{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter01: Characterstics of Electric Motors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_1:pg-83" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "615.2 =New speed in rpm \n" ] } ], "source": [ "#Electric Drives concepts and application by V.Subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_1\n", "import math\n", "V=500.0;# voltage v\n", "N1=900.0;# speed in rpm\n", "Ia1=45.0;#armature current in A\n", "Ia2=21.0;#armature current in A\n", "R=8;# resistance in ohm\n", "Ra=1;#armature resistance in ohm\n", "Eb1=V-(Ia1*Ra);\n", "Eb2=V-(9*Ia2);\n", "N2=N1*(Eb2/Eb1);\n", "print round(N2,1),\"=New speed in rpm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_2:pg-83" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6.93044450468 =The initial breaking torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and application by V.Subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_2\n", "import math\n", "V1=400.0;#supply voltage is V\n", "I1=70.0;#Current in A\n", "N1=78.5;#speed in rad/sec\n", "R1=0.3;#resistance in ohm\n", "I2=90.0;#current in A\n", "N2=31.4;#Speed in rpm\n", "Eb1=V1-(I1*R1);\n", "T1=(Eb1*I1)/N1;\n", "V2=V1+Eb1;\n", "R2=(V2/I2)-R1;\n", "T2=(Eb1*I2)/N1;\n", "Eb2=(Eb1*N2)/N1;\n", "I=(V1+Eb2)/R2;\n", "T=(Eb2+I)/N2;\n", "print T,\"=The initial breaking torque in Nm \"\n", "#Calculation error in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_3:pg-84" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7.68541150479 =External resistance required in ohm\n" ] } ], "source": [ "#Electric drives concepts and application by V.Subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_3\n", "import math\n", "V=250.0;#supply voltage V\n", "Ia1=40.0;#Armature current in A\n", "R1=0.6;#Resistance in ohm\n", "N1=2.828;#speed in rpm\n", "N2=2;#speed in rpm\n", "Ia2=((Ia1)**2/N1)**(1.0/2);\n", "Eb1=V-(Ia1*R1);\n", "Eb=(Ia1/Ia2)*N2;\n", "Eb2=Eb1/Eb;\n", "R2=(V-Eb2)/Ia2;\n", "print R2,\"=External resistance required in ohm\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_4a:pg-85" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9.09764027943 =the effeciency of the motor in % \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_4a\n", "import math\n", "V=440.0;# voltage in V\n", "Ia=80.0;# Current in A\n", "Na=1200.0;#Speed in rpm\n", "Na1=125.6;# Speed in rad/sec\n", "R1=0.55;# Resistance in ohm\n", "R2=110.0;# Resistance in ohm\n", "N0=600.0;# Speed in rpm\n", "N01=62.8;#Speed in rpm\n", "Nf=300.0;# Speed in rpm\n", "Nf1=31.4;# Speed in rpm\n", "Rsh=1.256;# Resistance in ohm\n", "E=V-(Ia*R1);\n", "K=E/Na1; \n", "E1=K*N01;\n", "Tf=K*Ia;\n", "E2=E1*(Nf/N0);\n", "V2=E2+(Ia*R1);\n", "Is=(V2/Rsh)+Ia;\n", "Il=Is+(V/R2);\n", "Pi=V*Il;\n", "Po=Tf*Nf1;\n", "Eff=(Po/Pi)*100;\n", "print Eff,\"=the effeciency of the motor in % \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_4b:pg-86" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "999.450641681 =No load speed in rpm \n", "230.176511417 =Full load speed in rpm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_4b\n", "import math\n", "V=440.0;#voltage in V\n", "K=3.153;\n", "Ia=80.0;# Current in A\n", "Rs=2.0;#Resistance in ohm\n", "Rsh=1.5;#Resistance in ohm\n", "R1=0.55;#Resistance in ohm\n", "Alpha=(Rs/Rsh);\n", "Vo=(V/Alpha);\n", "No=(Vo/K);\n", "N=((60.0*No)/(2*math.pi));\n", "print N,\"=No load speed in rpm \"\n", "V2=((V/Rs)-Ia)/((1/Rs)+(1/Rsh));\n", "E2=V2-(Ia*R1);\n", "N2=N*(E2/Vo);\n", "print N2,\"=Full load speed in rpm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_5a:pg-87" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "898.56 =The speed of the motor in rpm \n", "99.4718394324 =The torque developed in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_5a\n", "import math\n", "V=250;# voltage in V\n", "Ra=0.4;# Resistance in ohm\n", "Na=480;#Speed in rpm\n", "Va=125;# voltage in V\n", "Ia=40;#Current in A\n", "Vi=V-(Ra*Ia);\n", "N=Na*(Vi/Va);\n", "print N,\"=The speed of the motor in rpm \"\n", "N1=(2*math.pi*N)/60;\n", "T=(Vi*Ia)/N1;\n", "print T,\"=The torque developed in Nm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_5b:pg-87" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.725 =The value of resistance in ohm\n", "99.4718394324 =The torque developed in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_5b\n", "import math\n", "V=250.0;# voltage in V\n", "I=40.0;#Current in A\n", "Ra=0.4;#Resistance in ohm\n", "Eb=125.0;# voltage in V\n", "Na=480.0;#Speed in rpm\n", "Re=(V-Eb-(I*Ra))/I;\n", "print Re,\"=The value of resistance in ohm\"\n", "T=(Eb*I)*60/(2*Na*math.pi);\n", "print T,\"=The torque developed in Nm \"\n", "#Result vary due to error in calculation of torque in the textbook\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_6:pg-87" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "480.763116057 =The speed of motor in rpm \n", "3.82460039115 =The torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_6\n", "import math\n", "V=250.0;# voltage in V\n", "I=40.0;#Current in A\n", "R1=2.725;# Resistance in ohm\n", "R2=3.5;# Resistance in ohm\n", "Rf=0.15;# Resistance in ohm\n", "N=480.0;#Speed in rpm\n", "V1=V-I*(R1+Rf);\n", "Ir=(V1/R2);\n", "Ia=I-Ir;\n", "Eb=V1-(Ia*Rf);\n", "Nm=N*(V1/Eb);\n", "print Nm,\"=The speed of motor in rpm \"\n", "#Result vary due to 125V is used instead of 135V in the textbook\n", "T=(Eb*Ia)/(2*math.pi*Nm/60);\n", "print T,\"=The torque in Nm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_7:pg-87" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "242.984096386 =The speed of the motor in rpm \n", "99.4718394324 =The torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_7\n", "import math\n", "V=250;# voltage in V\n", "I=40;#Current in A\n", "Ro=0.4;# Resistance in ohm\n", "R1=2.725;# Resistance in ohm\n", "R2=3.5;# Resistance in ohm\n", "Eb=125;# voltage in V\n", "Na=480;#Speed in rpm\n", "Na1=50.24;#Speed in rad/sec\n", "R=((1/R1)+(1/R2));\n", "Vm=(V-(I*R1))/(R*R1);\n", "Em=Vm-(I*Ro);\n", "N=(Em/Eb)*Na;\n", "print N,\"=The speed of the motor in rpm \"\n", "N1=(2*math.pi*N)/60;\n", "Il=(V-Vm)/R1;\n", "Po=Em*I;\n", "T=Po/N1;\n", "print T,\"=The torque in Nm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_8:pg-89" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-84.7104 =The speed in rpm \n", "164.128535064 =The torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_8\n", "import math\n", "V=250.0;# voltage in V\n", "I=40.0;#Current in A\n", "R1=0.91;# Resistance in ohm\n", "Rs=0.95;# Resistance in ohm\n", "Eb=125.0;# voltage in V\n", "N1=480.0;#Speed in rpm\n", "Vm=Rs*I;\n", "Ia=I-((V-Vm)/2);\n", "Em=-Vm-(Ia*R1);\n", "N=-(Em/Eb)*N1;\n", "print N,\"=The speed in rpm \"\n", "N2=(2*math.pi*N)/60;\n", "T=(Em*Ia)/N2;\n", "print T,\"=The torque in Nm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_10:pg-90" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.56 =Direct on line starting torque in Nm \n", "0.853333333333 =By Star/delta starter\n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_10\n", "import math\n", "Sf=0.04;#Full load slip in %\n", "Ist=1.0;#Starting current in A\n", "If1=Ist/8.0;\n", "T=(8.0)**2*Sf;\n", "print T,\"=Direct on line starting torque in Nm \"\n", "S=T/3;\n", "print S,\"=By Star/delta starter\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_11:pg-90" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.28 =Torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_11\n", "import math\n", "Sf1=0.04;#Full load slip in %\n", "x=(8.0*3)**(1.0/2);\n", "Tst=(x)**2*Sf1;\n", "S=Sf1/2.0;\n", "T=(8)**2*S;\n", "print T,\"=Torque in Nm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_12:pg-91" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.16 =Torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_12\n", "import math\n", "Sf=0.04;#Full load slip in %\n", "I=5;#Current in A\n", "Tst=(I)**2*Sf;\n", "x=((2.0/I)*100)**(1.0/2);\n", "T=(2.0/I)**2*(I)**2*Sf;\n", "print T,\"=Torque in Nm \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex1_13:pg-92" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(6.53+2.08j) =The impedence of motor \n", "(1.0675+2.08j) =The impedence at plugging \n", "77019.1732775 =The braking torque in Nm \n" ] } ], "source": [ "#Electric Drives:concepts and applications by V.subrahmanyam\n", "#Publisher:Tata McGraw-Hill \n", "#Edition:Second \n", "#Ex1_13\n", "import math\n", "V=500.0;#Voltage in V\n", "r1=0.13;#resistance in ohm\n", "r2=0.32;#resistance in ohm\n", "x1=0.6j;#reactance in ohm\n", "x2=1.48j;#reactance in ohm\n", "rm=250.0;#resistance in ohm\n", "xm=20;#reactance in ohm\n", "S=0.05;#Full load slip in %\n", "Z2=r1+x1+(r2/S)+x2;\n", "print Z2,\"=The impedence of motor \"\n", "I2=(V/(math.sqrt(3.0)*(6.853)));\n", "T1=3*(I2)**2*(r2/S);\n", "Sb=2-S;\n", "Sf=2-S+r1;\n", "Zb=r1+x1+(Sb/Sf)+x2;\n", "print Zb,\"=The impedence at plugging \"\n", "I=(V/(math.sqrt(3.0)*(2.336)));\n", "T2=3*(I)**2.0*(Sb/Sf);\n", "T=T1+T2;\n", "print T,\"=The braking torque in Nm \"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }