{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter03: Converters for Feeding Electric Motors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_1:pg-273" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "81.2623533876 =Current in the load in A \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_1\n", "import math\n", "Rd=2;#Resistance in ohm\n", "Eb=150;#Back emf in V\n", "Vs=400;#Supply voltage in V\n", "Alpha=0.52;#angle in radian\n", "Vdia=((2*math.sqrt(2)*Vs*math.cos(Alpha))/math.pi);\n", "Id=(Vdia-Eb)/Rd;\n", "Irms=Id/math.sqrt(2);\n", "print Id,\"=Current in the load in A \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_2:pg-273" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "88.1286627695 =The firing angle in degree \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_2\n", "import math\n", "Vs=400;#Supply voltage in V\n", "Id=80.88;#Current in A\n", "Rd=2;#Resistance in ohm\n", "Eb=-150;#Back emf in V\n", "Vdia=Id*Rd+Eb;\n", "a=math.acos((Vdia*math.pi)/(2*math.sqrt(2)*Vs));\n", "Alpha=(a*180)/math.pi;\n", "print Alpha,\"=The firing angle in degree \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_3:pg-274" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5.19163041855 =The overlap angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_3\n", "import math\n", "Id=80.88;#Current in A\n", "Rd=2;#Resistance in ohm\n", "Xc=0.628;#Reactance in ohm\n", "Vs=400;#Supply voltage in V\n", "Eb=150;#Back emf in V\n", "Z=Id*(Rd+(Xc/math.pi));\n", "a=math.acos((Z-Eb)/(0.9*Vs));\n", "Alpha=(a*180)/math.pi;\n", "c=math.cos(Alpha);\n", "d=-c/11;\n", "b=(Id*Xc*2)/(math.pi*Vs);\n", "X=d-b;\n", "e=math.acos(X);\n", "f=(e*180)/math.pi;\n", "u=f-Alpha;\n", "print u,\"=The overlap angle in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_4:pg-275" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7.10947929815 =The average value of dc current in A \n", "88.8684912269 =The average value of converter voltage in V \n", "0.745818730364 =The overlap angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_4\n", "import math\n", "Vs=200.0;#Supply voltage in V\n", "Rd=12.5;#Resistance in ohm\n", "Xc=0.5;#Reactance in ohm\n", "pf=0.5;#Powerfactor\n", "Vdia=0.9*Vs*pf;\n", "Id=Vdia/(Rd+(Xc/math.pi));\n", "print Id,\"=The average value of dc current in A \"\n", "Vd=Id*Rd;\n", "print Vd,\"=The average value of converter voltage in V \"\n", "Vc=Vdia-Vd;\n", "X=pf-((Vc*2.0)/Vs);\n", "c=math.acos(X);\n", "d=(c*180.0)/math.pi;\n", "u=d-60;\n", "print u,\"=The overlap angle in deg \"\n", "#Result vary due to error in calculation of overlap angle in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_5:pg-276" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "56.5714285714 =The average value of load current in A \n", "64.6230664748 =The overlap angle u in deg \n", "35.1257218105 =The overlap angle u1 in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_5\n", "import math\n", "f=50.0;#Frequency in Hz\n", "Rd=2.5;#Resistance in ohm\n", "Lc=0.005;#Inductance in mH\n", "Vs=220.0;#Supply voltage in V\n", "pf=1;#Powerfactor\n", "pf1=0.866;#Powerfactor\n", "Xc=2*math.pi*f*Lc;\n", "Z=Rd+((2*Xc)/math.pi);\n", "Vdia=0.9*Vs*pf;\n", "Id=Vdia/Z;\n", "print Id,\"=The average value of load current in A \"\n", "Vd=Id*Rd;\n", "Vdc=Vdia-Vd;\n", "a=(1-((Vdc*2)/Vdia));\n", "b=math.acos(a);\n", "u=(b*180.0)/math.pi;\n", "print u,\"=The overlap angle u in deg \"\n", "Vdia1=0.9*Vs*pf1;\n", "Id1=Vdia1/Z;\n", "Vd1=Id1*Rd;\n", "Vdc1=Vdia1-Vd1;\n", "V=pf1-((Vdc1*2)/Vs);\n", "c=math.acos(V);\n", "d=(c*180.0)/math.pi;\n", "u1=d-30;\n", "print u1,\"=The overlap angle u1 in deg \"\n", "#Result vary due to error in calculation of overlap angle in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_6:pg-277" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.57960292596 =The overlap angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_6\n", "import math\n", "Vs=220.0;#Supply voltage in V\n", "f=50.0;#Frequency in Hz\n", "Eb=-200.0;#Back emf in V\n", "Rd=3.0;#Resistance in ohm\n", "Vdc=200.0;# voltage in V\n", "Xc=0.314;#Reactance in ohm\n", "L=0.001;#Inductance in mH\n", "pf=-0.5;#Powerfactor\n", "Vdia=0.9*Vs*pf;\n", "Id=(Vdia-Eb)/(Rd+((2*Xc)/math.pi));\n", "Vd=Id*Rd+Eb;\n", "a=-pf+((Vd*2)/Vdc);\n", "b=math.acos(a);\n", "c=(b*180.0)/math.pi;\n", "u=c-120;\n", "print u,\"=The overlap angle in deg \"\n", "#Result vary due to error in calculation of overlap angle in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_7:pg-278" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8.86857843179 =the overlap angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_7\n", "import math\n", "Id=50.0;#Current in A\n", "Vs=220.0;#Supply voltage in V\n", "Vdio=257.4;# voltage in V\n", "f=50.0;#Frequency in Hz\n", "L=0.0015;#Inductance in mH\n", "pf=0.866;#Powerfactor \n", "Xc=2*math.pi*f*L;\n", "Vdia=1.17*Vs*pf;\n", "Vd=Vdia-((3*Id*Xc)/(2*math.pi));\n", "Vc=Vdia-Vd;\n", "a=pf-((Vc*2)/Vdio);\n", "b=math.acos(a);\n", "c=(b*180.0)/math.pi;\n", "u=c-30;\n", "print u,\"=the overlap angle in deg \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_8:pg-280" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "64.9 =load current in A \n", "20.6382 =Average value of load current in A \n", "35.7464109768 =Rms value of load current in A \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_8\n", "import math\n", "Rd=2.5;#Resistance in ohm\n", "V=250;# voltage in V\n", "f=50;#Frequency in Hz\n", "Vs=150;#Supply voltage in V\n", "pf=-0.5;#Powerfactor\n", "Eb=-250;#Back emf in V\n", "Xc=0.636;#Reactance in ohm\n", "Vdia=1.17*Vs*pf;\n", "Id=(Vdia-Eb)/Rd;\n", "print Id,\"=load current in A \"\n", "Ith=(Id*Xc)/2;\t\n", "print Ith,\"=Average value of load current in A \"\n", "Irms=math.sqrt(3)*Ith;\n", "print Irms,\"=Rms value of load current in A \"\n", "#Result vary due to error in calculation of current in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_9:pg-280" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "26.8325105187 =The overlap angle in deg \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_9\n", "import math\n", "L=0.003;#Inductance in mH\n", "Id=64.9;#Current in A\n", "V=162.25;#voltage in V\n", "Vs=150;#Supply voltage in V\n", "f=50;#Frequency in Hz\n", "Rd=2.5;#Resistance in ohm\n", "Eb=-250;#Back emf in V\n", "pf=-0.5;#Powerfactor\n", "Xc=2*math.pi*f*L;\n", "Vdia=(Id*(Rd+((3*Xc)/(2*math.pi))))+Eb;\n", "a=Vdia/(1.17*Vs);\n", "b=math.acos(a);\n", "c=(b*180)/math.pi;\n", "Alpha=-0.3338;#angle in radian\n", "X=(3*Id*Xc)/(math.pi*Vs);\n", "d=math.acos(Alpha-X);\n", "e=(d*180)/math.pi;\n", "u=e-c;\n", "print u,\"=The overlap angle in deg \"\n", "#Result vary due to error in calculation of overlap angle in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_10:pg-280" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "139.752 =Average value of load voltage in V \n", "9.3168 =Average value of load current in A \n", "1302.0414336 =Power dissipation in W \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_10\n", "import math\n", "Vs=400;#Supply voltage in V\n", "f=50;#Frequency in Hz\n", "Rd=15;#Resistance in ohm\n", "pf=0.2588;#Powerfactor\n", "Vdia=1.35*Vs*pf;\n", "print Vdia,\"=Average value of load voltage in V \"\n", "Id=Vdia/Rd;\n", "print Id,\"=Average value of load current in A \"\n", "P=Vdia*Id;\t\n", "print P,\"=Power dissipation in W \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_11:pg-281" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.24450211813 =The power factor \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_11\n", "import math\n", "Alpha=75;#angle in degree\n", "a=math.cos(Alpha);\n", "b=a/3.6;\n", "pf=(3*b)/math.pi;\n", "print pf,\"=The power factor \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_12:pg-281" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20.7850558657 =The max current in A \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_12\n", "import math\n", "Vs=400;#Supply voltage in V\n", "Id=9.317;#Current in A\n", "pf=0.2588;#Powerfactor\n", "Vth=math.sqrt(2)*Vs;\n", "Ia=math.sqrt(2/3.0)*Id;\n", "Ith=Ia/math.sqrt(2);\n", "Imax=Ith/pf;\n", "print Imax,\"=The max current in A \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_14:pg-282" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0 =Ripple factor \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_14\n", "import math\n", "t0=1.5;#Time in ms\n", "t1=3;#Time in ms\n", "Vs=200.0;#Supply voltage in V\n", "gama=t0/t1;\n", "Vl=gama*Vs;\n", "Vrms=math.sqrt(gama)*Vs;\n", "Rf=(math.sqrt(1-gama))/(math.sqrt(gama));\n", "print Rf,\"=Ripple factor \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_14:pg-283" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0 =Ripple factor \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_14\n", "import math\n", "t0=1.5;#Time in ms\n", "t1=3;#Time in ms\n", "Vs=200.0;#Supply voltage in V\n", "gama=t0/t1;\n", "Vl=gama*Vs;\n", "Vrms=math.sqrt(gama)*Vs;\n", "Rf=(math.sqrt(1-gama))/(math.sqrt(gama));\n", "print Rf,\"=Ripple factor \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3_15:pg-284" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "23.032 =Maximum current in A \n", "23.032 =Minimum current in A \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex3_15\n", "import math\n", "R=1.5;#Resistance in ohm\n", "L=3;#Inductance in H\n", "Ton=2;#Time in ms\n", "T=6;#Time in ms\n", "Vs=150.0;#Supply voltage in V\n", "t=Ton/T;\n", "tON=L/R;\n", "Vavg=T*Vs;\n", "Iavg=Vavg/R;\n", "P=(Iavg)**2*R;\n", "Io=23.032;\n", "I=1-math.exp(-t);\n", "I1=Io*math.exp(-t);\n", "Imax=(Vs/R)*I+I1;\n", "print Imax,\"=Maximum current in A \"\n", "Imin=Imax*math.exp(-2*t);\n", "print Imin,\"=Minimum current in A \"\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }