{ "metadata": { "name": "", "signature": "sha256:542e92bd62de523a8cd9abe5adfd1eec8e64f2ebaa6b2ac5b00d208e9be115e3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 : Analysis Methods" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page No : 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#From figure 5.13(a)\n", "\n", "#Applying KVL equation to the loop \n", "I = (20.+10)/(3+6)\n", "\n", "# Calculation and Results\n", "#As current will not flow in upper 3 ohm resistor so Thevenin voltage is equal to either of the two parallel branches\n", "V1 = 20.-I*3\n", "print \"Thevenin voltage = %dV\"%(V1)\n", "\n", "# Left 3 ohm and 6 ohm resistor are in parallel and their equivalent is in series with 3 ohm\n", "R1 = 3+(3.*6)/(3+6)\n", "print \"Thevenin resistance = %dohm\"%(R1)\n", "\n", "#Now to find Norton's equivalent\n", "I1 = V1/R1\n", "print \" Norton current = %dA\"%(I1)\n", "#The value of resistance in Norton equivalent will not change but will come in parallel with current source\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thevenin voltage = 10V\n", "Thevenin resistance = 5ohm\n", " Norton current = 2A\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }