformer A =\",IA,\"Percent\"\n", "print\"Percent of total bank current drawn by transformer B =\",IB,\"Percent\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E07 : Pg 113" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Bank ratio = 17.3333333333\n", "Transformer ratio = 10.007404666\n", "Rated line current for the high side = 20.8179183602 A\n", "Rated phase current for the high side = 20.8179183602 A\n", "Rated line current for the low side = 360.843918244 A\n", "Rated phase current for the low side = 208.333333333 A\n" ] } ], "source": [ "# Example 3.7\n", "# Computation of (a) Bank ratio (b) Transformer ratio (c) Rated line and phase \n", "# currents for the high side (d) Rated line and phase currents for the low side\n", "# Page No. 113\n", "# Given data\n", "import math \n", "VLINEHS=4160.; # Number of turns in the high side\n", "VLINELS=240.; # Number of turns in the low side\n", "VHS=2400.; # Voltage at the high side\n", "S=4800.; # Supply voltage\n", "Vline=150000.; # Transformer rating\n", "\n", "# (a) Bank ratio\n", "bankratio=VLINEHS/VLINELS; \n", "\n", "# (b) Transformer ratio\n", "Vphasep= VLINEHS/ math.sqrt(3); # For wye primary\n", "Vphases=VLINELS # For secondary\n", "TR=Vphasep/Vphases; # Transformer ratio \n", "\n", "# (c) Rated line and phase currents for the high side \n", "Ilinew=Vline/(math.sqrt(3)*VLINEHS);\n", "Iphasew=Ilinew;\n", "\n", "# (d) Rated line and phase currents for the low side\n", "Ilined=Vline/(math.sqrt(3)*VLINELS); \n", "Iphased=Ilined/math.sqrt(3);\n", "\n", "\n", "# Display result on command window\n", "print\"Bank ratio =\",bankratio\n", "print\"Transformer ratio =\",TR\n", "print\"Rated line current for the high side =\",Ilinew,\"A\"\n", "print\"Rated phase current for the high side =\",Iphasew,\"A\"\n", "print\"Rated line current for the low side =\",Ilined,\"A\"\n", "print\"Rated phase current for the low side =\",Iphased,\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E08 : Pg 117" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Capacity of the bank when operating open-delta is = 43.275 kVA\n" ] } ], "source": [ "# Example 3.8\n", "# Determine the maximum allowable power that the open-delta bank handle \n", "# without overheating\n", "# Page No. 117\n", "# Given data\n", "S=25.;# Transformer rating\n", "# Capacity of the delta-delta bank is\n", "Cddb=S*3;\n", "# Capacity of the bank when operating open-delta is\n", "Cob=Cddb*0.577;\n", "# Display result on command window\n", "print\"Capacity of the bank when operating open-delta is =\",Cob,\"kVA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example E09 : Pg 117" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimum power rating required for each transformer = 32.075014955 kVA\n" ] } ], "source": [ "# Example 3.9\n", "# Determine the minimum power rating required for each transformer\n", "# Page No. 117\n", "# Given data\n", "import math\n", "P=50000.; # Transformer power rating\n", "Eline=120.; # Line voltage\n", "FP=0.9 # Power factor lagging\n", "VL=120.;\n", "#Line current is\n", "Iline=P/(math.sqrt(3.)*Eline*FP);\n", "#Minimum power rating required for each transformer\n", "Pmin=VL*Iline/1000.;\n", "#Display result on command window\n", "print\"Minimum power rating required for each transformer =\",Pmin,\"kVA\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }