{ "metadata": { "name": "", "signature": "sha256:b50fbda5069b9b2f766870fdc83a2feaf1f182dfb36d43f632160c82ec149201" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 : Frequency Response Filters and Resonance" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2 Page No : 260" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 13.2\")\n", "\n", "# Given\n", "#|Hv| = 1/math.sqrt(2) (1)\")\n", "#resistance R1 = 5kohm\")\n", "R1 = 5000;\n", "#Hv(w) = 1/1+%i*(w/wx) (2)\")\n", "#wx = 1/(R1*C2)\n", "#On solving we get\n", "#wx = 2*10**-4/C2 (3)\")\n", "\n", "#a)\")\n", "C2 = 10*10**-9;\n", "#Taking modulus of (2)\n", "#|Hv(w)| = 1/math.sqrt(1+(w/wx)**2)\")\n", "#Equating (1) and (2)\n", "wx = 2*10**-4/C2;\n", "fx = (wx/(2*math.pi))*10**-3\n", "print \"Frequencya) is %3.2fkHz\"%(fx)\n", "\n", "#b)\")\n", "C2b = 1*10**-9;\n", "#As frequency is inversely proportional to C2 (from (3))\n", "fx1 = (C2/C2b)*fx\n", "print \"Frequencyb) is %3.2fkHz\"%(fx1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequencya) is 3.18kHz\n", "Frequencyb) is 31.83kHz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.7 Page No : 265" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given\n", "#From the above transfer function\n", "#Comparing the denominator with s**2+a*s+b with w = math.sqrt(b)\n", "a = 300;b = 10**6;\n", "#Therefore center frequency is\n", "w0 = math.sqrt(10**6)\n", "#The lower and upper frequencies are\n", "wl = math.sqrt(a**2/4+b)-a/2\n", "wh = math.sqrt(a**2/4+b)+a/2\n", "B = wh-wl #It can be inferred that B = a\n", "Q = math.sqrt(b)/a\n", "print \"Center frequency = %drad/s\"%(w0);\n", "print \"Low power frequency = %3.2frad/sHigh power frequency = %3.2frad/s\"%(wl,wh);\n", "print \"Bandwidth = %drad/sQuality factor = %3.2f\"%(B,Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Center frequency = 1000rad/s\n", "Low power frequency = 861.19rad/sHigh power frequency = 1161.19rad/s\n", "Bandwidth = 300rad/sQuality factor = 3.33\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.8 Page No : 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Given\n", "#From the above transfer function\n", "#Comparing the denominator with s**2+a*s+b with w = math.sqrt(b)\n", "a = 30;\n", "b = 10**6;\n", "#Therefore center frequency is\n", "w0 = math.sqrt(10**6)\n", "#The lower and upper frequencies are\n", "wl = math.sqrt(a**2/4+b)-a/2\n", "wh = math.sqrt(a**2/4+b)+a/2\n", "B = wh-wl\n", "Q = math.sqrt(b)/a\n", "print \"Center frequency = %drad/s\"%(w0);\n", "print \"Low power frequency = %3.2frad/sHigh power frequency = %3.2frad/s\"%(wl,wh);\n", "print \"Bandwidth = %drad/sQuality factor = %3.2f\"%(B,Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Center frequency = 1000rad/s\n", "Low power frequency = 985.11rad/sHigh power frequency = 1015.11rad/s\n", "Bandwidth = 30rad/sQuality factor = 33.33\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }