{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter04: Control of Electric Motors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_1:pg-441" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "29.9336056693 =Iavg:\n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_1\n", "import math\n", "Eb=50;# voltage in V\n", "V=120;# voltage in V\n", "f=50;#frequency in Hz\n", "R=10;# Resistance in ohm\n", "a=math.asin(Eb/(math.sqrt(2)*V));\n", "Alpha=(a*180)/math.pi;\n", "pf=0.9556;\n", "Iavg=(1/(2*math.pi*R))*((2*math.sqrt(2)*V*pf)-(Eb*(math.pi-(2*Alpha))));\n", "print Iavg,\"=Iavg:\"\n", "#answer wrong in the textbook due to error in calculation\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_3:pg-442" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "81.1519777932 =Effeciency in % \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_3\n", "import math\n", "P=10000;\n", "V=240;# voltage in V\n", "N=1000;#Speed in rpm\n", "Eff1=0.87;#Effeciency in %\n", "Vs=250;# voltage in V\n", "f=50;#frequency in Hz\n", "Alpha=0.5;#angle\n", "R=0.40;# Resistance in ohm\n", "Fdf=1;#fundamental displacement factor\n", "df=0.9;#distortion factor\n", "pf=0.9;#the power factor\n", "Pi=P/Eff1;\n", "I=Pi/V;\n", "Eb=V-(I*R);\n", "Vi=0.9*Vs;\n", "Eb1=Vi-(I*R);\n", "N1=(Eb1/Eb)*N;\n", "Pi1=V*I*pf*(10)**(-3);\n", "Pi2=(Pi1*N1)/N;\n", "Vc=0.9*Vs*Alpha;\n", "Eb2=Vc-(I*R);\n", "N2=(N*Eb2)/Eb;\n", "P0=((Pi1*N2)/N)*1000;\n", "Pi0=Vc*I;\n", "Eff=(P0/Pi0)*100;\n", "print Eff,\"=Effeciency in % \"\n", "#Result vary due to roundoff error\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_4:pg-442" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.7794 =powerfactor \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_4\n", "import math\n", "V=250;# voltage in V\n", "f=50;#frequency in Hz\n", "R=1.5;# Resistance in ohm\n", "L=30;#inductance in mH\n", "Eb=100;#Back emf in V\n", "Alpha=0.866;#angle \n", "Vc=0.9*V*Alpha;\n", "Id=(Vc-Eb)/R;\n", "P=Vc*Id*10**(-3);\n", "pf=0.9*Alpha;\n", "print pf,\"=powerfactor \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_5:pg-443" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "57.4863853668 =The firing angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_5\n", "import math\n", "N=1800;#Speed in rpm\n", "I=60;#Current in A\n", "V=400;# voltage in V\n", "E=185;#Back emf in V\n", "N2=900;#Speed in rpm\n", "R=0.5;# Resistance in ohm\n", "Vs=V/2.34;\n", "Vl=V/1.35;\n", "Vi=V-(I*R);\n", "V=E+(I*R);\n", "a=math.acos(V/(2.34*Vs));\n", "Alpha=(a*180)/math.pi;\n", "print Alpha,\"=The firing angle in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_6:pg-444" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "71.5063230096 =The firing angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_6\n", "import math\n", "V=500;# voltage in V\n", "Vs=250;# voltage in V\n", "I=181;#Current in A\n", "N=1500;#Speed in rpm\n", "R=0.1;# Resistance in ohm\n", "f=50;#frequency in Hz\n", "Eb=Vs-(I*R);\n", "Eb1=Eb/3;\n", "A1=math.acos(Vs/(1.35*V));\n", "Alpha1=(A1*180)/math.pi;\n", "Ia2=I/9;\n", "V2=Eb1+(Ia2*R);\n", "A2=math.acos(V2/(1.35*V));\n", "Alpha2=(A2*180)/math.pi;\n", "Vl=Vs/1.35;\n", "A3=math.acos(V2/(1.35*Vl));\n", "Alpha3=(A3*180)/math.pi;\n", "print Alpha3,\"=The firing angle in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_7a:pg-445" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "26.2447091004 =The firing angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_7a\n", "import math\n", "V=300;# voltage in V\n", "Vt=363.25;# voltage in V\n", "f=60;#frequency in Hz\n", "Rd=0.02;# Resistance in ohm\n", "La=0.002;#inductance in H\n", "Id=500;#Current in A\n", "N=1500;#Speed in rpm\n", "Eb=Vt-(Id*Rd);\n", "A=math.acos(Vt/(1.35*V));\n", "Alpha=(A*180)/math.pi;\n", "print Alpha,\"=The firing angle in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_7b:pg-445" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "173.25 =The back emf in V \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_7b\n", "import math\n", "V=300;# voltage in V\n", "Vt=363.25;# voltage in V\n", "f=60;#frequency in Hz\n", "Rd=0.02;# Resistance in ohm\n", "La=0.001;#inductance in H\n", "Id=500;#Current in A\n", "N=1500;#Speed in rpm\n", "Xc=2*math.pi*f*La;\n", "Z=Rd+((3*Xc)/math.pi);\n", "Eb=Vt-(Id*Z);\n", "print Eb,\"=The back emf in V \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_8:pg-446" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.479515813953 =The constant A \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_8\n", "import math\n", "V=600;# voltage in V\n", "R=0.16;# Resistance in ohm\n", "Ia=210;#Current in A\n", "N=600;#Speed in rpm\n", "n=10;#no of unit\n", "Eb=V-(Ia*R);\n", "Td=((Eb*Ia)/(2*math.pi*n));\n", "W=(2*math.pi*N)/60;\n", "A=Td/(W)**2;\n", "print A,\"=The constant A \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_9:pg-447" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "360.0 =The back emf in V \n", "139.321363317 =The firing angle1 in deg \n", "98.1111258306 =The firing angle2 in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_9\n", "import math\n", "V1=500;# voltage in V\n", "V2=450;# voltage in V\n", "Vs=420;# voltage in V\n", "V=400;# voltage in V\n", "I=60;#Current in A\n", "R=1.5;# Resistance in ohm\n", "R1=5;# Resistance in ohm\n", "Eb=20;#Back emf in V\n", "f=50;#frequency in Hz\n", "Vl=V2+Eb;\t\t\n", "A=math.acos(Vl/(1.35*Vs));\n", "Alpha1=(A*180)/math.pi;\n", "Eb1=V2-(I*R);\n", "print Eb1,\"=The back emf in V \"\n", "V3=-V2-(I*R);\n", "Vc=-V2+Eb;\n", "A1=math.acos(Vc/(1.35*Vs));\n", "Alpha2=(A1*180)/math.pi;\n", "print Alpha2,\"=The firing angle1 in deg \"\n", "Eb2=-V-(I*R);\n", "Vc1=-V+Eb+(R1*I);\n", "A2=math.acos(Vc1/(1.35*Vs));\n", "Alpha3=(A2*180)/math.pi;\n", "print Alpha3,\"=The firing angle2 in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_10:pg-448" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.1 =The inductance in Henry \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_10\n", "import math\n", "V=500.0;# voltage in V\n", "I=15.0;#Current in A\n", "t=0.6;#time in sec\n", "f=80;#frequency in Hz\n", "Vav=V*t;\n", "Vi=V-Vav;\n", "Ton=t/f;\n", "L=Vi*(Ton/I);\n", "print L,\"=The inductance in Henry \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_14:pg-449" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.8 =The time ratio \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_14\n", "import math\n", "V=440;# voltage in V\n", "R1=0.07;# Resistance in ohm\n", "R2=0.05;# Resistance in ohm\n", "X=0.2;#Reactance in ohm\n", "N=1420;#Speed in rpm\n", "Xm=20;#Reactance in ohm\n", "S1=80;#slip in rpm\n", "S2=500;#slip in rpm\n", "Ra=((S2/S1)*R2)-R2;\n", "R=2*Ra;\n", "Ra1=4*R2;\n", "T=(Ra1*2)/R;\n", "print T,\"=The time ratio \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_15:pg-450" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "115.887603041 =The firing angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_15\n", "import math\n", "P=1000;\n", "N=1500;#Speed in rpm\n", "R2=0.06;# Resistance in ohm\n", "I2=125.6;#Current in A\n", "T=1.5;#Time in sec\n", "N1=1420;#Speed in rpm\n", "S=(R2*P)/N;\n", "K=((S/(2*math.pi*N))*(I2)**2*T)/(N1)**2;\n", "T1=K*(N1)**2;\n", "N2=750;#Speed in rpm\n", "S0=0.489;#No load slip\n", "S2=1.12;#load slip\n", "T2=K*(N2)**2;\n", "X1=(T2*S)/T1;\n", "A=math.acos(-S0/S2);\n", "Alpha=(A*180)/math.pi;\n", "print Alpha,\"=The firing angle in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex4_20:pg-452" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "984.782608696 =The speed N1 in rpm \n", "968.47826087 =The speed N2 in rpm \n", "946.739130435 =The speed N3 in rpm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex4_20\n", "import math\n", "R=0.05;# Resistance in ohm\n", "N0=1000.0;#Speed in rpm\n", "Rf=46.0;# Resistance in ohm\n", "I1=75.0;#Current in A\n", "I2=150;#Current in A\n", "I3=250.0;#Current in A\n", "V=230;# voltage in V\n", "Eb=230;#Back emf in V\n", "If=V/Rf;\n", "Ia1=I1-If;\n", "Eb1=V-(Ia1*R);\n", "N1=(Eb1/Eb)*N0;\n", "print N1,\"=The speed N1 in rpm \"\n", "Ia2=I2-If;\n", "Eb2=V-(Ia2*R);\n", "N2=(Eb2/Eb)*N0;\n", "print N2,\"=The speed N2 in rpm \"\n", "Ia3=I3-If;\n", "Eb3=V-(Ia3*R);\n", "N3=(Eb3/Eb)*N0;\n", "print N3,\"=The speed N3 in rpm \"\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }