{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 14: TRANSFORMERS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.1, Page number 487" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "N_1 = 500.0 #Number of turns in the hv side i.e primary\n", "N_2 = 100.0 #Number of turns in the lv side i.e secondary\n", "I_2 = 12.0 #Load current i.e secondary(A)\n", "\n", "#Calculation\n", "#For step-down transformer\n", "alpha = N_1/N_2 #Transformation ratio\n", "I_1 = I_2/alpha #Load component of primary current(A)\n", "#For step-up transformer\n", "N1 = 100.0 #Number of turns in the lv side i.e primary\n", "N2 = 500.0 #Number of turns in the hv side i.e secondary\n", "alpha_c = N1/N2 #Transformation ratio\n", "\n", "#Result\n", "print('Case(a): Transformation ratio , \u03b1 = %.f ' %alpha)\n", "print('Case(b): Load component of primary current , I_1 = %.1f A' %I_1)\n", "print('Case(c): Transformation ratio if transformer is used as step-up , \u03b1 = %.1f ' %alpha_c)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Transformation ratio , \u03b1 = 5 \n", "Case(b): Load component of primary current , I_1 = 2.4 A\n", "Case(c): Transformation ratio if transformer is used as step-up , \u03b1 = 0.2 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.2, Page number 488" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_h = 2300.0 #Primary voltage i.e hv(V)\n", "V_l = 115.0 #Secondary voltage i.e lv(V)\n", "f = 60.0 #Frequency(Hz)\n", "S = 4.6 #Rating of the step-down transformer(kVA)\n", "V_per_turn = 2.5 #Induced EMF per turn(V/turn)\n", "\n", "#Calculation\n", "#Case(a)\n", "N_h = V_h/V_per_turn #Number of high-side turns\n", "N_l = V_l/V_per_turn #Number of low-side turns\n", "N_1 = N_h\n", "N_2 = N_l\n", "#Case(b)\n", "V_1 = V_h\n", "V_2 = V_l\n", "S_1 = S\n", "S_2 = S\n", "I_1 = S_1*1000/V_1 #Rated primary current(A)\n", "I_2 = S_2*1000/V_2 #Rated secondary current(A)\n", "I_h = I_1\n", "I_l = I_2\n", "#Case(c)\n", "alpha_stepdown_c = N_1/N_2 #Step-down transformation ratio\n", "alpha_stepup_c = N_l/N_h #Step-up transformation ratio\n", "#Case(d)\n", "alpha_stepdown_d = I_2/I_1 #Step-down transformation ratio\n", "alpha_stepup_d = I_h/I_l #Step-up transformation ratio\n", "\n", "#Result\n", "print('Case(a): Number of high-side turns , N_h = %.f t = N_1 ' %N_h)\n", "print(' Number of low-side turns , N_l = %.f t = N_2 ' %N_l)\n", "print('Case(b): Rated primary current , I_h = I_1 = %.f A' %I_h)\n", "print(' Rated secondary current , I_l = I_2 = %.f A' %I_l)\n", "print('Case(c): Step-down transformation ratio , \u03b1 = %.f ' %alpha_stepdown_c);\n", "print(' Step-up transformation ratio , \u03b1 = %.2f ' %alpha_stepup_c);\n", "print('Case(d): Step-down transformation ratio , \u03b1 = %.f ' %alpha_stepdown_d);\n", "print(' Step-up transformation ratio , \u03b1 = %.2f ' %alpha_stepup_d);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Number of high-side turns , N_h = 920 t = N_1 \n", " Number of low-side turns , N_l = 46 t = N_2 \n", "Case(b): Rated primary current , I_h = I_1 = 2 A\n", " Rated secondary current , I_l = I_2 = 40 A\n", "Case(c): Step-down transformation ratio , \u03b1 = 20 \n", " Step-up transformation ratio , \u03b1 = 0.05 \n", "Case(d): Step-down transformation ratio , \u03b1 = 20 \n", " Step-up transformation ratio , \u03b1 = 0.05 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.3, Page number 489" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "N_1 = 500.0 #Number of primary turns\n", "N_2 = 25.0 #Number of secondary turns\n", "Z_L = 8.0 #Impedance(ohm)\n", "V_1 = 10.0 #Output voltage of the amplifier(V)\n", "\n", "#Calculation\n", "alpha = N_1/N_2 #Step-down transformation ratio\n", "Z_1 = alpha**2*Z_L #Impedance reflected to the transformer primary at the output of the amplifier(ohm)\n", "I_1 = V_1/Z_1*1000 #Matching transformer primary current(mA)\n", "\n", "#Result\n", "print('Case(a): Impedance reflected to the transformer primary at the output of the amplifier , Z_1 = %.f \u03a9' %Z_1)\n", "print('Case(b): Matching transformer primary current , I_1 = %.3f mA' %I_1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Impedance reflected to the transformer primary at the output of the amplifier , Z_1 = 3200 \u03a9\n", "Case(b): Matching transformer primary current , I_1 = 3.125 mA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.4, Page number 490" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "N_1 = 600.0 #Number of primary turns \n", "N_2 = 150.0 #Some number of secondary turns \n", "N_3 = 300.0 #Some number of secondary turns \n", "Z_2 = 30.0 #Resistive load across N_2(ohm)\n", "Z_3 = 15.0 #Resistive load across N_3(ohm)\n", "V_p = 16.0 #Primary applied voltage(V)\n", "cos_theta = 1.0 #Unity PF\n", "\n", "#Calculation\n", "#Case(a)\n", "Z_2_prime = Z_2*(N_1/N_2)**2 #Impedance reflected to the primary by load Z_2(ohm)\n", "#Case(b)\n", "Z_3_prime = Z_3*(N_1/N_3)**2 #Impedance reflected to the primary by load Z_3(ohm)\n", "#Case(c)\n", "Z_1 = (Z_2_prime*Z_3_prime)/(Z_2_prime+Z_3_prime) #Total impedance reflected to primary(ohm)\n", "#Case(d)\n", "I_1 = V_p/Z_1 #Total current drawn from the supply(A)\n", "#Case(e)\n", "P_t = V_p*I_1*cos_theta #Total power drawn from the supply at unity PF(W)\n", "#Case(f)\n", "R_2 = Z_2\n", "V_2 = V_p*(N_2/N_1) #Voltage across load Z_2(V)\n", "P_2 = V_2**2/R_2 #Power dissipated in load Z_2(W)\n", "#Case(g)\n", "R_3 = Z_3\n", "V_3 = V_p*(N_3/N_1) #Voltage across Z_3 in volt\n", "P_3 = V_3**2 / R_3 #Power dissipated in load Z_3(W)\n", "#Case(h)\n", "P_total = P_2+P_3 #Total power dissipated in both loads(W)\n", "\n", "#Result\n", "print('Case(a): Impedance reflected to the primary by load Z_2 = %.f \u03a9' %Z_2_prime)\n", "print('Case(b): Impedance reflected to the primary by load Z_3 = %.f \u03a9' %Z_3_prime)\n", "print('Case(c): Total impedance reflected to the primary , Z_1 = %.1f \u03a9' %Z_1)\n", "print('Case(d): Total current drawn from the supply , I_1 = %.1f A' %I_1)\n", "print('Case(e): Total power drawn from the supply at unity power factor , P_t = %.1f W' %P_t)\n", "print('Case(f): Voltage across load Z_2 , V_2 = %.f V' %V_2)\n", "print(' Power dissipated in load Z_2 , P_2 = %.2f W' %P_2)\n", "print('Case(g): Voltage across load Z_3 , V_3 = %.f V' %V_3)\n", "print(' Power dissipated in load Z_3 , P_3 = %.2f W' %P_3)\n", "print('Case(h): Total power dissipated in both loads , P_t = %.1f W ' %P_total)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Impedance reflected to the primary by load Z_2 = 480 \u03a9\n", "Case(b): Impedance reflected to the primary by load Z_3 = 60 \u03a9\n", "Case(c): Total impedance reflected to the primary , Z_1 = 53.3 \u03a9\n", "Case(d): Total current drawn from the supply , I_1 = 0.3 A\n", "Case(e): Total power drawn from the supply at unity power factor , P_t = 4.8 W\n", "Case(f): Voltage across load Z_2 , V_2 = 4 V\n", " Power dissipated in load Z_2 , P_2 = 0.53 W\n", "Case(g): Voltage across load Z_3 , V_3 = 8 V\n", " Power dissipated in load Z_3 , P_3 = 4.27 W\n", "Case(h): Total power dissipated in both loads , P_t = 4.8 W \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.5, Page number 491" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 100.0 #Power rating of the single channel power amplifier(W)\n", "Z_p = 3200.0 #Output impedance ohm of the single channel power amplifier(ohm)\n", "N_p = 1500.0 #Number of primary turns in a tapped impedance-matching transformer\n", "Z_L1 = 8.0 #Amplifier output using a tapped impedance-matching transformer(ohm)\n", "Z_L2 = 4.0 #Amplifier output using a tapped impedance-matching transformer(ohm)\n", "\n", "#Calculation\n", "#Case(a)\n", "alpha = (Z_p/Z_L1)**0.5 #Transformation ratio\n", "N_2 = N_p/alpha #Total number of secondary turns to match 8 ohm speaker\n", "#Case(b)\n", "alpha_b = (Z_p/Z_L2)**0.5 #Transformation ratio\n", "N_1 = N_p/alpha_b #Number of primary turns to match 4 ohm speaker\n", "#Case(c)\n", "turns_difference = N_2-N_1 #Difference in secondary and primary turns\n", "alpha_c = (N_p/turns_difference) #Transformation ratio\n", "Z_L = Z_p/alpha_c**2 #Impedance that must be connected(ohm)\n", "\n", "#Result\n", "print('Case(a): Total number of secondary turns to match 8 \u03a9 impedance speaker , N_2 = %.f t' %N_2)\n", "print('Case(b): Number of turns to match 4 \u03a9 impedance speaker , N_1 = %.f t' %N_1)\n", "print('Case(c): Impedance that must be connected , Z_L = %.2f \u03a9' %Z_L)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Total number of secondary turns to match 8 \u03a9 impedance speaker , N_2 = 75 t\n", "Case(b): Number of turns to match 4 \u03a9 impedance speaker , N_1 = 53 t\n", "Case(c): Impedance that must be connected , Z_L = 0.69 \u03a9\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.6, Page number 492" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 100.0 #Power rating of the single channel power amplifier(W)\n", "Z_L1 = 8.0 #Amplifier output using a tapped impedance-matching transformer(ohm)\n", "Z_L2 = 4.0 #Amplifier output using a tapped impedance-matching transformer(ohm)\n", "P_servo = 10.0 #Power rating of the servo motor(W)\n", "Z_servo = 0.7 #Impedance of the servo motor(ohm)\n", "\n", "#Calculation\n", "root_Z_AB = 8**0.5-4**0.5\n", "Z_AB = (root_Z_AB)**2\n", "\n", "#Result\n", "print('Impedance between terminals A and B , Z_AB = %.2f \u03a9' %Z_AB)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Impedance between terminals A and B , Z_AB = 0.69 \u03a9\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.7, Page number 494" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "V_s = 10.0*cmath.exp(1j*0*math.pi/180) #Supply voltage of the source(V)\n", "R_s = 1000.0 #Resistance of the source(ohm)\n", "R_L = 10.0 #Load resistance(ohm)\n", "\n", "#Calculation\n", "#Case(a)\n", "alpha = (R_s/R_L)**0.5 #Transformation ratio of the matching transformer for MPT\n", "#Case(b)\n", "V = abs(V_s) #Considering only absolute value of Supply voltage for easy simplification\n", "V_1 = V/2 #Terminal voltage of the source at MPT(V)\n", "#Case(c)\n", "V_2 = V_1/alpha #Terminal voltage across the load at MPT(V)\n", "#Case(d)\n", "Z_L = R_L\n", "I_2 = V_2/Z_L #Secondary load current(A). Method 1\n", "I2 = V/(2*alpha*R_L) #Secondary load current(A). Method 2\n", "#Case(e)\n", "I_1 = I_2/alpha #Primary load current drawn from the source(A). Method 1\n", "I1 = V/(2*R_s) #Primary load current drawn from the source(A). Method 2\n", "#Case(f)\n", "P_L = (I_2)**2*R_L #Maximum power dissipated in the load(W)\n", "#Case(g)\n", "P_s = (I_1)**2*R_s #Power dissipated internally within the source(W)\n", "#Case(h)\n", "theta = 0\n", "P_T1 = abs(V)*I_1*math.cos(theta) #Total power supplied by the source(W). Method 1\n", "P_T2 = P_L+P_s #Total power supplied by the source(W). Method 2\n", "#Case(i)\n", "P_T = P_T1\n", "n = P_L/P_T*100 #Power transfer efficiency(%)\n", "\n", "#Result\n", "print('Case(a): Transformation ratio of the matching transformer for MPT , \u03b1 = %.f ' %alpha)\n", "print('Case(b): Terminal voltage of the source at MPT , V_1 = %.1f V' %V_1)\n", "print('Case(c): Terminal voltage across the load at MPT , V_2 = %.1f V' %V_2)\n", "print('Case(d): Secondary load current , I_2 = %.f mA (Method 1)' %(1000*I_2))\n", "print(' Secondary load current , I_2 = %.f mA (Method 2)' %(1000*I2))\n", "print('Case(e): Primary load current drawn from the source , I_1 = %.f mA (Method 1)' %(1000*I_1))\n", "print(' Primary load current drawn from the source , I_1 = %.f mA (Method 2)' %(1000*I1))\n", "print('Case(f): Maximum power dissipated in the load , P_L = %.f mW' %(1000*P_L))\n", "print('Case(g): Power dissipated internally within the source , P_s = %.f mW' %(1000*P_s))\n", "print('Case(h): Total power supplied by the source , P_T = %.f mW (Method 1)' %(1000*P_T1))\n", "print(' Total power supplied by the source , P_T = %.f mW (Method 2)' %(1000*P_T2))\n", "print('Case(i): Power transfer efficiency , \u03b7 = %.f percent' %n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Transformation ratio of the matching transformer for MPT , \u03b1 = 10 \n", "Case(b): Terminal voltage of the source at MPT , V_1 = 5.0 V\n", "Case(c): Terminal voltage across the load at MPT , V_2 = 0.5 V\n", "Case(d): Secondary load current , I_2 = 50 mA (Method 1)\n", " Secondary load current , I_2 = 50 mA (Method 2)\n", "Case(e): Primary load current drawn from the source , I_1 = 5 mA (Method 1)\n", " Primary load current drawn from the source , I_1 = 5 mA (Method 2)\n", "Case(f): Maximum power dissipated in the load , P_L = 25 mW\n", "Case(g): Power dissipated internally within the source , P_s = 25 mW\n", "Case(h): Total power supplied by the source , P_T = 50 mW (Method 1)\n", " Total power supplied by the source , P_T = 50 mW (Method 2)\n", "Case(i): Power transfer efficiency , \u03b7 = 50 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.8, Page number 495" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V = 20.0 #No-load voltage(V)\n", "R_s = 18.0 #Internal resistance of the power amplifier(ohm)\n", "R_L = 8.0 #Load resistance(ohm)\n", "\n", "#Calculation\n", "V_L = (R_L/(R_L+R_s))* V #Load voltage(V)\n", "P_L = (V_L)**2/R_L #Power delivered to the speaker when connected directly to the amplifier(W)\n", "alpha = (R_s/R_L)**0.5 #Turns ratio of the transformer to maximize speaker power\n", "V_2 = V/(2*alpha) #Secondary voltage(V)\n", "P_L2 = (V_2)**2/R_L #Maximum power delivered to the speaker(W)\n", "\n", "#Result\n", "print('Case(a): Power delivered to the speaker when connected directly to the amplifier , P_L = %.2f W' %P_L)\n", "print('Case(b): Turns ratio of the transformer to maximize speaker power , \u03b1 = %.1f ' %alpha)\n", "print('Case(c): Maximum power delivered to the speaker using matching transformer of part(b) , P_L = %.1f W' %P_L2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Power delivered to the speaker when connected directly to the amplifier , P_L = 4.73 W\n", "Case(b): Turns ratio of the transformer to maximize speaker power , \u03b1 = 1.5 \n", "Case(c): Maximum power delivered to the speaker using matching transformer of part(b) , P_L = 5.6 W\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.9, Page number 500" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 1.0 #Rating of the transformer(kVA)\n", "V_1 = 220.0 #Primary voltage(V)\n", "V_2 = 110.0 #Secondary voltage(V)\n", "f_o = 400.0 #Original frequency(Hz)\n", "f_f = 60.0 #Frequency for which the transformer is to be used(Hz)\n", "\n", "#Calculation\n", "#Case(a)\n", "alpha = V_1/V_2 #Transformation ratio\n", "E_h = V_1*(f_f/f_o) #Maximum rms voltage applied to HV side(V)\n", "E_1 = E_h\n", "E_l = E_1/alpha #Maximum voltage output of LV side(V)\n", "#Case(b)\n", "V_h = V_1 #High voltage(V)\n", "I_h = kVA*1000/V_h #High current(A)\n", "Vh = E_h\n", "kVA_new = Vh*I_h/1000 #kVA rating of transformer under reduced frequency\n", "\n", "#Result\n", "print('Case(a): Maximum rms voltage that may be applied to high-voltage side , E_h = %.f V' %E_h)\n", "print(' Maximum voltage output of the low-voltage side , E_l = %.1f V' %E_l)\n", "print('Case(b): kVA rating of transformer under conditions of reduced frequency , V_h*I_h = %.2f kVA' %kVA_new)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Maximum rms voltage that may be applied to high-voltage side , E_h = 33 V\n", " Maximum voltage output of the low-voltage side , E_l = 16.5 V\n", "Case(b): kVA rating of transformer under conditions of reduced frequency , V_h*I_h = 0.15 kVA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.10, Page number 501" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 1.0 #kVA rating of the transformer\n", "V_1 = 220.0 #Primary voltage(V)\n", "V_2 = 110.0 #Secondary voltage(V)\n", "f_o = 400.0 #Frequency(Hz)\n", "f_f = 60.0 #Frequency for which the transformer is to be used(Hz)\n", "P_orig = 10.0 #Original iron losses of the transformer(W)\n", "\n", "#Calculation \n", "B = f_o/f_f #Flux density\n", "P_iron = P_orig*B**2 #Iron losses(W)\n", "\n", "#Result\n", "print('Iron losses if is operated at reduced frequency of 60 Hz , P_iron = %.f W' %P_iron)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iron losses if is operated at reduced frequency of 60 Hz , P_iron = 444 W\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.11, Page number 504" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 500.0 #Rating of the step-down transformer(kVA)\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "f = 60.0 #Frequency(Hz)\n", "r_1 = 0.1 #Primary winding resistance(ohm)\n", "x_1 = 0.3 #Primary winding reactance(ohm)\n", "r_2 = 0.001 #Secondary winding resistance(ohm)\n", "x_2 = 0.003 #Secondary winding reactance(ohm)\n", "\n", "#Calculation\n", "alpha = V_1/V_2 #Transformation ratio\n", "#Case(a)\n", "I_2 = kVA*1000/V_2 #Secondary current(A)\n", "I_1 = I_2/alpha #Primary current(A)\n", "#Case(b)\n", "Z_2 = complex(r_2,x_2) #Secondary internal impedance(ohm)\n", "Z_2_m = abs(Z_2) #Magnitude of Z_2(ohm)\n", "Z_1 = complex(r_1,x_1) #Primary internal impedance(ohm)\n", "Z_1_m = abs(Z_1) #Magnitude of Z_1(ohm)\n", "#Case(c)\n", "I_2_Z_2 = I_2*Z_2_m #Secondary internal voltage drop(V)\n", "I_1_Z_1 = I_1*Z_1_m #Primary internal voltage drop(V)\n", "#Case(d)\n", "E_2 = V_2+I_2_Z_2 #Secondary induced voltage(V)\n", "E_1 = V_1-I_1_Z_1 #Primary induced voltage(V)\n", "#Case(e)\n", "ratio_E = E_1/E_2 #Ratio of primary to secondary induced voltage\n", "ratio_V = V_1/V_2 #Ratio of primary to secondary terminal voltage\n", "\n", "#Result\n", "print('Case(a): Secondary current , I_2 = %.f A' %I_2)\n", "print(' Primary current , I_1 = %.1f A' %I_1)\n", "print('Case(b): Secondary internal impedance , Z_2 = %.5f \u03a9' %Z_2_m)\n", "print(' Primary internal impedance , Z_1 = %.3f \u03a9' %Z_1_m)\n", "print('Case(c): Secondary internal voltage drop , I_2*Z_2 = %.2f V' %I_2_Z_2)\n", "print(' Primary internal voltage drop , I_1*Z_1 = %.1f V' %I_1_Z_1)\n", "print('Case(d): Secondary induced voltage , E_2 = %.2f V' %E_2)\n", "print(' Primary induced voltage , E_1 = %.1f V' %E_1)\n", "print('Case(e): Ratio of primary to secondary induced voltages , E_1/E_2 = %.2f ' %ratio_E)\n", "print(' Ratio of primary to secondary iterminal voltages , V_1/V_2 = %.1f ' %ratio_V)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Secondary current , I_2 = 2174 A\n", " Primary current , I_1 = 217.4 A\n", "Case(b): Secondary internal impedance , Z_2 = 0.00316 \u03a9\n", " Primary internal impedance , Z_1 = 0.316 \u03a9\n", "Case(c): Secondary internal voltage drop , I_2*Z_2 = 6.87 V\n", " Primary internal voltage drop , I_1*Z_1 = 68.7 V\n", "Case(d): Secondary induced voltage , E_2 = 236.87 V\n", " Primary induced voltage , E_1 = 2231.3 V\n", "Case(e): Ratio of primary to secondary induced voltages , E_1/E_2 = 9.42 \n", " Ratio of primary to secondary iterminal voltages , V_1/V_2 = 10.0 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.12, Page number 505" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "I_2 = 2174.0 #Secondary current(A)\n", "I_1 = 217.4 #Primary current(A)\n", "Z_2 = 0.00316 #Secondary internal impedance(ohm)\n", "Z_1 = 0.316 #Primary internal impedance(ohm)\n", "\n", "#Calculation\n", "alpha = V_1/V_2 #Transformation ratio\n", "#Case(a)\n", "Z_L = V_2/I_2 #Load impedance(ohm)\n", "#Case(b)\n", "Z_p = V_1/I_1 #Primary input impedance(ohm)\n", "Zp = alpha**2*Z_L #Primary input impedance(ohm)\n", "\n", "#Result\n", "print('Case(a): Load impedance , Z_L = %.4f \u03a9' %Z_L)\n", "print('Case(b): Primary input impedance , Z_p = %.2f \u03a9 (Method 1)' %Z_p)\n", "print(' Primary input impedance , Z_p = %.2f \u03a9 (Method 2)' %Zp)\n", "print('Case(c): Impedance of load Z_L = %.4f \u03a9, is much greater than internal secondary impedance Z_2 = %.5f \u03a9' %(Z_L,Z_2))\n", "print(' Primary input impedance Z_p = %.2f \u03a9, is much greater than the internal primary impedance Z_1 = %.3f \u03a9' %(Z_p,Z_1))\n", "print('Case(d): Z_L must be much greater than Z_2 so that major part of the voltage produced by E_2 is dropped across Z_L')\n", "print(' As Z_L is reduced in proportion to Z_2, the load current increases and more voltage is dropped internally across Z_2')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Load impedance , Z_L = 0.1058 \u03a9\n", "Case(b): Primary input impedance , Z_p = 10.58 \u03a9 (Method 1)\n", " Primary input impedance , Z_p = 10.58 \u03a9 (Method 2)\n", "Case(c): Impedance of load Z_L = 0.1058 \u03a9, is much greater than internal secondary impedance Z_2 = 0.00316 \u03a9\n", " Primary input impedance Z_p = 10.58 \u03a9, is much greater than the internal primary impedance Z_1 = 0.316 \u03a9\n", "Case(d): Z_L must be much greater than Z_2 so that major part of the voltage produced by E_2 is dropped across Z_L\n", " As Z_L is reduced in proportion to Z_2, the load current increases and more voltage is dropped internally across Z_2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.13, Page number 505" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 500.0 #Rating of the step-down transformer(kVA)\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "f = 60.0 #Frequency(Hz)\n", "r_1 = 0.1 #Primary winding resistance(ohm)\n", "x_1 = 0.3 #Primary winding reactance(ohm)\n", "r_2 = 0.001 #Secondary winding resistance(ohm)\n", "x_2 = 0.003 #Secondary winding reactance(ohm)\n", "Z_L = 0.1058 #Load impedance(ohm)\n", "\n", "#Calculation\n", "alpha = V_1/V_2 #Transformation ratio\n", "R_c1 = r_1+alpha**2*r_2 #Equivalent internal resistance referred to the primary side(ohm)\n", "X_c1 = x_1+alpha**2*x_2 #Equivalent internal reactance referred to the primary side(ohm)\n", "Z_c1 = complex(R_c1,X_c1) #Equivalent internal impedance referred to the primary side(ohm)\n", "Z_c1_m = abs(Z_c1) #Magnitude of Z_e1(ohm)\n", "Z_L_prime = alpha**2*Z_L #Equivalent secondary load impedance referred to the primary side(ohm)\n", "R_L = Z_L #Load resistance(ohm)\n", "X_L = 0 #Load reactance(ohm)\n", "I_1 = V_1/complex((R_c1+alpha**2*R_L),(X_c1+alpha**2*X_L)) #Primary load current(A)\n", "\n", "#Result\n", "print('Case(a): Equivalent internal resistance referred to the primary side , R_c1 = %.1f \u03a9' %R_c1)\n", "print('Case(b): Equivalent internal reactance referred to the primary side , X_c1 = %.1f \u03a9' %X_c1)\n", "print('Case(c): Equivalent internal impedance referred to the primary side , Z_c1 = %.3f \u03a9' %Z_c1_m)\n", "print('Case(d): Equivalent secondary load impedance referred to the primary side , \u03b1^2*Z_L = %.2f \u03a9' %Z_L_prime)\n", "print('Case(e): Primary load current , I_1 = %.f A' %abs(I_1))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Equivalent internal resistance referred to the primary side , R_c1 = 0.2 \u03a9\n", "Case(b): Equivalent internal reactance referred to the primary side , X_c1 = 0.6 \u03a9\n", "Case(c): Equivalent internal impedance referred to the primary side , Z_c1 = 0.632 \u03a9\n", "Case(d): Equivalent secondary load impedance referred to the primary side , \u03b1^2*Z_L = 10.58 \u03a9\n", "Case(e): Primary load current , I_1 = 213 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.14, Page number 508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 500.0 #Rating of the step-down transformer(kVA)\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "R_e2 = 2.0 #Equivalent resistance referred to the primary side(m\u03a9)\n", "X_e2 = 6.0 #Equivalent reactance referred to the primary side(m\u03a9)\n", "cos_theta2 = 1.0 #Unity PF\n", "\n", "#Calculation\n", "I_2 = kVA/V_2 #Rated secondary current(kA)\n", "R_e2_drop = I_2*R_e2 #Full-load equivalent resistance voltage drop(V)\n", "X_e2_drop = I_2*X_e2 #Full-load equivalent reactance voltage drop(V) \n", "sin_theta2 = (1-cos_theta2**2)**0.5\n", "E_2 = complex((V_2*cos_theta2+I_2*R_e2),(V_2*sin_theta2+I_2*X_e2)) #Induced voltage(V)\n", "E_2_m = abs(E_2) #Magnitude of E_2(V)\n", "VR = (E_2_m-V_2)/V_2*100 #Percent voltage regulation at unity PF(%)\n", "\n", "#Result\n", "print('Case(a): Rated secondary current , I_2 = %.3f kA' %I_2)\n", "print('Case(b): Full-load equivalent resistance voltage drop , I_2*R_e2 = %.2f V' %R_e2_drop)\n", "print('Case(c): Full-load equivalent reactance voltage drop , I_2*X_e2 = %.2f V' %X_e2_drop)\n", "print('Case(d): Induced voltage when the transformer is delivering rated current at unity PF , E_2 = %.2f V' %E_2_m)\n", "print('Case(e): Voltage regulation at unity PF , VR = %.2f percent' %VR)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Rated secondary current , I_2 = 2.174 kA\n", "Case(b): Full-load equivalent resistance voltage drop , I_2*R_e2 = 4.35 V\n", "Case(c): Full-load equivalent reactance voltage drop , I_2*X_e2 = 13.04 V\n", "Case(d): Induced voltage when the transformer is delivering rated current at unity PF , E_2 = 234.71 V\n", "Case(e): Voltage regulation at unity PF , VR = 2.05 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.15, Page number 508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 500.0 #Rating of the step-down transformer(kVA)\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "R_e2 = 2.0 #Equivalent resistance referred to the primary side(m\u03a9)\n", "X_e2 = 6.0 #Equivalent reactance referred to the primary side(m\u03a9)\n", "cos_theta2 = 0.8 #Lagging PF\n", "\n", "#Calculation\n", "I_2 = kVA/V_2 #Rated secondary current(kA)\n", "R_e2_drop = I_2*R_e2 #Full-load equivalent resistance voltage drop(V)\n", "X_e2_drop = I_2*X_e2 #Full-load equivalent reactance voltage drop(V) \n", "sin_theta2 = (1-cos_theta2**2)**0.5\n", "E_2 = complex((V_2*cos_theta2+I_2*R_e2),(V_2*sin_theta2+I_2*X_e2)) #Induced voltage(V)\n", "E_2_m = abs(E_2) #Magnitude of E_2(V)\n", "VR = (E_2_m-V_2)/V_2*100 #Percent voltage regulation(%)\n", "\n", "#Result\n", "print('Case(d): Induced voltage when the transformer is delivering rated current at 0.8 PF lagging , E_2 = %.2f V' %E_2_m)\n", "print('Case(e): Voltage regulation at 0.8 PF lagging , VR = %.2f percent' %VR)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(d): Induced voltage when the transformer is delivering rated current at 0.8 PF lagging , E_2 = 241.43 V\n", "Case(e): Voltage regulation at 0.8 PF lagging , VR = 4.97 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.16, Page number 508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 500.0 #Rating of the step-down transformer(kVA)\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "R_e2 = 2.0 #Equivalent resistance referred to the primary side(m\u03a9)\n", "X_e2 = 6.0 #Equivalent reactance referred to the primary side(m\u03a9)\n", "cos_theta2 = 0.6 #Leading PF\n", "\n", "#Calculation\n", "I_2 = kVA/V_2 #Rated secondary current(kA)\n", "R_e2_drop = I_2*R_e2 #Full-load equivalent resistance voltage drop(V)\n", "X_e2_drop = I_2*X_e2 #Full-load equivalent reactance voltage drop(V) \n", "sin_theta2 = (1-cos_theta2**2)**0.5\n", "E_2 = complex((V_2*cos_theta2+I_2*R_e2),(V_2*sin_theta2-I_2*X_e2)) #Induced voltage(V)\n", "E_2_m = abs(E_2) #Magnitude of E_2(V)\n", "VR = (E_2_m-V_2)/V_2*100 #Percent voltage regulation(%)\n", "\n", "#Result\n", "print('Case(d): Induced voltage when the transformer is delivering rated current at 0.6 PF leading , E_2 = %.1f V' %E_2_m)\n", "print('Case(e): Voltage regulation at 0.6 PF leading , VR = %.2f percent' %VR)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(d): Induced voltage when the transformer is delivering rated current at 0.6 PF leading , E_2 = 222.5 V\n", "Case(e): Voltage regulation at 0.6 PF leading , VR = -3.28 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.17, Page number 511" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "kVA = 20.0 #kVA rating of the step-down transformer\n", "S = 20000.0 #Power rating of the step-down transformer in VA\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "P1 = 250.0 #Wattmeter reading(W)\n", "I1 = 8.7 #Input current(A)\n", "V1 = 50.0 #Input voltage(V)\n", "\n", "#Calculation\n", "alpha = V_1/V_2 #Transformation ratio\n", "#Case(a)\n", "Z_e1 = V1/I1 #Equivalent impedance w.r.t HV side(ohm)\n", "R_e1 = P1/I1**2 #Equivalent resistance w.r.t HV side(ohm)\n", "theta = math.acos(R_e1/Z_e1) #PF angle(radians)\n", "theta_a = theta*180/math.pi #PF angle(degree)\n", "X_e1 = Z_e1*math.sin(theta) #Equivalent reactance w.r.t HV side(ohm)\n", "#Case(b)\n", "Z_e2 = Z_e1/alpha**2 #Equivalent impedance w.r.t LV side(ohm)\n", "R_e2 = R_e1/alpha**2 #Equivalent resistance w.r.t LV side(ohm)\n", "X_e2 = Z_e2*math.sin(theta) #Equivalent reactance w.r.t LV side(ohm)\n", "#Case(c)\n", "I_2 = S/V_2 #Rated secondary load current(A)\n", "R_e2_drop = I_2*R_e2 #Full-load equivalent resistance voltage drop(V)\n", "X_e2_drop = I_2*X_e2 #Full-load equivalent reactance voltage drop(V)\n", "cos_theta2 = 1.0 #Unity PF\n", "sin_theta2 = (1-cos_theta2**2)**0.5\n", "E_2 = complex((V_2*cos_theta2+I_2*R_e2),(V_2*sin_theta2+I_2*X_e2)) #Induced voltage(V)\n", "E_2_m = abs(E_2) #Magnitude of E_2(V)\n", "VR_unity_PF = (E_2_m-V_2)/V_2*100 #Transformer voltage regulation(%)\n", "#Case(d)\n", "cos_theta_2 = 0.7 #Lagging PF\n", "sin_theta_2 = (1-(cos_theta_2)**2)**0.5\n", "E2 = complex((V_2*cos_theta_2+I_2*R_e2),(V_2*sin_theta_2+I_2*X_e2)) #Induced voltage(V)\n", "E2_m = abs(E2) #Magnitude of E2(V)\n", "VR_lag_PF = (E2_m-V_2)/V_2*100 #Transformer voltage regulation(%)\n", "\n", "#Result\n", "print('Case(a): Equivalent impedance referred to HV side , Z_e1 = %.2f \u03a9' %Z_e1)\n", "print(' Equivalent resistance referred to HV side , R_e1 = %.1f \u03a9' %R_e1)\n", "print(' Equivalent reactance referred to HV side , X_e1 = %.2f \u03a9' %X_e1)\n", "print('Case(b): Equivalent impedance referred to LV side , Z_e2 = %.1f m\u03a9' %(1000*Z_e2))\n", "print(' Equivalent resistance referred to LV side , R_e2 = %.f m\u03a9' %(1000*R_e2))\n", "print(' Equivalent reactance referred to LV side , X_e2 = %.1f m\u03a9' %(1000*X_e2))\n", "print('Case(c): Transformer voltage regulation , VR = %.2f percent' %VR_unity_PF)\n", "print('Case(c): Transformer voltage regulation , VR = %.2f percent' %VR_lag_PF)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Equivalent impedance referred to HV side , Z_e1 = 5.75 \u03a9\n", " Equivalent resistance referred to HV side , R_e1 = 3.3 \u03a9\n", " Equivalent reactance referred to HV side , X_e1 = 4.70 \u03a9\n", "Case(b): Equivalent impedance referred to LV side , Z_e2 = 57.5 m\u03a9\n", " Equivalent resistance referred to LV side , R_e2 = 33 m\u03a9\n", " Equivalent reactance referred to LV side , X_e2 = 47.0 m\u03a9\n", "Case(c): Transformer voltage regulation , VR = 1.26 percent\n", "Case(c): Transformer voltage regulation , VR = 2.14 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.18, Page number 511" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V1_rated = 2300.0 #Primary voltage(V)\n", "V_sc = 50.0 #Short circuit test voltage(V)\n", "\n", "#Calculation\n", "Pc_sc_Pc = (V_sc/V1_rated)**2 #Fraction of rated core loss\n", "\n", "#Result\n", "print('Fraction of P_c measured by wattmeter , P_c(sc) = %.6f*P_c ' %Pc_sc_Pc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fraction of P_c measured by wattmeter , P_c(sc) = 0.000473*P_c \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.19, Page number 512" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "kVA = 20.0 #kVA rating of the step-down transformer\n", "S = 20000.0 #Power rating of the step-down transformer in VA\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "P1 = 250.0 #Wattmeter reading(W)\n", "I1 = 8.7 #Input current(A)\n", "V1 = 50.0 #Input voltage(V)\n", "\n", "#Calculation\n", "#Case(a)\n", "I1_Ze1 = V1 #HV impedance drop(V)\n", "#Case(b)\n", "theta = math.acos(P1/(V1*I1)) #PF angle(radian)\n", "theta_a = theta*180/math.pi #PF angle(degree)\n", "I1_Re1 = I1_Ze1*math.cos(theta) #HV side resistance volt drop(V)\n", "#Case(c)\n", "I1_Xe1 = I1_Ze1*math.sin(theta) #HV side resistance volt drop(V)\n", "#Case(d)\n", "cos_theta1 = 1.0 #Unity PF\n", "sin_theta1 = (1-cos_theta1**2)**0.5\n", "E1 = complex((V_1*cos_theta1+I1_Re1),(V_1*sin_theta1+I1_Xe1)) #Induced voltage(V)\n", "E1_m = abs(E1) #Magnitude of E1(V)\n", "VR = (E1_m-V_1)/V_1*100 #Transformer voltage regulation at unity PF(%)\n", "#Case(e)\n", "cos_theta_1 = 0.7 #Lagging PF\n", "sin_theta_1 = (1-cos_theta_1**2)**0.5\n", "E_1 = complex((V_1*cos_theta_1+I1_Re1),(V_1*sin_theta_1+I1_Xe1)) #Induced voltage(V)\n", "E_1_m = abs(E_1) #Magnitude of E_1(V)\n", "VR_1 = (E_1_m-V_1)/V_1*100 #Transformer voltage regulation at 0.7 PF lagging(%)\n", "\n", "#Result\n", "print('Case(a): High voltage impedance drop , I_1*Z_e1 = %.f V' %I1_Ze1)\n", "print('Case(b): HV side resistance volt drop , I_1*R_e1 = %.2f V' %I1_Re1)\n", "print('Case(c): HV side reactance volt drop , I_1*X_e1 = %.2f V' %I1_Xe1)\n", "print('Case(d): Transformer voltage regulation at unity PF , VR = %.2f percent' %VR)\n", "print('Case(e): Transformer voltage regulation at 0.7 PF lagging , VR = %.2f percent' %VR_1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): High voltage impedance drop , I_1*Z_e1 = 50 V\n", "Case(b): HV side resistance volt drop , I_1*R_e1 = 28.74 V\n", "Case(c): HV side reactance volt drop , I_1*X_e1 = 40.92 V\n", "Case(d): Transformer voltage regulation at unity PF , VR = 1.27 percent\n", "Case(e): Transformer voltage regulation at 0.7 PF lagging , VR = 2.15 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.20, Page number 515" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA = 500.0 #kVA rating of the step-down transformer\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 208.0 #Secondary voltage(V)\n", "f = 60.0 #Frequency(Hz)\n", "P_sc = 8200.0 #Wattmeter reading in SC test(W)\n", "I_sc = 217.4 #Short circuit current(A)\n", "V_sc = 95.0 #Short circuit voltage(V)\n", "P_oc = 1800.0 #Wattmeter reading in OC test(W)\n", "I_oc = 85.0 #Open circuit current(A)\n", "V_oc = 208.0 #Open circuit voltage(V)\n", "\n", "#Calculation\n", "alpha = V_1/V_2 #Transformation ratio\n", "#Case(a)\n", "P = P_sc #Wattmeter reading(W)\n", "I1 = I_sc #Short circuit current(A)\n", "R_e1 = P/(I1)**2 #Equivalent resistance w.r.t HV side(ohm)\n", "R_e2 = R_e1/alpha**2 #Equivalent resistance referred to LV side(ohm)\n", "#Case(b)\n", "r_2 = R_e2/2 #Resistance of low-voltage side(ohm)\n", "#Case(c)\n", "I_m = I_oc #Open circuit current(A)\n", "P_cu = I_m**2*r_2 #Transformer copper loss of the LV side winding during OC-test(W)\n", "#Case(d)\n", "P_c = P_oc-P_cu #Transformer core loss(W)\n", "\n", "#Result\n", "print('Case(a): Equivalent resistance to low voltage side , R_e2 = %.3f m\u03a9' %(1000*R_e2))\n", "print('Case(b): Resistance of low voltage side , r_2 = %.2f m\u03a9' %(1000*r_2))\n", "print('Case(c): Transformer copper loss of the LV side winding during OC-test , I_m^2*r_2 = %.2f W' %P_cu)\n", "print('Case(d): Transformer core loss when rated voltage is applied , P_c = %.1f W' %P_c)\n", "print('Case(e): Yes.The error is approximately 5/1800 = 0.278 percent, which is within error produced by the instruments used in test');\n", "print(' We may assume that the core loss is %d W' %P_oc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Equivalent resistance to low voltage side , R_e2 = 1.419 m\u03a9\n", "Case(b): Resistance of low voltage side , r_2 = 0.71 m\u03a9\n", "Case(c): Transformer copper loss of the LV side winding during OC-test , I_m^2*r_2 = 5.13 W\n", "Case(d): Transformer core loss when rated voltage is applied , P_c = 1794.9 W\n", "Case(e): Yes.The error is approximately 5/1800 = 0.278 percent, which is within error produced by the instruments used in test\n", " We may assume that the core loss is 1800 W\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.21, Page number 516" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_sc = 50.0 #Short circuit voltage(V)\n", "V_1 = 2300.0 #Rated primary voltage(V)\n", "P_c = 1.8 #Core losses(kW)\n", "P_k = 1.8 #Fixed losses(kW)\n", "P_cu_rated = 8.2 #Rated copper loss(kW)\n", "kVA = 500.0 #Power rating(kVA)\n", "PF = 1.0 #Power factor\n", "P_o = kVA*PF #Full-load output at unity PF(kW)\n", "\n", "#Calculation\n", "#Case(a)\n", "LF1 = 1.0/4 #Load fraction\n", "LF2 = 1.0/2 #Load fraction\n", "LF3 = 3.0/4 #Load fraction\n", "LF4 = 5.0/4 #Load fraction\n", "P_cu_fl = 8.2 #Equivalent copper loss at full-load slip(kW)\n", "P_cu_LF1 = LF1**2*P_cu_fl #Equivalent copper loss at 1/4 rated load(kW)\n", "P_cu_LF2 = LF2**2*P_cu_fl #Equivalent copper loss at 1/2 rated load(kW)\n", "P_cu_LF3 = LF3**2*P_cu_fl #Equivalent copper loss at 3/4 rated load(kW)\n", "P_cu_LF4 = LF4**2*P_cu_fl ; #Equivalent copper loss at 5/4 rated load(kW)\n", "P_L_fl = P_c+P_cu_fl #Total losses at rated load(kW)\n", "P_L_1 = P_c+P_cu_LF1 #Total losses at 1/4 rated load(kW)\n", "P_L_2 = P_c+P_cu_LF2 #Total losses at 1/2 rated load(kW)\n", "P_L_3 = P_c+P_cu_LF3 #Total losses at 3/4 rated load(kW)\n", "P_L_4 = P_c+P_cu_LF4 #Total losses at 5/4 rated load(kW)\n", "P_o_fl = P_o #Total output at rated load(kW)\n", "P_o_1 = P_o*LF1 #Total output at 1/4 rated load(kW)\n", "P_o_2 = P_o*LF2 #Total output at 1/2 rated load(kW)\n", "P_o_3 = P_o*LF3 #Total output at 3/4 rated load(kW)\n", "P_o_4 = P_o*LF4 #Total output at 5/4 rated load(kW)\n", "P_in_fl = P_L_fl+P_o_fl #Total input at rated load(kW)\n", "P_in_1 = P_L_1+P_o_1 #Total input at 1/4 rated load(kW)\n", "P_in_2 = P_L_2+P_o_2 #Total input at 1/2 rated load(kW)\n", "P_in_3 = P_L_3+P_o_3 #Total input at 3/4 rated load(kW)\n", "P_in_4 = P_L_4+P_o_4 #Total input at 5/4 rated load(kW)\n", "n_fl = (P_o_fl/P_in_fl)*100 #Efficiency at rated load(%)\n", "n_1 = (P_o_1/P_in_1)*100 #Efficiency at 1/4 rated load(%)\n", "n_2 = (P_o_2/P_in_2)*100 #Efficiency at 1/2 rated load(%)\n", "n_3 = (P_o_3/P_in_3)*100 #Efficiency at 3/4 rated load(%)\n", "n_4 = (P_o_4/P_in_4)*100 #Efficiency at 5/4 rated load(%)\n", "#Case(b)\n", "PF_b = 0.8 #PF lagging\n", "Po_fl = P_o*PF_b #Total output at 1rated load(kW)\n", "Po_1 = P_o*LF1*PF_b #Total output at 1/4 rated load(kW)\n", "Po_2 = P_o*LF2*PF_b #Total output at 1/2 rated load(kW)\n", "Po_3 = P_o*LF3*PF_b #Total output at 3/4 rated load(kW)\n", "Po_4 = P_o*LF4*PF_b #Total output at 5/4 rated load(kW)\n", "Pin_fl = P_L_fl+Po_fl #Total input at rated load(kW)\n", "Pin_1 = P_L_1+Po_1 #Total input at 1/4 rated load(kW)\n", "Pin_2 = P_L_2+Po_2 #Total input at 1/2 rated load(kW)\n", "Pin_3 = P_L_3+Po_3 #Total input at 3/4 rated load(kW)\n", "Pin_4 = P_L_4+Po_4 #Total input at 5/4 rated load(kW)\n", "nfl = (Po_fl/Pin_fl)*100 #Efficiency at rated load(%)\n", "n1 = (Po_1/Pin_1)*100 #Efficiency at 1/4 rated load(%)\n", "n2 = (Po_2/Pin_2)*100 #Efficiency at 1/2 rated load(%)\n", "n3 = (Po_3/Pin_3)*100 #Efficiency at 3/4 rated load(%)\n", "n4 = (Po_4/Pin_4)*100 #Efficiency at 5/4 rated load(%)\n", "#Case(c)\n", "R_e2 = 1.417*10**-3 #Equivalent resistance referred to LV side(ohm)\n", "Pc = 1800.0 #Core losses(W)\n", "I_2 = (Pc/R_e2)**0.5 #Load current for maximum efficiency invariant of LF(A)\n", "#Case(d)\n", "V = 208.0 #Voltage rating(V)\n", "I_2_rated = kVA*1000/V #Rated secondary current(A)\n", "LF_max = I_2/I_2_rated #Load fraction for maximum efficiency\n", "#Case(e)\n", "cos_theta = 1.0 #Unity PF\n", "V_2 = V #Secondary voltage(V)\n", "n_max_e = (V_2*I_2*cos_theta)/((V_2*I_2*cos_theta)+(Pc+I_2**2*R_e2))*100 #Maximum efficiency(%)\n", "#Case(f)\n", "cos_theta2 = 0.8 #PF lagging\n", "n_max_f = (V_2*I_2*cos_theta2)/((V_2*I_2*cos_theta2)+(Pc+I_2**2*R_e2))*100 #Maximum efficiency(%)\n", "\n", "#Result\n", "print('Case(a): Tabulation at unity PF:')\n", "print('__________________________________________________________________________________________________________')\n", "print('L.F \\t Core loss \\t Copper loss \\tTotal loss \\t Total Output \\t Total Input \\t Efficiency')\n", "print(' \\t (kW) \\t (kW) \\t P_L (kW) \\t P_o(kW) \\t P_L+P_o(kW) \\t P_o/P_in(percent)')\n", "print('__________________________________________________________________________________________________________')\n", "print('%.2f \\t %.1f \\t\\t %.3f \\t %.3f \\t\\t %.1f \\t %.2f \\t %.2f' %(LF1,P_c,P_cu_LF1,P_L_1,P_o_1,P_in_1,n_1))\n", "print('%.2f \\t %.1f \\t\\t %.3f \\t %.2f \\t\\t %.1f \\t %.2f \\t %.2f' %(LF2,P_c,P_cu_LF2,P_L_2,P_o_2,P_in_2,n_2))\n", "print('%.2f \\t %.1f \\t\\t %.3f \\t %.2f \\t\\t %.1f \\t %.2f \\t %.2f' %(LF3,P_c,P_cu_LF3,P_L_3,P_o_3,P_in_3,n_3))\n", "print('1 \\t %.1f \\t\\t %.3f \\t %.2f \\t\\t %.1f \\t %.1f \\t %.2f' %(P_c,P_cu_fl,P_L_fl,P_o_fl,P_in_fl,n_fl))\n", "print('%.2f \\t %.1f \\t\\t %.3f \\t %.1f \\t\\t %.1f \\t %.1f \\t %.2f' %(LF4,P_c,P_cu_LF4,P_L_4,P_o_4,P_in_4,n_4))\n", "print('__________________________________________________________________________________________________________')\n", "print('\\nCase(b): Tabulation at 0.8 PF lagging:')\n", "print('__________________________________________________________________________________________________________')\n", "print('L.F \\t Core loss \\t Copper loss \\tTotal loss \\t Total Output \\t Total Input \\t Efficiency')\n", "print('\\t (kW) \\t (kW) \\t P_L (kW) \\t P_o(kW) \\t P_L+P_o(kW)\\t P_o/P_in(percent)')\n", "print('__________________________________________________________________________________________________________')\n", "print('%.2f \\t %.1f \\t\\t %.3f \\t %.3f \\t\\t %.1f \\t %.2f \\t %.2f' %(LF1,P_c,P_cu_LF1,P_L_1,Po_1,Pin_1,n1))\n", "print('%.2f \\t %.1f \\t\\t %.2f \\t %.2f \\t\\t %.1f \\t %.2f \\t %.2f' %(LF2,P_c,P_cu_LF2,P_L_2,Po_2,Pin_2,n2))\n", "print('%.2f \\t %.1f \\t\\t %.2f \\t %.2f \\t\\t %.1f \\t %.2f \\t %.2f' %(LF3,P_c,P_cu_LF3,P_L_3,Po_3,Pin_3,n3))\n", "print('1 \\t %.1f \\t\\t %.1f \\t\\t %.2f \\t\\t %.1f \\t %.f \\t\\t %.2f' %(P_c,P_cu_fl,P_L_fl,Po_fl,Pin_fl,nfl))\n", "print('%.2f \\t %.1f \\t\\t %.1f \\t %.1f \\t\\t %.1f \\t %.1f \\t %.2f' %(LF4,P_c,P_cu_LF4,P_L_4,Po_4,Pin_4,n4))\n", "print('__________________________________________________________________________________________________________\\n')\n", "print('Case(c): Load current at which maximum efficiency occurs regardless of load PF , I_2 = %.1f A' %I_2)\n", "print('Case(d): Load fraction at which maximum efficiency occurs = %.3f (approximately half rated load)' %LF_max)\n", "print('Case(e): Maximum efficiency at unity PF , \u03b7_max = %.2f percent' %n_max_e)\n", "print('Case(f): Maximum efficiency at 0.8 PF lagging , \u03b7_max = %.2f percent' %n_max_f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Tabulation at unity PF:\n", "__________________________________________________________________________________________________________\n", "L.F \t Core loss \t Copper loss \tTotal loss \t Total Output \t Total Input \t Efficiency\n", " \t (kW) \t (kW) \t P_L (kW) \t P_o(kW) \t P_L+P_o(kW) \t P_o/P_in(percent)\n", "__________________________________________________________________________________________________________\n", "0.25 \t 1.8 \t\t 0.512 \t 2.312 \t\t 125.0 \t 127.31 \t 98.18\n", "0.50 \t 1.8 \t\t 2.050 \t 3.85 \t\t 250.0 \t 253.85 \t 98.48\n", "0.75 \t 1.8 \t\t 4.612 \t 6.41 \t\t 375.0 \t 381.41 \t 98.32\n", "1 \t 1.8 \t\t 8.200 \t 10.00 \t\t 500.0 \t 510.0 \t 98.04\n", "1.25 \t 1.8 \t\t 12.812 \t 14.6 \t\t 625.0 \t 639.6 \t 97.72\n", "__________________________________________________________________________________________________________\n", "\n", "Case(b): Tabulation at 0.8 PF lagging:\n", "__________________________________________________________________________________________________________\n", "L.F \t Core loss \t Copper loss \tTotal loss \t Total Output \t Total Input \t Efficiency\n", "\t (kW) \t (kW) \t P_L (kW) \t P_o(kW) \t P_L+P_o(kW)\t P_o/P_in(percent)\n", "__________________________________________________________________________________________________________\n", "0.25 \t 1.8 \t\t 0.512 \t 2.312 \t\t 100.0 \t 102.31 \t 97.74\n", "0.50 \t 1.8 \t\t 2.05 \t 3.85 \t\t 200.0 \t 203.85 \t 98.11\n", "0.75 \t 1.8 \t\t 4.61 \t 6.41 \t\t 300.0 \t 306.41 \t 97.91\n", "1 \t 1.8 \t\t 8.2 \t\t 10.00 \t\t 400.0 \t 410 \t\t 97.56\n", "1.25 \t 1.8 \t\t 12.8 \t 14.6 \t\t 500.0 \t 514.6 \t 97.16\n", "__________________________________________________________________________________________________________\n", "\n", "Case(c): Load current at which maximum efficiency occurs regardless of load PF , I_2 = 1127.1 A\n", "Case(d): Load fraction at which maximum efficiency occurs = 0.469 (approximately half rated load)\n", "Case(e): Maximum efficiency at unity PF , \u03b7_max = 98.49 percent\n", "Case(f): Maximum efficiency at 0.8 PF lagging , \u03b7_max = 98.12 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.22, Page number 520" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "P = 20.0 #Power rating of the transformer(kVA)\n", "P_sc = 250.0 #Power measured(W)\n", "V_sc = 50.0 #Short circuit voltage(V)\n", "I_sc = 8.7 #Short circuit current(A)\n", "\n", "#Calculation\n", "#Case(a)\n", "V_1b = V_1 #Base voltage(V)\n", "Z_eq_pu = V_sc/V_1\n", "beta = math.acos(P_sc/(V_sc*I_sc)) #Angle(radian)\n", "beta_a = beta*180/math.pi #Angle(degree)\n", "Zeq_pu = Z_eq_pu*cmath.exp(1j*beta) #Equivalent pu impedance\n", "#Case(b)\n", "PF_b = 1.0 #Unity PF\n", "theta_b = math.acos(PF_b)*180/math.pi #PF angle(degree)\n", "V_1_pu = 1.0*cmath.exp(1j*0*math.pi/180)+1.0*cmath.exp(1j*theta_b*math.pi/180)*Zeq_pu #pu voltage\n", "V_1_pu_m = abs(V_1_pu) #Magnitude of V_1_pu\n", "#Case(c)\n", "theta = math.acos(0.7)*180/math.pi #Power factor angle(degrees)\n", "V1_pu = 1.0*cmath.exp(1j*0*math.pi/180)+1.0*cmath.exp(1j*(-theta)*math.pi/180)*Zeq_pu #pu voltage\n", "V1_pu_m = abs(V1_pu) #Magnitude of V1_pu\n", "#Case(d)\n", "VR_unity_PF = (V_1_pu_m-1.0)*100 #Voltage regulation at unity PF(%)\n", "#Case(e)\n", "VR_lag_PF = (V1_pu_m-1.0)*100 #Voltage regulation at 0.7 lagging PF(%)\n", "\n", "#Result\n", "print('Case(a): Z_eq(pu)\u2220\u03b2 = %.5f\u2220%.f\u00b0 p.u' %(abs(Z_eq_pu),beta_a))\n", "print('Case(b): V_1(pu) at unity PF , |V_1(pu)| = %.4f ' %V_1_pu_m)\n", "print('Case(c): V_1(pu) at 0.7 PF lagging , |V_1(pu)| = %.5f ' %V1_pu_m)\n", "print('Case(d): Voltage regulation at unity PF , VR = %.2f percent' %VR_unity_PF)\n", "print('Case(e): Voltage regulation at 0.7 PF lagging , VR = %.2f percent' %VR_lag_PF)\n", "print('Case(f): VRs as found by p.u method are essentially the same as those found in Exs.14-17 and 14-19 using the same data, for the same transformer but with much less effort')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Z_eq(pu)\u2220\u03b2 = 0.02174\u222055\u00b0 p.u\n", "Case(b): V_1(pu) at unity PF , |V_1(pu)| = 1.0127 \n", "Case(c): V_1(pu) at 0.7 PF lagging , |V_1(pu)| = 1.02146 \n", "Case(d): Voltage regulation at unity PF , VR = 1.27 percent\n", "Case(e): Voltage regulation at 0.7 PF lagging , VR = 2.15 percent\n", "Case(f): VRs as found by p.u method are essentially the same as those found in Exs.14-17 and 14-19 using the same data, for the same transformer but with much less effort\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.23, Page number 521" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "S = 500.0 #Power rating of the transformer(kVA)\n", "f= 60.0 #Frequency(Hz)\n", "V_oc = 208.0 #Open circuit voltage(V)\n", "I_oc = 85.0 #Open circuit current(A)\n", "P_oc = 1800.0 #Power measured(W)\n", "V_sc = 95.0 #Short circuit voltage(V)\n", "I_sc = 217.4 #Short circuit current(A)\n", "P_sc = 8200.0 #Power measured(W)\n", "\n", "#Calculation\n", "#Case(a)\n", "S_b = S ; #Base voltage(kVA)\n", "Psc = 8.2 #Power measured in kW during SC-test\n", "P_Cu_pu = Psc/S_b #Per unit value of P_Cu at rated load\n", "#Case(b)\n", "Poc = 1.8 #Power measured during OC-test(kW)\n", "P_CL_pu = Poc/S_b #Per unit value of P_CL at rated load\n", "#Case(c)\n", "PF = 1.0 #Unity Power factor\n", "n_pu = PF/(PF+P_CL_pu+P_Cu_pu)*100 #Efficiency at rated load,unity PF(%)\n", "#Case(d)\n", "PF_d = 0.8 #Lagging Power factor\n", "n_pu_d = PF_d/(PF_d+P_CL_pu+P_Cu_pu)*100 #Efficiency at rated load,0.8 lagging PF\n", "#Case(e)\n", "LF = (P_CL_pu/P_Cu_pu)**0.5 #Load fraction producing maximum efficiency\n", "#Case(f)\n", "n_pu_max = (LF*PF)/((LF*PF)+2*(P_CL_pu))*100 #Maximum efficiency at unity PF load\n", "#Case(f)\n", "n_pu_max_g = (LF*PF_d)/((LF*PF_d)+2*(P_CL_pu))*100 #Maximum efficiency at 0.8 lagging PF load\n", "\n", "\n", "#Result\n", "print('Case(a): Per unit copper loss at rated load , P_Cu(pu) = %.4f p.u = R_eq(pu)' %P_Cu_pu)\n", "print('Case(b): Per unit core loss at rated load , P_CL(pu) = %.4f p.u' %P_CL_pu)\n", "print('Case(c): Efficiency at rated load, unity PF , \u03b7_pu = %.2f percent' %n_pu)\n", "print('Case(d): Efficiency at rated load, 0.8 PF lagging , \u03b7_pu = %.2f percent' %n_pu_d)\n", "print('Case(e): Load fraction producing maximum efficiency , L.F = %.3f ' %LF)\n", "print('Case(f): Maximum efficiency at unity PF load , \u03b7_pu = %.2f percent' %n_pu_max)\n", "print('Case(g): Maximum efficiency at 0.8 PF lagging , \u03b7_pu = %.2f percent' %n_pu_max_g)\n", "print('Case(h): All efficiency values are identical to those computed in solution to Ex.14-21')\n", "print('Case(i): Per-unit method is much simpler and less subject to error than conventional method')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Per unit copper loss at rated load , P_Cu(pu) = 0.0164 p.u = R_eq(pu)\n", "Case(b): Per unit core loss at rated load , P_CL(pu) = 0.0036 p.u\n", "Case(c): Efficiency at rated load, unity PF , \u03b7_pu = 98.04 percent\n", "Case(d): Efficiency at rated load, 0.8 PF lagging , \u03b7_pu = 97.56 percent\n", "Case(e): Load fraction producing maximum efficiency , L.F = 0.469 \n", "Case(f): Maximum efficiency at unity PF load , \u03b7_pu = 98.49 percent\n", "Case(g): Maximum efficiency at 0.8 PF lagging , \u03b7_pu = 98.12 percent\n", "Case(h): All efficiency values are identical to those computed in solution to Ex.14-21\n", "Case(i): Per-unit method is much simpler and less subject to error than conventional method\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.24, Page number 521" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "S = 500.0 #Power rating of the transformer(kVA)\n", "f= 60.0 #Frequency(Hz)\n", "V_oc = 208.0 #Open circuit voltage(V)\n", "I_oc = 85.0 #Open circuit current(A)\n", "P_oc = 1800.0 #Power measured(W)\n", "V_sc = 95.0 #Short circuit voltage(V)\n", "I_sc = 217.4 #Short circuit current(A)\n", "P_sc = 8200.0 #Power measured(W)\n", "\n", "#Calculation\n", "S_b = S ; #Base voltage(kVA)\n", "Psc = 8.2 #Power measured in kW during SC-test\n", "P_Cu_pu = Psc/S_b #Per unit value of P_Cu at rated load\n", "Poc = 1.8 #Power measured during OC-test(kW)\n", "P_CL_pu = Poc/S_b #Per unit value of P_CL at rated load\n", "#Case(a)\n", "LF1 = 3.0/4 #Load fraction of rated load \n", "PF1 = 1.0 #Unity Power factor\n", "n_pu_LF1 = (LF1*PF1)/((LF1*PF1)+P_CL_pu+(LF1)**2*P_Cu_pu)*100 #Efficiency at rated load,unity PF(%)\n", "#Case(b)\n", "LF2 = 1.0/4 #Load fraction of rated load\n", "PF2 = 0.8 #Lagging PF\n", "n_pu_LF2 = (LF2*PF2)/((LF2*PF2)+P_CL_pu+(LF2)**2*P_Cu_pu)*100 #Efficiency at 1/4 rated load,0.8 lagging PF(%)\n", "#Case(c)\n", "LF3 = 5.0/4 #Load fraction of rated load\n", "PF3 = 0.8 #Leading PF\n", "n_pu_LF3 = (LF3*PF3)/((LF3*PF3)+P_CL_pu+(LF3)**2*P_Cu_pu)*100 #Efficiency at r1/4 rated load,0.8 leading PF(%)\n", "\n", "\n", "#Result\n", "print('Case(a): p.u efficiency at 3/4 load unity PF , \u03b7_pu = %.2f percent' %n_pu_LF1)\n", "print('Case(b): p.u efficiency at 1/4 load 0.8 PF lagging , \u03b7_pu = %.2f percent' %n_pu_LF2)\n", "print('Case(c): p.u efficiency at 5/4 load 0.8 PF leading , \u03b7_pu = %.2f percent' %n_pu_LF3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): p.u efficiency at 3/4 load unity PF , \u03b7_pu = 98.32 percent\n", "Case(b): p.u efficiency at 1/4 load 0.8 PF lagging , \u03b7_pu = 97.74 percent\n", "Case(c): p.u efficiency at 5/4 load 0.8 PF leading , \u03b7_pu = 97.16 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.25, Page number 522" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "kVA_1 = 500.0 #Power rating of the transformer 1(kVA)\n", "R_1_pu = 0.01 #Per-unit value of resistance of the transformer 1\n", "X_1_pu = 0.05 #Per-unit value of reactance of the transformer 1\n", "Z_1_pu = complex(R_1_pu,X_1_pu) #Per-unit value of impedance of the transformer 1\n", "PF = 0.8 #Lagging PF\n", "V_2 = 400.0 #Secondary voltage(V)\n", "S_load = 750.0 #Increased system load(kVA)\n", "kVA_2 = 250.0 #Power rating of the transformer 2(kVA)\n", "R_pu_2 = 0.015 #Per-unit value of resistance of the transformer 2\n", "X_pu_2 = 0.04 #Per-unit value of reactance of the transformer 2\n", "\n", "#Calculation\n", "Z_pu_1 = complex(R_pu_2,X_pu_2) #New transformer p.u. impedance\n", "#Case(a)\n", "V_b1 = 400.0 #Base voltage(V)\n", "V_b2 = 400.0 #Base voltage(V)\n", "Z_pu_2 = (kVA_1/kVA_2)*(V_b1/V_b2)**2*(Z_pu_1) #New transformer p.u impedance\n", "Z_2_pu = Z_pu_2 #New transformer p.u impedance\n", "#Case(b)\n", "cos_theta = PF #Power factor\n", "sin_theta = (1-(cos_theta)**2)**0.5\n", "S_t_conjugate = (kVA_1+kVA_2)*complex(cos_theta,sin_theta) #kVA of total load\n", "#Case(c)\n", "S_2_conjugate = S_t_conjugate*(Z_1_pu/(Z_1_pu+Z_2_pu)) #Portion of load carried by the smaller transformer(kVA)\n", "S_2_conjugate_m = abs(S_2_conjugate) #Magnitude of S_2_conjugate(kVA)\n", "S_2_conjugate_a = cmath.phase(S_2_conjugate)*180/math.pi #Phase angle of S_2_conjugate(degree)\n", "#Case(d)\n", "S_1_conjugate = S_t_conjugate*(Z_2_pu/(Z_1_pu+Z_2_pu)) #Portion of load carried by the original transformer(kVA)\n", "S_1_conjugate_m = abs(S_1_conjugate) #Magnitude of S_1_conjugate(kVA)\n", "S_1_conjugate_a = cmath.phase(S_1_conjugate)*180/math.pi #Phase angle of S_1_conjugate(degree)\n", "#Case(e)\n", "S_1 = S_1_conjugate_m\n", "S_b1 = kVA_1 #Base power of trancsformer 1(kVA)\n", "LF1 = (S_1/S_b1)*100 #Load factor of the original transformer(%)\n", "#Case(f)\n", "S_2 = S_2_conjugate_m\n", "S_b2 = kVA_2 #Base power of trancsformer 1(kVA)\n", "LF2 = (S_2/S_b2)*100 #Load factor of the new transformer(%)\n", "\n", "#Result\n", "print('Case(a): New transformer p.u impedance , Z_p.u.2 = (%.2f+j%.2f) p.u' %(Z_pu_2.real,Z_pu_2.imag))\n", "print('Case(b): kVA of total load , S*_t = (%.f+j%.f) kVA ' %(S_t_conjugate.real,S_t_conjugate.imag))\n", "print('Case(c): Portion of load now carried by the smaller transformer , S*_2 = (%.2f+j%.2f) kVA = %.1f\u2220%.1f\u00b0 kVA' %(S_2_conjugate.real,S_2_conjugate.imag,S_2_conjugate_m,S_2_conjugate_a))\n", "print('Case(d): Portion of load now carried by the original transformer , S*_1 = (%.2f+j%.1f) kVA = %.1f\u2220%.1f\u00b0 kVA' %(S_1_conjugate.real,S_1_conjugate.imag,S_1_conjugate_m,S_1_conjugate_a))\n", "print('Case(e): Load factor of the original transformer , L.F_1 = %.1f percent' %LF1)\n", "print('Case(f): Load factor of the new transformer , L.F_w = %.1f percent' %LF2)\n", "print('Case(g): Yes. Reduce no-load voltage of the new transformer to some value below that of its present value so that its share of the load is reduced')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): New transformer p.u impedance , Z_p.u.2 = (0.03+j0.08) p.u\n", "Case(b): kVA of total load , S*_t = (600+j450) kVA \n", "Case(c): Portion of load now carried by the smaller transformer , S*_2 = (206.76+j190.54) kVA = 281.2\u222042.7\u00b0 kVA\n", "Case(d): Portion of load now carried by the original transformer , S*_1 = (393.24+j259.5) kVA = 471.1\u222033.4\u00b0 kVA\n", "Case(e): Load factor of the original transformer , L.F_1 = 94.2 percent\n", "Case(f): Load factor of the new transformer , L.F_w = 112.5 percent\n", "Case(g): Yes. Reduce no-load voltage of the new transformer to some value below that of its present value so that its share of the load is reduced\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.26, Page number 523" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "kVA_1 = 500.0 #Power rating of the transformer 1(kVA)\n", "R_1_pu = 0.01 #Per-unit value of resistance of the transformer 1\n", "X_1_pu = 0.05 #Per-unit value of reactance of the transformer 1\n", "Z_1_pu = complex(R_1_pu,X_1_pu) #Per-unit value of impedance of the transformer 1\n", "PF = 0.8 #Lagging PF\n", "V = 400.0 #Secondary voltage(V)\n", "S_load = 750.0 #Increased system load(kVA)\n", "kVA_2 = 250.0 #Power rating of the transformer 2(kVA)\n", "R_pu_2 = 0.015 #Per-unit value of resistance of the transformer 2\n", "X_pu_2 = 0.04 #Per-unit value of reactance of the transformer 2\n", "\n", "#Calculation\n", "Z_pu_1 = complex(R_1_pu,X_1_pu) #New transformer p.u. impedance\n", "Z_pu1 = complex(R_pu_2,X_pu_2) #New transformer p.u. impedance\n", "#Case(a)\n", "V_b = V #Base voltage(V)\n", "#Case(b)\n", "S_b = kVA_1 #Base power(kVA)\n", "I_b = S_b/V_b*1000 #Base current(A)\n", "#Case(c)\n", "Zb = V_b/I_b #Base impedance(ohm). Method 1\n", "Z_b = V**2/(S_b*1000) #Base impedance(ohm). Method 2\n", "#Case(d)\n", "Z_1 = Z_b*Z_pu_1*1000 #Actual impedance of larger transformer(m\u03a9)\n", "Z_1_m = abs(Z_1) #Magnitude of Z_1(\u03a9)\n", "Z_1_a = cmath.phase(Z_1)*180/math.pi #Phase angle of Z_1(degree)\n", "#Case(e)\n", "V_b1 = V_b #Base voltage(V)\n", "V_b2 = V_b #Base voltage(V)\n", "Z_pu_2 = (kVA_1/kVA_2)*(V_b1/V_b2)**2*(Z_pu1) #New transformer p.u impedance\n", "Z_2_pu = Z_pu_2\n", "Z_2 = Z_b*Z_2_pu*1000 #Actual impedance of smaller transformer(m\u03a9)\n", "Z_2_m = abs(Z_2) #Magnitude of Z_2(\u03a9)\n", "Z_2_a = cmath.phase(Z_2)*180/math.pi #Phase angle of Z_2(degree)\n", "#Case(f)\n", "cos_theta = 0.8 #Lagging power factor\n", "sin_theta = (1-(cos_theta)**2)**0.5\n", "S_T = (kVA_1+kVA_2)*complex(cos_theta,-sin_theta) #kVA of total load\n", "I_T = S_T*1000/V_b #Total current(A)\n", "I_1 = I_T*(Z_2/(Z_1+Z_2)) #Actual current delivered by larger transformer(A)\n", "I_1_m = abs(I_1) #Magnitude of I_1(A)\n", "I_1_a = cmath.phase(I_1)*180/math.pi #Phase angle of I_1(degree)\n", "#Case(g)\n", "I_2 = I_T*(Z_1/(Z_1+Z_2)) #Actual current delivered by smaller transformer(A)\n", "I_2_m = abs(I_2) #Magnitude of I_2(A)\n", "I_2_a = cmath.phase(I_2)*180/math.pi #Phase angle of I_2(degree)\n", "#Case(h)\n", "Z1 = Z_1/1000 #Actual impedance of larger transformer(\u03a9)\n", "E_1 = I_1*Z1+V_b #No-load voltage of larger transformer(V)\n", "E_1_m = abs(E_1) #Magnitude of E_1(V)\n", "E_1_a = cmath.phase(E_1)*180/math.pi #Phase angle of E_1(degree)\n", "#Case(i)\n", "Z2 = Z_2/1000 #Actual impedance of smaller transformer(\u03a9)\n", "E_2 = I_2*Z2+V_b #No-load voltage of smaller transformer(V)\n", "E_2_m = abs(E_2) #Magnitude of E_2(V)\n", "E_2_a = cmath.phase(E_2)*180/math.pi #Phase angle of E_2(degree)\n", "\n", "#Result\n", "print('Case(a): Base voltage , V_b = %.f V' %V_b)\n", "print('Case(b): Base current , I_b = %.2f kA' %(I_b/1000))\n", "print('Case(c): Base impedance , Z_b = %.2f \u03a9 (Method 1)' %Zb)\n", "print(' Base impedance , Z_b = %.2f \u03a9 (Method 2)' %Z_b)\n", "print('Case(d): Actual impedance of larger transformer , Z_1 = %.2f\u2220%.1f\u00b0 m\u03a9' %(Z_1_m,Z_1_a))\n", "print('Case(e): Actual impedance of smaller transformer , Z_2 = %.2f\u2220%.2f\u00b0 m\u03a9' %(Z_2_m,Z_2_a))\n", "print('Case(f): Actual current delivered by larger transformer , I_1 = %.f\u2220%.2f\u00b0 A' %(I_1_m,I_1_a))\n", "print('Case(g): Actual current delivered by smaller transformer , I_2 = %.1f\u2220%.1f\u00b0 A' %(I_2_m,I_2_a))\n", "print('Case(h): No-load voltage of larger transformer , E_1 = %.2f\u2220%.2f\u00b0 V' %(E_1_m,E_1_a))\n", "print('Case(i): No-load voltage of smaller transformer , E_2 = %.2f\u2220%.2f\u00b0 V' %(E_2_m,E_2_a))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Base voltage , V_b = 400 V\n", "Case(b): Base current , I_b = 1.25 kA\n", "Case(c): Base impedance , Z_b = 0.32 \u03a9 (Method 1)\n", " Base impedance , Z_b = 0.32 \u03a9 (Method 2)\n", "Case(d): Actual impedance of larger transformer , Z_1 = 16.32\u222078.7\u00b0 m\u03a9\n", "Case(e): Actual impedance of smaller transformer , Z_2 = 27.34\u222069.44\u00b0 m\u03a9\n", "Case(f): Actual current delivered by larger transformer , I_1 = 1178\u2220-40.32\u00b0 A\n", "Case(g): Actual current delivered by smaller transformer , I_2 = 702.9\u2220-31.1\u00b0 A\n", "Case(h): No-load voltage of larger transformer , E_1 = 415.24\u22201.65\u00b0 V\n", "Case(i): No-load voltage of smaller transformer , E_2 = 415.24\u22201.65\u00b0 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.27, Page number 525" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "P_L = 14400.0 #Load output power(W)\n", "V_L = 120.0 #Load voltage(V)\n", "V_b1 = 120.0 #Base voltage at point 1(V)\n", "V_b2 = 600.0 #Base voltage at point 2(V)\n", "V_b3 = 120.0 #Base voltage at point 3(V)\n", "S_b3 = 14.4 #Base power(kVA)\n", "X_2 = 0.25 #Reactance(p.u)\n", "X_1 = 0.2 #Reactance(p.u)\n", "I_L = 120.0 #Load current(A)\n", "\n", "#Calculation\n", "#Case(a)\n", "R_L = P_L/(V_L**2) #Resistance of the load(ohm)\n", "#Case(b)\n", "Z_bL = (V_b3**2)/(S_b3*1000) #Base impedance(ohm)\n", "#Case(c)\n", "Z_L_pu = R_L/Z_bL #Per unit load impedance \n", "#Case(d)\n", "Z_2_pu = complex(0,X_2) #Per unit impedance of T2\n", "#Case(e)\n", "Z_1_pu = complex(0,X_1) #Per unit impedance of T1\n", "#Case(g)\n", "I_bL = (S_b3*1000)/V_b3 #Base current in load(A)\n", "#Case(h)\n", "I_L_pu = I_L/I_bL #Per unit load current\n", "#Case(i)\n", "V_R_pu = I_L_pu*Z_L_pu #Per unit voltage across load \n", "#Case(j)\n", "I_S_pu = I_L_pu #Per unit current of source\n", "Z_T_pu = Z_L_pu+Z_1_pu+Z_2_pu #Total p.u impedance\n", "V_S_pu = I_S_pu*Z_T_pu #Per unit voltage of source\n", "V_S_pu_m = abs(V_S_pu) #Magnitude of V_S_pu\n", "V_S_pu_a = cmath.phase(V_S_pu)*180/math.pi #Phase angle of V_S_pu(degrees)\n", "#Case(k)\n", "V_S = V_S_pu*V_b1 #Actual voltage across source(V)\n", "V_S_m = abs(V_S) #Magnitude of V_S(V)\n", "V_S_a = cmath.phase(V_S)*180/math.pi #Phase angle of V_S(degrees)\n", "#Case(l)\n", "I_x_pu = I_L_pu #p.u current at point x\n", "Z_x_pu = Z_L_pu+Z_2_pu #p.u impedance at point x \n", "V_x_pu = I_x_pu*Z_x_pu #p.u voltage at point x\n", "#Case(m)\n", "V_x = V_x_pu*V_b2 #Actual voltage at point x(V)\n", "V_x_m = abs(V_x) #Magnitude of V_x(V)\n", "V_x_a = cmath.phase(V_x)*180/math.pi #Phase angle of V_x(degrees)\n", "\n", "\n", "#Result\n", "print('Case(a): Resistance of the load , R_L = %.f \u03a9' %R_L)\n", "print('Case(b): Base impedance of the load , Z_bL = %.f \u03a9' %Z_bL)\n", "print('Case(c): Per-unit load impedance , Z_L(pu) = (%.f+j%.f) p.u' %(Z_L_pu.real,Z_L_pu.imag))\n", "print('Case(d): Per-unit impedance of transformer T2 , Z_2(pu) = j%.2f p.u' %Z_2_pu.imag)\n", "print('Case(e): Per-unit impedance of transformer T1 , Z_1(pu) = j%.1f p.u' %Z_2_pu.imag)\n", "print('Case(f): See Fig.14-23b in textbook page no-526')\n", "print('Case(g): Base current in the load , I_bL = %.f A (resistive)' %I_bL)\n", "print('Case(h): Per-unit load current , I_L_pu = (%.f+j%.f) p.u' %(I_L_pu.real,I_L_pu.imag))\n", "print('Case(i): Per-unit voltage across load , V_R_pu = (%.f+j%.f) p.u' %(V_R_pu.real,V_R_pu.imag))\n", "print('Case(j): Per-unit voltage of source , V_S_pu = %.3f\u2220%.2f\u00b0 pu' %(V_S_pu_m,V_S_pu_a))\n", "print('Case(k): Actual voltage across source , V_S = %.1f\u2220%.2f\u00b0 pu' %(V_S_m,V_S_a))\n", "print('Case(l): Per-unit voltage at point x in the second transmission loop , V_x(pu) = (%.f+j%.2f) p.u' %(V_x_pu.real,V_x_pu.imag))\n", "print('Case(m): Voltage at point x , V_x = %.1f\u2220%.f\u00b0 V' %(V_x_m,V_x_a))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Resistance of the load , R_L = 1 \u03a9\n", "Case(b): Base impedance of the load , Z_bL = 1 \u03a9\n", "Case(c): Per-unit load impedance , Z_L(pu) = (1+j0) p.u\n", "Case(d): Per-unit impedance of transformer T2 , Z_2(pu) = j0.25 p.u\n", "Case(e): Per-unit impedance of transformer T1 , Z_1(pu) = j0.2 p.u\n", "Case(f): See Fig.14-23b in textbook page no-526\n", "Case(g): Base current in the load , I_bL = 120 A (resistive)\n", "Case(h): Per-unit load current , I_L_pu = (1+j0) p.u\n", "Case(i): Per-unit voltage across load , V_R_pu = (1+j0) p.u\n", "Case(j): Per-unit voltage of source , V_S_pu = 1.097\u222024.23\u00b0 pu\n", "Case(k): Actual voltage across source , V_S = 131.6\u222024.23\u00b0 pu\n", "Case(l): Per-unit voltage at point x in the second transmission loop , V_x(pu) = (1+j0.25) p.u\n", "Case(m): Voltage at point x , V_x = 618.5\u222014\u00b0 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.28, Page number 526" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "V_1 = 11.0 #Tr.1 voltage(kV)\n", "V_b1 = 11.0 #Base Tr.1 voltage(kV)\n", "S_1 = 50.0 #KVA rating of power for Tr.1\n", "S_2 = 100.0 #KVA rating of power for Tr.2\n", "Z_1_pu = complex(0,0.1) #Per unit impedance of Tr.1\n", "Z_2_pu = complex(0,0.1) #Per unit impedance of Tr.2\n", "V_b2 = 55.0 #Base Tr.2 voltage(kV)\n", "S_b = 100.0 #Base power(kVA)\n", "PF = 0.8 #Power factor of the load\n", "Z_line = complex(0,200) #Line impedance(ohm)\n", "V_L = 10.0 #Load voltage(kV)\n", "V_Lb3 = 11.0 #Base line voltage at point 3(V)\n", "V_b3 = 11.0 #Line voltage at point 3(V)\n", "P_L = 50.0 #Power rating of each transformer(kW)\n", "cos_theta_L = 0.8 #Lagging PF of load\n", "\n", "#Calculation\n", "#Case(a)\n", "Z_T1 = Z_1_pu*(V_1/V_b1)**2*(S_2/S_1) #p.u impedance of T1\n", "#Case(b)\n", "Z_T2 = Z_2_pu*(V_1/V_b3)**2*(S_2/S_1) #p.u impedance of T2\n", "#Case(c)\n", "V_b = V_b2 #Base voltage(V)\n", "Z_b_line = (V_b**2)/S_b*1000 #Base line impedance(ohm)\n", "Z_line_pu = Z_line/Z_b_line #p.u impedance of the transmission line\n", "#Case(d)\n", "V_L_pu = V_L/V_Lb3 #p.u voltage across load\n", "#Case(f)\n", "I_bL = S_b/V_b3 #Base current in load(A)\n", "#Case(g)\n", "VL = V_b3 #Load voltage(kV)\n", "I_L = P_L/(VL*cos_theta_L) #Load current(A)\n", "I_L_pu = I_L/I_bL #p.u load current\n", "theta = math.acos(cos_theta_L) #PF angle(radian)\n", "theta_a = theta*180/math.pi #PF angle(degree)\n", "I_Lpu = I_L_pu*complex(math.cos(theta),-math.sin(theta)) #p.u current in complex form\n", "#Case(h)\n", "Z_series_pu = Z_T1+Z_line_pu+Z_T2 #p.u series impedance of the transmission line\n", "V_S_pu = I_Lpu*Z_series_pu+V_L_pu #p.u source voltage\n", "V_S_pu_m = abs(V_S_pu) #Magnitude of V_S_pu\n", "V_S_pu_a = cmath.phase(V_S_pu)*180/math.pi #Phase angle of V_S_pu(degrees)\n", "#Case(i)\n", "V_S = V_S_pu*V_b1 #Actual value of source voltage(kV)\n", "V_S_m = abs(V_S) #Magnitude of V_S_pu(kV)\n", "V_S_a = cmath.phase(V_S)*180/math.pi #Phase angle of V_S(degrees)\n", "\n", "#Result\n", "print('Case(a): Per-unit impedance of transformer T1 , Z_T1 = j%.1f p.u' %Z_T1.imag)\n", "print('Case(b): Per-unit impedance of transformer T2 , Z_T2 = j%.1f p.u' %Z_T2.imag)\n", "print('Case(c): Per-unit impedance of transmission line , Z(line)_pu = j%.4f p.u' %Z_line_pu.imag)\n", "print('Case(d): Per-unit voltage across load , V_L_pu = (%.3f+j%.f) p.u' %(V_L_pu.real,V_L_pu.imag))\n", "print('Case(e): See Fig.14-24b in textbook Page no-527')\n", "print('Case(f): Base current in load , I_bL = %.3f A' %I_bL)\n", "print('Case(g): Per-unit load current , I_L_pu = (%.1f%.3fj) p.u' %(I_Lpu.real,I_Lpu.imag))\n", "print('Case(h): Per-unit source voltage , V_S_pu = %.3f\u2220%.2f\u00b0 pu' %(V_S_pu_m,V_S_pu_a))\n", "print('Case(i): Actual value of source voltage , V_S = %.1f\u2220%.2f\u00b0 kV' %(V_S_m,V_S_a))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Per-unit impedance of transformer T1 , Z_T1 = j0.2 p.u\n", "Case(b): Per-unit impedance of transformer T2 , Z_T2 = j0.2 p.u\n", "Case(c): Per-unit impedance of transmission line , Z(line)_pu = j0.0066 p.u\n", "Case(d): Per-unit voltage across load , V_L_pu = (0.909+j0) p.u\n", "Case(e): See Fig.14-24b in textbook Page no-527\n", "Case(f): Base current in load , I_bL = 9.091 A\n", "Case(g): Per-unit load current , I_L_pu = (0.5-0.375j) p.u\n", "Case(h): Per-unit source voltage , V_S_pu = 1.081\u222010.84\u00b0 pu\n", "Case(i): Actual value of source voltage , V_S = 11.9\u222010.84\u00b0 kV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.29, Page number 528" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Z_pu_1 = 1j*0.1 #p.u impedance \n", "MVA_2 = 80.0 #MVA rating os system 2\n", "MVA_1 = 100.0 #MVA rating of T1 and T2\n", "V_2 = 30.0 #Voltage(kV)\n", "V_1 = 32.0 #Voltage(kV)\n", "Z_pu_2 = 1j*0.15 #p.u impedance \n", "V_b1 = 100.0 #Base voltage of T1(kV)\n", "Z_line = 1j*60 #Line impedance(ohm)\n", "MVA_M1 = 20.0 #MVA rating of motor load 1\n", "Z_pu_M1 = 1j*0.15 #p.u impedance of motor load M1\n", "MVA_M2 = 35.0 #MVA rating of motor load 2\n", "Z_pu_M2 = 1j*0.25 #p.u impedance of motor load M2\n", "MVA_M3 = 25.0 #MVA rating of motor load 3\n", "Z_pu_M3 = 1j*0.2 #p.u impedance of motor load M3\n", "V_M = 28.0 #Voltage across motor loads M1,M2,M3(kV)\n", "\n", "#Calculations\n", "Z_1_pu = Z_pu_1*(MVA_2/MVA_1)*(V_2/V_1)**2 #p.u imepedance of T1\n", "Z_2_pu = Z_pu_2*(MVA_2/MVA_1)*(V_2/V_1)**2 #p.u imepedance of T2\n", "V_b_line = V_b1*(V_1/V_2) #ase voltage of the long-transmission line(kV)\n", "MVA_b = 80.0 #Base MVA rating\n", "V_b = V_b_line\n", "Z_line_pu = Z_line*(MVA_b/(V_b_line)**2) #p.u impedance of the transmission line\n", "Z_M1_pu = Z_pu_M1*(MVA_2/MVA_M1)*(V_M/V_1)**2 #p.u impedance of motor load M1\n", "Z_M2_pu = Z_pu_M2*(MVA_2/MVA_M2)*(V_M/V_1)**2 #p.u impedance of motor load M2\n", "Z_M3_pu = Z_pu_M3*(MVA_2/MVA_M3)*(V_M/V_1)**2 #p.u impedance of motor load M3\n", "\n", "#Result\n", "print('Case(a): Per-unit impedance of T1 , Z_1(pu) = j%.4f p.u' %Z_1_pu.imag)\n", "print('Case(b): Per-unit impedance of T2 , Z_2(pu) = j%.4f p.u' %Z_2_pu.imag)\n", "print('Case(c): Base voltage of the long-transmission line between T1 and T2 , V_b(line) = %.1f kV' %V_b_line)\n", "print('Case(d): Per-unit impedance of the transmission line , Z(line)_pu = j%.4f p.u' %Z_line_pu.imag)\n", "print('Case(e): Per-unit impedance of motor load M1 , Z_M1(pu) = j%.4f p.u' %Z_M1_pu.imag)\n", "print('Case(f): Per-unit impedance of motor load M2 , Z_M2(pu) = j%.4f p.u' %Z_M2_pu.imag)\n", "print('Case(g): Per-unit impedance of motor load M3 , Z_M3(pu) = j%.2f p.u' %Z_M3_pu.imag)\n", "print('Case(h): See Fig.14-25b in textbook page no-529')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Per-unit impedance of T1 , Z_1(pu) = j0.0703 p.u\n", "Case(b): Per-unit impedance of T2 , Z_2(pu) = j0.1055 p.u\n", "Case(c): Base voltage of the long-transmission line between T1 and T2 , V_b(line) = 106.7 kV\n", "Case(d): Per-unit impedance of the transmission line , Z(line)_pu = j0.4219 p.u\n", "Case(e): Per-unit impedance of motor load M1 , Z_M1(pu) = j0.4594 p.u\n", "Case(f): Per-unit impedance of motor load M2 , Z_M2(pu) = j0.4375 p.u\n", "Case(g): Per-unit impedance of motor load M3 , Z_M3(pu) = j0.49 p.u\n", "Case(h): See Fig.14-25b in textbook page no-529\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.30, Page number 533" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V_pa = 1000.0 #Phase voltage(V)\n", "I_1a = 1.0 #Line current in primary(A)\n", "V_2a = 100.0 #Voltage across secondary(V)\n", "Ic_a = 10.0 #Current in lower half of auto-transformer(A)\n", "V_s = 100.0 #Voltage in secondary winding(V)\n", "I_2b = 10.0 #Current in secondary(A)\n", "V_1b = 1000.0 #Voltage across primary(V)\n", "Ic_b = 1.0 #Current in lower half of auto-transformer(A)\n", "\n", "#Calculation\n", "S_T1 = (V_pa*I_1a+V_2a*I_1a)/1000 #Total kVA transfer in step-down mode\n", "S_T2 = (V_s*I_2b+V_1b*I_2b)/1000 #Total kVA transfer in step-up mode\n", "S_x_former_c = V_pa*I_1a/1000 #kVA rating of th autotransformer in Fig.14-27a\n", "V_1 = V_pa\n", "S_x_former_d = V_1*Ic_b/1000 #kVA rating of th autotransformer in Fig.14-26b\n", "\n", "#Result\n", "print('Case(a): Total kVA transfer in step-down mode , S_T = %.1f kVA transferred' %S_T1)\n", "print('Case(b): Total kVA transfer in step-up mode , S_T = %.1f kVA transferred' %S_T2)\n", "print('Case(c): kVA rating of the autotransformer in Fig.14-27a , S_x-former = %.f kVA' %S_x_former_c)\n", "print('Case(d): kVA rating of the autotransformer in Fig.14-26b , S_x-former = %.f kVA' %S_x_former_d)\n", "print('Case(e): Both transformers have the same kVA rating of 1 kVA since the same autotransformer is used in both parts.')\n", "print(' Both transformers transform a total of 1 KVA. But the step-down transformer in part(a) conducts only 0.1 kVA')\n", "print(' while the step-up transformer in the part(b) conducts 10 kVA from the primary to the secondary')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Total kVA transfer in step-down mode , S_T = 1.1 kVA transferred\n", "Case(b): Total kVA transfer in step-up mode , S_T = 11.0 kVA transferred\n", "Case(c): kVA rating of the autotransformer in Fig.14-27a , S_x-former = 1 kVA\n", "Case(d): kVA rating of the autotransformer in Fig.14-26b , S_x-former = 1 kVA\n", "Case(e): Both transformers have the same kVA rating of 1 kVA since the same autotransformer is used in both parts.\n", " Both transformers transform a total of 1 KVA. But the step-down transformer in part(a) conducts only 0.1 kVA\n", " while the step-up transformer in the part(b) conducts 10 kVA from the primary to the secondary\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.31, Page number 535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "S = 500.0 #kVA rating of the distribution transformer\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 208.0 #Secondary voltage(V)\n", "f = 60.0 #Frequency(Hz)\n", "P_sc = 8200.0 #Wattmeter reading in SC test(W)\n", "I_sc = 217.4 #Short circuit current(A)\n", "V_sc = 95.0 #Short circuit voltage(V)\n", "P_oc = 1800.0 #Wattmeter reading in OC test(W)\n", "I_oc = 85.0 #Open circuit current(A)\n", "V_oc = 208.0 #Open circuit voltage(V)\n", "LF1 = 0.2 #Load fraction \n", "LF2 = 0.4 #Load fraction \n", "LF3 = 0.8 #Load fraction \n", "LF4 = 1.25 #Load fraction \n", "PF1 = 0.7 #Power factor\n", "PF2 = 0.8 #Power factor\n", "PF3 = 0.9 #Power factor\n", "PF_fl = 1.0 #Power factor\n", "PF4 = 0.85 #Power factor\n", "t1 = 4.0 #Period of operation(hours)\n", "t2 = 4.0 #Period of operation(hours)\n", "t3 = 6.0 #Period of operation(hours)\n", "t_fl = 6.0 #Period of operation(hours)\n", "t4 = 2.0 #Period of operation(hours)\n", "\n", "#Calculation\n", "#Case(a)\n", "t = 24.0 #Hours in a day\n", "P_c = P_oc #Wattmeter reading(W). OC test\n", "W_c = (P_c*t)/1000 #Core loss over 24 hour period(kWh)\n", "#Case(b)\n", "Psc = P_sc/1000 #Wattmeter reading(W). SC test\n", "P_loss_1 = (LF1**2)*Psc #Power loss for 20% Load(kW)\n", "P_loss_2 = (LF2**2)*Psc #Power loss for 40% Load(kW)\n", "P_loss_3 = (LF3**2)*Psc #Power loss for 80% Load(kW)\n", "P_loss_fl = Psc #Power loss for 100% Load(kW)\n", "P_loss_4 = (LF4**2)*Psc #Power loss for 125% Load(kW)\n", "energy_loss1 = P_loss_1*t1 #Enegry loss for 20% Load(kWh)\n", "energy_loss2 = P_loss_2*t2 #Enegry loss for 40% Load(kWh)\n", "energy_loss3 = P_loss_3*t3 #Enegry loss for 80% Load(kWh)\n", "energy_loss_fl = P_loss_fl*t_fl #Enegry loss for 100% Load(kWh)\n", "energy_loss4 = P_loss_4*t4 #Enegry loss for 125% Load(kWh)\n", "W_loss_total = energy_loss1+energy_loss2+energy_loss3+energy_loss_fl+energy_loss4 #Total energy loss(kWh)\n", "#Case(c)\n", "P_1 = LF1*S*PF1 #Power output for 20% load(kW)\n", "P_2 = LF2*S*PF2 #Power output for 40% load(kW)\n", "P_3 = LF3*S*PF3 #Power output for 80% load(kW)\n", "P_fl = S*PF_fl #Power output for 100% load(kW)\n", "P_4 = LF4*S*PF4 #Power output for 125% load(kW)\n", "Energy_1 = P_1*t1 #Energy delivered for 20% load(kWh)\n", "Energy_2 = P_2*t2 #Energy delivered for 40% load(kWh)\n", "Energy_3 = P_3*t3 #Energy delivered for 80% load(kWh)\n", "Energy_fl = P_fl*t_fl #Energy delivered for 100% load(kWh)\n", "Energy_4 = P_4*t4 #Energy delivered for 125% load(kWh)\n", "W_out_total = Energy_1+Energy_2+Energy_3+Energy_fl+Energy_4 #Total energy delivered in 24hrs(kwh)\n", "#Case(d)\n", "n = W_out_total/(W_out_total+W_c+W_loss_total)*100 #All-day efficiency(%)\n", "\n", "#Result\n", "print('case(a): Core loss over the 24 hour period , W_c = P_c*t = %.1f kWh' %W_c)\n", "print('Case(b): Total energy loss over the 24 hour period = %.2f kWh' %W_loss_total)\n", "print('Case(c): Total energy output over the 24 hour period = %.f kWh' %W_out_total)\n", "print('Case(d): All-day efficiency = %.1f percent' %n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "case(a): Core loss over the 24 hour period , W_c = P_c*t = 43.2 kWh\n", "Case(b): Total energy loss over the 24 hour period = 112.87 kWh\n", "Case(c): Total energy output over the 24 hour period = 7142 kWh\n", "Case(d): All-day efficiency = 97.9 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.32, Page number 540" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "S_1 = 10.0 #VA rating of small transformer\n", "V = 115.0 #Voltage rating of transformer(V)\n", "V_2_1 = 6.3 #Voltage rating of one part of secondary winding(V)\n", "V_2_2 = 5.0 #Voltage rating of other part of secondary winding(V)\n", "Z_2_1 = 0.2 #Impedance of one part of secondary winding(ohm)\n", "Z_2_2 = 0.15 #Impedance of other part of secondary winding(ohm)\n", "\n", "#Calculation\n", "#Case(a)\n", "V_2 = V_2_1+V_2_2 #Voltage across secondary winding(V)\n", "I_2 = S_1/V_2 #Rated secondary current when the LV secondaries are connected in series-aiding(A)\n", "#Case(b)\n", "I_c = (V_2_1-V_2_2)/(Z_2_1+Z_2_2) #Circulating current when LV windings are paralled(A)\n", "percent_overload = (I_c/I_2)*100 #Percent overload produced\n", "\n", "#Result\n", "print('Case(a): Rated secondary current when the low-voltage secondaries are connected series-aiding , I_2 = %.3f A' %I_2)\n", "print('Case(b): Circulating current when LV windings are paralled , I_c = %.2f A' %I_c)\n", "print(' Percent overload produced = %.f percent' %percent_overload)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Rated secondary current when the low-voltage secondaries are connected series-aiding , I_2 = 0.885 A\n", "Case(b): Circulating current when LV windings are paralled , I_c = 3.71 A\n", " Percent overload produced = 420 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.33, Page number 541" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "S = 20.0 #kVA rating of transformer\n", "N_1 = 230.0 #Number of primary turns\n", "N_2 = 20.0 #Number of secondary turns\n", "V_1 = 230.0 #Primary voltage(V)\n", "V_2 = 20.0 #Secondary voltage(V)\n", "V_sc = 4.5 #Short circuit voltage(V)\n", "I_sc = 87.0 #Short circuit current(A)\n", "P_sc = 250.0 #Power measured(W)\n", "\n", "#Calculation\n", "V_h = V_sc #Short circuit voltage on HV side(V)\n", "I_h = I_sc #Short circuit current on HV side(A)\n", "Z_eh = V_h/I_h #Equivalent impedance reffered to the high side when coils are series connected(ohm)\n", "Z_el = Z_eh*(N_2/N_1)**2 #Equivalent impedance reffered to the low side when coils are series connected(ohm)\n", "I_2_rated = (S*1000)/V_2 #Rated secondary current when coils are series connected(A)\n", "I_2_sc = S/Z_el #Secondary current when coils in Fig.14-31a are short-circuited with rated voltage applied to HV side(A)\n", "percent_overload = (I_2_sc/I_2_rated)*100 #Percent overload\n", "\n", "#Result\n", "print('Case(a): Equivalent impedance reffered to the high side when coils are series-connected , Z_eh = %.4f ohm' %Z_eh)\n", "print('Case(b): Equivalent impedance reffered to the low side when coils are series connected , Z_el = %.2e ohm' %Z_el)\n", "print('Case(c): Rated secondary current when coils are series connected , I_2(rated) = %.e A' %I_2_rated)\n", "print('Case(d): Secondary current when coils in Fig.14-31a are short-circuited with rated voltage applied to HV side , I_2(sc) = %.1e A' %I_2_sc)\n", "print(' Percent overload produced = %.f percent' %percent_overload)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Equivalent impedance reffered to the high side when coils are series-connected , Z_eh = 0.0517 ohm\n", "Case(b): Equivalent impedance reffered to the low side when coils are series connected , Z_el = 3.91e-04 ohm\n", "Case(c): Rated secondary current when coils are series connected , I_2(rated) = 1e+03 A\n", "Case(d): Secondary current when coils in Fig.14-31a are short-circuited with rated voltage applied to HV side , I_2(sc) = 5.1e+04 A\n", " Percent overload produced = 5114 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.34, Page number 548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "I_L = 100.0 #Load current(A)\n", "cos_theta = 0.7 #Power factor lagging\n", "S = 60.0 #kVA rating of transformer\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "\n", "#Calculation\n", "#Case(a)\n", "V_L = 230.0 #Voltage across load(V)\n", "P_T = (3**0.5*V_L*I_L*cos_theta)/1000 #Power consumed by the plant(kW)\n", "kVA_T = P_T/cos_theta #Apparent power(kVA)\n", "#Case(b)\n", "kVA = S #kVA rating of transformer\n", "V_p = V_2 #Phase voltage(V). delta-connection on load side\n", "I_P2_rated = (kVA*1000)/(3*V_p) #Rated secondary phase current(A)\n", "I_L2_rated = 3**0.5*I_P2_rated #Rated secondary line current(A)\n", "#Case(c)\n", "percent_load = I_L/I_L2_rated*100 #Percent load on each transformer \n", "#Case(d)\n", "V_L_d = 2300.0\n", "I_P1 = (kVA_T*1000)/(3**0.5*V_L_d) #Primary phase current(A)\n", "I_L1 = I_P1 #Primary line current(A). Y-connection\n", "#Case(e)\n", "kVA_transformer = kVA/3 #kVA rating of each transformer\n", "\n", "#Result\n", "print('Case(a): Power consumed by the plant , P_T = %.1f kW' %P_T)\n", "print(' Apparent power , kVA_T = %.1f kVA' %kVA_T)\n", "print('Case(b): Rated secondary phase current of transformer bank , I_P2(rated) = %.f A' %I_P2_rated)\n", "print(' Rated secondary line current of transformer bank , I_L2(rated) = %.1f A' %I_L2_rated)\n", "print('Case(c): Percent load on each transformer = %.1f percent' %percent_load)\n", "print('Case(d): Primary phase current drawn by each transformer , I_P1 = %.f A' %I_P1)\n", "print(' Primary line current drawn by each transformer , I_L1 = %.f A' %I_L1)\n", "print('Case(e): kVA rating of each transformer = %.f kVA' %kVA_transformer)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Power consumed by the plant , P_T = 27.9 kW\n", " Apparent power , kVA_T = 39.8 kVA\n", "Case(b): Rated secondary phase current of transformer bank , I_P2(rated) = 87 A\n", " Rated secondary line current of transformer bank , I_L2(rated) = 150.6 A\n", "Case(c): Percent load on each transformer = 66.4 percent\n", "Case(d): Primary phase current drawn by each transformer , I_P1 = 10 A\n", " Primary line current drawn by each transformer , I_L1 = 10 A\n", "Case(e): kVA rating of each transformer = 20 kVA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.35, Page number 548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "I_L = 100.0 #Load current(A)\n", "cos_theta = 0.7 #Power factor lagging\n", "S = 60.0 #kVA rating of transformer\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "\n", "#Calculation\n", "#Case(a)\n", "V_L = 230.0 #Voltage across load(V)\n", "P_T = (3**0.5*V_L*I_L*cos_theta)/1000 #Power consumed by the plant(kW)\n", "kVA_T = P_T/cos_theta #Apparent power(kVA)\n", "#Case(b)\n", "kVA = S #kVA rating of transformer\n", "V_p = V_2 #Phase voltage(V)\n", "I_P2_rated = (kVA*1000)/(3*V_p) #Rated secondary phase current(A)\n", "I_L2_rated = 3**0.5*I_P2_rated #Rated secondary line current(A)\n", "#Case(c)\n", "percent_load = I_L/I_L2_rated*100 #Percent load on each transformer \n", "#Case(d)\n", "V_L_d = 2300.0\n", "I_P1 = (kVA_T*1000)/(3**0.5*V_L_d) #Primary phase current(A)\n", "I_L1 = 3**0.5*I_P1 #Primary line current(A)\n", "#Case(e)\n", "kVA_transformer = kVA/3 #kVA rating of each transformer\n", "\n", "#Result\n", "print('Case(a): Power consumed by the plant , P_T = %.1f kW' %P_T)\n", "print(' Apparent power , kVA_T = %.1f kVA' %kVA_T)\n", "print('Case(b): Rated secondary phase current of transformer bank , I_P2(rated) = %.f A' %I_P2_rated)\n", "print(' Rated secondary line current of transformer bank , I_L2(rated) = %.1f A' %I_L2_rated)\n", "print('Case(c): Percent load on each transformer = %.1f percent' %percent_load)\n", "print('Case(d): Primary phase current drawn by each transformer , I_P1 = %.f A' %I_P1)\n", "print(' Primary line current drawn by each transformer , I_L1 = %.1f A' %I_L1)\n", "print(' Primary line current drawn by a \u0394-\u0394 bank is \u221a3 times the line current drawn by a Y-\u0394 bank')\n", "print('Case(e): kVA rating of each transformer = %.f kVA' %kVA_transformer)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Power consumed by the plant , P_T = 27.9 kW\n", " Apparent power , kVA_T = 39.8 kVA\n", "Case(b): Rated secondary phase current of transformer bank , I_P2(rated) = 87 A\n", " Rated secondary line current of transformer bank , I_L2(rated) = 150.6 A\n", "Case(c): Percent load on each transformer = 66.4 percent\n", "Case(d): Primary phase current drawn by each transformer , I_P1 = 10 A\n", " Primary line current drawn by each transformer , I_L1 = 17.3 A\n", " Primary line current drawn by a \u0394-\u0394 bank is \u221a3 times the line current drawn by a Y-\u0394 bank\n", "Case(e): kVA rating of each transformer = 20 kVA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.36, Page number 554" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "V_L = 33.0 #Line voltage(kV)\n", "f = 60.0 #Frequency(Hz)\n", "PF1 = 1.0 #Unity power factor for I_AB\n", "PF2 = 0.7 #Lagging power factor for I_BC\n", "PF3 = 0.9 #Leading power factor for I_CA\n", "IAB = 10.0 #Magnitude of I_AB(kA)\n", "IBC = 15.0 #Magnitude of I_BC(kA)\n", "ICA = 12.0 #Magnitude of I_CA(kA)\n", "\n", "#Calculation\n", "V_AB = V_L*cmath.exp(1j*0*math.pi/180) #Line voltage taken as reference voltage(kV)\n", "V_AB_a = cmath.phase(V_AB)*180/math.pi #Voltage angle(degree)\n", "V_BC = V_L*cmath.exp(1j*-120*math.pi/180) #Line voltage(kV)\n", "V_BC_a = cmath.phase(V_BC)*180/math.pi #Voltage angle(degree)\n", "V_CA = V_L*cmath.exp(1j*120*math.pi/180) #Line voltage(kV)\n", "V_CA_a = cmath.phase(V_CA)*180/math.pi #Voltage angle(degree)\n", "theta_1 = math.acos(PF1)*180/math.pi #PF1 angle(degree)\n", "theta_2 = math.acos(PF2)*180/math.pi #PF2 angle(degree)\n", "theta_3 = math.acos(PF3)*180/math.pi #PF3 angle(degree)\n", "I_AB = IAB*cmath.exp(1j*(theta_1)*math.pi/180) #Current(kA)\n", "I_BC = IBC*cmath.exp(1j*(V_BC_a-theta_2)*math.pi/180) #Current(kA)\n", "I_CA = ICA*cmath.exp(1j*(V_CA_a+theta_3)*math.pi/180) #Current(kA)\n", "#Case(a)\n", "I_AC = -I_CA\n", "I_A = I_AB+I_AC #Phase current(kA)\n", "I_A_m = abs(I_A) #Magnitude of I_A(kA)\n", "I_A_a = cmath.phase(I_A)*180/math.pi #Phase angle of I_A(degrees)\n", "#Case(b)\n", "I_BA = -I_AB\n", "I_B = I_BC+I_BA #Phase current(kA)\n", "I_B_m = abs(I_B) #Magnitude of I_B(kA)\n", "I_B_a = cmath.phase(I_B)*180/math.pi #Phase angle of I_B(degrees)\n", "#Case(c)\n", "I_CB = -I_BC\n", "I_C = I_CA+I_CB #Phase current(kA)\n", "I_C_m = abs(I_C) #Magnitude of I_C(kA)\n", "I_C_a = cmath.phase(I_C)*180/math.pi #Phase angle of I_C(degrees)\n", "#Case(d)\n", "phasor_sum = I_A+I_B+I_C #Phasor sum of line currents\n", "\n", "#Result\n", "print('Case(a): Current in line A , I_A = %.2f\u2220%.2f\u00b0 kA' %(I_A_m,I_A_a))\n", "print('Case(b): Current in line B , I_B = %.2f\u2220%.2f\u00b0 kA' %(I_B_m,I_B_a))\n", "print('Case(c): Current in line C , I_C = %.2f\u2220%.2f\u00b0 kA' %(I_C_m,I_C_a))\n", "print('Case(d): Phasor sum of line currents , \u03a3I_L = (%.f+j%.f) ' %(phasor_sum.real,phasor_sum.imag))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Current in line A , I_A = 21.04\u2220-18.68\u00b0 kA\n", "Case(b): Current in line B , I_B = 24.81\u2220-171.34\u00b0 kA\n", "Case(c): Current in line C , I_C = 11.44\u222066.30\u00b0 kA\n", "Case(d): Phasor sum of line currents , \u03a3I_L = (-0+j0) \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.37, Page number 556" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "kVA_1 = 20.0 #kVA rating of transformer 1\n", "kVA_2 = 20.0 #kVA rating of transformer 2\n", "kVA_3 = 20.0 #kVA rating of transformer 3\n", "V_1 = 2300.0 #Primary voltage(V)\n", "V_2 = 230.0 #Secondary voltage(V)\n", "kVA = 40.0 #kVA supplied by the bank\n", "PF = 0.7 #Lagging power factor at which bank supplies kVA\n", "\n", "#Calculation\n", "kVA_transformer = kVA/3**0.5 #kVA load carried by each transformer\n", "percent_ratedload_Tr = kVA_transformer/kVA_1*100 #Percent load carried by each transformer\n", "kVA_V_V = 3**0.5*kVA_1 #Total kVA rating of the transformer bank in V-V\n", "ratio_banks = kVA_V_V/(kVA_1+kVA_2+kVA_3)*100 #Ratio of V-V bank to \u0394-\u0394 bank transformer ratings\n", "kVA_Tr = kVA/3 \n", "percent_increase_load = kVA_transformer/kVA_Tr*100 #Percent increase in load on each transformer when one transformer is removed\n", "\n", "#Result\n", "print('Case(a): kVA load carried by each transformer = %.1f kVA/transformer' %kVA_transformer)\n", "print('Case(b): Percent rated load carried by each transformer = %.1f percent' %percent_ratedload_Tr)\n", "print('Case(c): Total kVA rating of the transformer bank in V-V = %.2f kVA' %kVA_V_V)\n", "print('Case(d): Ratio of V-V bank to \u0394-\u0394 bank transformer ratings = %.1f percent' %ratio_banks)\n", "print('Case(e): Percent increase in load on each transformer when one transformer is removed = %.1f percent' %percent_increase_load)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): kVA load carried by each transformer = 23.1 kVA/transformer\n", "Case(b): Percent rated load carried by each transformer = 115.5 percent\n", "Case(c): Total kVA rating of the transformer bank in V-V = 34.64 kVA\n", "Case(d): Ratio of V-V bank to \u0394-\u0394 bank transformer ratings = 57.7 percent\n", "Case(e): Percent increase in load on each transformer when one transformer is removed = 173.2 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.38, Page number 562" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V = 440.0 #Rated voltage of SCIM(V)\n", "hp = 100.0 #Rated power of SCIM(hp)\n", "PF = 0.8 #Power factor\n", "V_1 = 155.0 #Primary voltage of transformer(V)\n", "V_2 = 110.0 #Secondary voltage of transformer(V)\n", "V_a = 110.0 #Armature voltage(V)\n", "V_L = 440.0 #Load voltage(V)\n", "n = 0.98 #Efficiency of the transformer\n", "\n", "#Calculation\n", "I_L = 124*1.25 #Motor line current(A). Appendix A-3\n", "alpha = V_a/V_L #Transformation ratio\n", "I_a = (3**0.5/2)*(I_L/(alpha*n)) #Current in the primary of the scott transformers(A)\n", "kVA = (V_a*I_a)/((3**0.5/2)*1000) #kVA rating of the main and teaser transformers\n", "\n", "#Result\n", "print('Case(a): Motor line current , I_L = %.f A' %I_L)\n", "print('Case(b): Transformation ratio , \u03b1 = N_1/N_2 = V_a/V_L = %.2f ' %alpha)\n", "print('Case(c): Current in the primary of the scott transformers , I_a = %.f A' %I_a)\n", "print('Case(d): kVA rating of the main and teaser transformers , kVA = %.1f kVA' %kVA)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Motor line current , I_L = 155 A\n", "Case(b): Transformation ratio , \u03b1 = N_1/N_2 = V_a/V_L = 0.25 \n", "Case(c): Current in the primary of the scott transformers , I_a = 548 A\n", "Case(d): kVA rating of the main and teaser transformers , kVA = 69.6 kVA\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.39, Page number 570" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "I_L = 1.0 #Load current(kA)\n", "V_m = 750.0 #Peak voltage(kV)\n", "\n", "#Calculation\n", "V_L = (V_m)/2**0.5 #Maximum allowable rms voltagethat may be applied to the lines using ac(kV)\n", "S_T_ac = 3**0.5*V_L*I_L #Total 3-phase apparent power(MVA)\n", "I_rms = I_L #rms value of load current(kA)\n", "I_dc =I_rms*2**0.5 #Maximum allowable current that can be delivered by dc transmission(kA)\n", "V_dc = V_m #dc voltage(kV)\n", "S_T_dc = V_dc*I_dc #Total dc apparent power delivered by two lines(MVA)\n", "S_ac_line = S_T_ac/3 #Power per ac line\n", "S_dc_line = S_T_dc/2 #Power per dc line\n", "\n", "#Result\n", "print('Case(a): Maximum allowable rms voltage that may be applied to the lines using ac , V_L = %.1f kV' %V_L)\n", "print('Case(b): Total 3-phase ac apparent power delivered by three lines , S_T = %.1f MVA' %S_T_ac)\n", "print('Case(c): Maximum allowable current that can be delivered by dc transmission , I_dc = %.3f kA' %I_dc)\n", "print('Case(d): Total dc apparent power delivered by two lines , S_T = %.1f MVA' %S_T_dc)\n", "print('Case(e): Power per ac line , S/ac line = %.1f MVA/line' %S_ac_line)\n", "print('Case(f): Power per dc line , S/dc line = %.1f MVA/line' %S_dc_line)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(a): Maximum allowable rms voltage that may be applied to the lines using ac , V_L = 530.3 kV\n", "Case(b): Total 3-phase ac apparent power delivered by three lines , S_T = 918.6 MVA\n", "Case(c): Maximum allowable current that can be delivered by dc transmission , I_dc = 1.414 kA\n", "Case(d): Total dc apparent power delivered by two lines , S_T = 1060.7 MVA\n", "Case(e): Power per ac line , S/ac line = 306.2 MVA/line\n", "Case(f): Power per dc line , S/dc line = 530.3 MVA/line\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }