{ "metadata": { "name": "", "signature": "sha256:83ee6d1c752a11776a3f51dfb2cc636a1d14090445de8f66b53483fb5dea2c8a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 : AC Power" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1 Page No : 199" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "\n", "import math \n", "from numpy import arange,ones\n", "from matplotlib.pyplot import plot,xlabel,ylabel,suptitle, subplot\n", "\n", "#Problem 11.1\")\n", "\n", "# Given\n", "#resistance = 1000ohm\")\n", "t = arange(0,1+0.5,0.5)\n", "i = ones(len(t))\n", "i1 = -i;\n", "\n", "subplot(2,1,1)\n", "plot(t,i)\n", "plot(t+1,i1)\n", "plot(t+2,i)\n", "plot(t+3,i1)\n", "suptitle(\"i vs t\")\n", "xlabel('t in ms')\n", "ylabel('i in mA')\n", "\n", "i = 1.*10**-3*i\n", "R = 1000;\n", "#p = i**2*R\n", "p = i**2*R;\n", "subplot(2,1,2)\n", "plot(t,p)\n", "suptitle(\"p vs t\")\n", "xlabel('t in ms')\n", "ylabel('p in mW')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[ 0. 0.5 1. ]\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEhCAYAAACgIq2RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG0FJREFUeJzt3X20XGV96PHvaUJWUYpIqVEIeCAgSqsoKKSAZRDpMtwW\nK14V2mpVltdqLV5r71K0d3G44gpY21KlV/CFFtRK8f1QsUglo17kRQyBIAmSALcQNHpREAyFQOb+\n8dvDzJkzL3ventkz8/2stVf2zOw985uHML88z3728wNJkiRJkiRJkiRJkiRJkiRJUoMlow5AUs9O\nB14ArBt1IJKk6VEG5kcdhCSpWI4BHgXuzP68B3h6wzGrgYcbznkk278W+M/s8Q1N3vsJ4HFgO/C2\nQQYuSRpfxwAV4C3Z49tp3lPZnh0LcAVwJXAAkbCq9mly3tXAVwcSqSRpYhxD9Eyq3gXc1+S4fyOS\nDsAvgeOAXYgez+3AOcCuTc67GofdNKZ+ZdQBSFNkhugJNVoDHAu8PHu8FtgB7AV8BngVsDVFgJKk\n8Vcddjste7wJ+EqLYx8GtgCXZ49/Azgk298X2NnknK8Skw4kSXpSswkHT2tx7DyRqFZlj59PJKRH\nsu2CJue8PHttO/CnA4takjTWjiFmq0lq4DUfabiaXeORJEmSJEmSJEmSJEmSJEmSJEmSJEkDcBGw\nDdjQ5piPAHcANwMvShGUJGmyvZRIKK2Sz4nUlqs/ErguRVCSpMk3S+vkcwHwurrHm4Dlww5IktTa\nNKzttg+xmnDVvcCKEcUiSWI6kg9EEa96LvYoSSO0dNQBJLCVKMZVtYKmVSFXVqKWlySpC1uAA7s9\naRp6PvPAG7L9VcADxOy4BluoVCqF384888yRx2CcxmmcxljdgJW9/DBPQs/nc8CxRL37e4AzgV2y\n1y4kZrqdCGwGfgm8aQQxSpLqTELyOTXHMe8YehSSpNymYdhtopRKpVGHkItxDpZxDtY4xDkOMfaj\ncRbYNKtk45eSpJxmZmagh1xiz0eSlJzJR5KUnMlHkpScyUeSlJzJR5KUnMlHkpScyUeSlJzJR5KU\nnMlHkpScyUeSlJzJR5KUnMlHkpScyUeSlJzJR5KUnMlHkpTcpCSfVwCbgDuA9zR5vQQ8CNyUbX+V\nLDJJ0iKTUEZ7CXA+8HJgK/A9YB7Y2HDct4CT0oYmSWpmEno+RwCbgbuBHcClwCubHGfVVkkqiElI\nPvsA99Q9vjd7rl4FOAq4GbgCOCRNaJKkZiZh2K2S45h1wL7AdmA18BXgOY0Hzc3NPblfKpUolUoD\nCVCSJkW5XKZcLvf9PpMwFLUKmCMmHQCcAewEzm1zzl3A4cDP6p6rVCp58pgkqWpmZgZ6yCWTMOx2\nI3AQMAssA15HTDiot5xa4xyR7f8MSdJITMKw2+PAO4AriZlvnyJmur01e/1C4L8Cb8uO3Q6ckj5M\nSVLVJAy7DYrDbpLUpWkedpMkjRmTjyQpOZOPJCk5k48kKblRJp+XAv8wws+XJI1I6qnWhwGnAq8l\nbvT8YuLPlyQVQIrkczCRcF4H/BT4PDEtr5TgsyVJBZTiPp+dwL8SN4L+R/bcXcD+CT67G97nI0ld\nKvJ9PicDjwDfBi4AjsebWyVpqqVMArsRdXZOBY4DLgG+DHwjYQzt2PORpC712vMZVQ9kT2K9tVOA\nl40ohkYmH0nq0rgkn6cTdXWW1n329xPH0IrJR5K61GvySTnV+gPAG4E7iUkIVccljEGSVAApez4/\nBH4LeCzhZ3bDno8kdanIs92qfkAMu0mSplzKns9LgK8CtwKPZs9VgJMSxtCOPR9J6tI4XPO5BDiH\nSD7Vaz6D+rV/BXAeUcn0k8C5TY75CLCaqGT6RuCmAX22JKlLKZPPw0QCGLQlwPnAy4GtwPeAeaKU\ndtWJwIHAQcCRwMeAVUOIRZKUQ8rk8x1gDZEYHq17fl2f73sEsBm4O3t8KXEza33yOQm4ONu/HtgD\nWA5s6/OzJUk9SJl8DiOG2Rp7HP1Otd4HuKfu8b1E76bTMSsw+UjSSKRMPqUhvW/e60aNF8QWnTc3\nN/fkfqlUolQq9RyUJE2icrlMuVzu+30mYYHPVcAcMekA4AxiQkP9pIMLgDIxJAewCTiWhT0fZ7tJ\nUpfG4T6fYbmRmEgwCywj6gbNNxwzD7wh218FPIBDbpI0MqkrmQ7D40StoCuJmW+fIiYbvDV7/ULg\nCmLG22bgl8Cb0ocpSapKPex2NNFDqSa9CnH/TxE47CZJXRqHm0w/AxwArAeeqHu+KMlHkpRIyp7P\nRuAQBreqwaDZ85GkLo3DhINbgWcl/DxJUkGlHHb7DeA24AaKubCoJCmRlMlnLuFnSZIKbBJuMh0U\nr/lIUpeKfM3nmuzPh4GHGrZfJPh8SVLB2POpsecjSV0qcs9HkqQFTD6SpORMPpKk5Ew+kqTknO0m\nSUrO2W41znaTpC45202SNDZMPpKk5Ma9kumewL8AzwbuBl5LlMhudDdxfekJYAdwRJrwJEnNjHvP\n573AVcBzgG9mj5upACXgRZh4JGnkxj35nARcnO1fDPxBm2OdXCFJBTHuyWc5sC3b35Y9bqYC/Dtw\nI/CWBHFJktoYh2s+VwHPbPL8+xseV2hdovto4EdEQburgE3AdwYVoCSpO+OQfE5o89o2IjH9mCjR\n/ZMWx/0o+/OnwJeJ6z6Lks/c3NyT+6VSiVKp1HWwkjTJyuUy5XK57/cZ9+sgHwLuB84lJhvsweJJ\nB08BlhArKjwV+AZwVvZnPW8ylaQu9XqT6bgnnz2By4D9WDjVem/gE8B/AQ4AvpQdvxT4LLCmyXuZ\nfCSpS9OafAbJ5CNJXXJ5HUnS2DD5SJKSM/lIkpIz+UiSkjP5SJKSM/lIkpIz+UiSkjP5SJKSM/lI\nkpIz+UiSkjP5SJKSM/lIkpIz+UiSkjP5SJKSM/lIkpIz+UiSkjP5SJKSG/fk8xrgB8ATwGFtjnsF\nsAm4A3hPgriGplwujzqEXIxzsIxzsMYhznGIsR/jnnw2AK8Cvt3mmCXA+UQCOgQ4FXje8EMbjnH5\nC2mcg2WcgzUOcY5DjP1YOuoA+rQpxzFHAJuBu7PHlwKvBDYOKSZJUgfj3vPJYx/gnrrH92bPSZJG\nZGbUAeRwFfDMJs+/D7g8218LvBtY1+S4VxNDbm/JHv8xcCTw5w3HbQZW9husJE2ZLcCB3Z40DsNu\nJ/R5/lZg37rH+xK9n0ZdN54kabqtBQ5v8dpSIjPPAsuA9YzxhANJ0ui9irie8wjwY+Dr2fN7A1+r\nO241cDsxtHZGygAlSZIkaSTy3HD6kez1m4EXJYqrUac4S8CDwE3Z9lfJIqu5CNhG3G/VShHaslOc\nJUbflhDXI9cSN07fCpze4rhRt2meOEuMtk1/FbieGGa/DVjT4rhRt2WeOEsU4+8nxH2TN1Gb7NVo\n1O1ZWEuIobdZYBeaX/85Ebgi2z8SuC5VcHXyxFkC5pNGtdhLib9grX7Ui9CW0DnOEqNvS4hZnS/M\n9ncjhoqL+PczT5wlRt+mT8n+XEq00zENrxehLaFznCVG35ZVfwF8lubxdNWe03CfT736G053ULvh\ntN5JwMXZ/vXAHsDyRPFV5YkTRj9V/jvAz9u8XoS2hM5xwujbEuK65fps/2HiRui9G44pQpvmiRNG\n36bbsz+XEf+g+1nD60VoS+gcJ4y+LQFWEAnmkzSPp6v2nLbkk+eG02bHrBhyXI3yxFkBjiK6t1cQ\nSwcVTRHaMo8ituUs0Vu7vuH5orXpLM3jLEKb/gqRJLcRw4S3NbxelLbsFGcR2hLg74D/Aexs8XpX\n7TltyaeS87jGrJ73vEHJ83nriLH3Q4GPAl8ZakS9G3Vb5lG0ttwN+ALwTqJn0agobdouziK06U5i\neHAF8DvE8FWjIrRlpziL0Ja/B/yEuN7TrheWuz2nLfnkueG08ZgV2XMp5YnzIWrd9a8T14b2HH5o\nXSlCW+ZRpLbcBfgi8Bma/8gUpU07xVmkNn2QuPXixQ3PF6Utq1rFWYS2PIoYVrsL+BzwMuCShmOK\n1p6FkueG0/qLZqsYzUXIPHEup/avjCOoLZya2iz5JhyMqi2rZmkdZ1Hacob4H/rv2hxThDbNE+eo\n23Qv4poDwK7EyvfHNxxThLbME+eo27LRsTSf7VaE9iy0ZjecvjXbqs7PXr+Z9nWChqlTnH9GTHNd\nD3yX+I+d2ueA+4DHiLHeN1PMtuwUZxHaEmKW084sjuq02tUUr03zxDnqNn0+MVy1HriFuFYBxWvL\nPHGOui0bHUtttlvR2lOSJEmSJEnS8PSzlE2rc19DLOvxBIvHFM/Ijt8E/G7d88uAjxPXUDYCJ3f/\nVSRJ46CfpWzanftc4DnEzVj1yeeQ7LhdsvM2U5shchbwv+qO/fUev5MkaQCGWUyufokYqC0Rs7Hu\nmGbLMTwT2L/NuZtafN4riVlNO7LzNmcxXA+8CTi47tj7e/lCkqTBGOZNpr0uZbMPsU5Up3Mb7c3C\nGzGr51Tn0J8NfB+4DHhG5/AlScMyzOTT61I2g7aUuNP2GqLa6bXAhxsPWrlyZYWI2c3Nzc0t/7aZ\nHgwz+fS6lM29Oc/t9HnVpR3uJ5am+FL2/BdocvPTli1bqFQqbpUKZ5555shjKMpmW9gWtkX7DVjZ\n4be5qWEmnxuBg6gtEfM6FteAmAfekO2vAh4gVnbNcy4s7DXNA6dkx++fnX8DkZkvB47LjjuemC0n\nSRqRYU44eBx4B3AlMXvtU8SEgepSDBcSM91OJLptvyQmBrQ7F+BVxPTsvYhF+KpLe9xGXM+5LTv/\n7UTigZiq/WngPGJl1urnSJJGoAgFioqiknUhp165XKZUKo06jEKwLWpsixrbomZmZgZ6yCUmnxqT\njyR1qdfkM231fCRJBWDykSQlZ/KRJCVn8pEkJWfykSQlZ/KRJCVn8pEkJTfs5FOUYnJV88CGrr6B\nJGnghpl8lgDnE0nkEOBUmheTO5BYh+2/AR/Lce4GYomdbze81yHEGnCHZOf9bxZ+v5OBh6gtuSNJ\nGpFhJp/6YnI7qBWEq9eqmFy7czcBP2zyea2KyQHsBryLqOnjqg6SNGKTXkxu72z/A0QNn+15Apck\nDdcwV7XOO7w1zJ7IDPBC4ACi5zPb7uC5ubkn90ulkgsHSlKDcrlMuVzu+32GmXz6KSa3S45zO31e\n9b1WAS8G7iK+7zOAq4GXNb5BffKRJC3W+A/zs846q6f3mYZichcQQ3b7A8cQ14sWJR5JUjrTUkyu\naqbJc5KkxJz5VWM9H0nqkvV8JEljw+QjSUrO5CNJSs7kI0lKzuQjSUrO5CNJSs7kI0lKzuQjSUou\nRfIpQkG5XYnVEDYCtwJrevsqkqRBGHbyKUJBueqdtx/Kzn8RcHT2uiRpBNoln5uJH+8/Ihbl7EUR\nCsodCTwCfCs7Zgewjs71gSRJQ9Iu+fwxkYB+l1jg8z7gC0RdnCNzvn8RCso1nrMH8PvANzu8lyRp\nSNqtar0h2y7MHu9FlCz470RV0CU53r8IBeXqY1hK9Iz+nugZLWAxOUlqL0UxuSXExfyjsu1Aoifx\nSeDanO9fhIJyW+sefxy4nZjgsIjF5CSpvUEVk2uXfB4iauP8AzGD7M4e3r++KNx9xGSAUxuOmSdq\n91zKwoJy9+c4FxYXlPtn4G+J4bZqQTmAs4HdgdN6+B6SpAFqN9x1KtHjOQzYSfyIX5ttW9uc12g1\ncB61onBrWFhQDmqz2qoF5da1ORcWFpR7kFpBOYD3AW8mCsq9k7hetQL4D2Kq9WPZcR8FLqqL03o+\nktSlXuv55D3hKcTss6OJ5LAM2K/bDys4k48kdanX5NOpjPZTiaGw6nWflxDXXf5Ptx8kSVJVu2x1\nE9G7uRG4BvgucR/OQwniGgV7PpLUpWEMux1KTLXe2WNM48bkI0ldGuY1n6cDbyBmnVWH6SrA6d1+\nWMGZfCSpS8O65gNwBTHD7RaiFzRD/ptHJUlaJE+2WsfilaMnkT0fSerSMIfd/hL4BXA58Gjd8z/r\n9sMKzuQjSV0a5rDbfwJ/Dbyf2uSDCnBAtx8mSRLkq+fzbmAl8GyitML+5E88RSgkB3A4MXPvDmJR\nUUnSCOVJPncQ9XC6VaRCch8j1nQ7KNssJCdJI5Rn2G07sB5YS+2aT56p1vXF4KBWDG5j3TGtCsnt\n3+bcTS0+r1Uhuf8L/Bq1BUYvAf4A+LcO8UuShiRP8vlKtlWvxuedat2sSFxjEbpuCsl1KmC3N3Bd\nk/fawcJSDFuxiqkkjVSe5PNPPb53EQrJdWVmZq7uUSnbJEk15WzrT57k06siFJK7N3t+RcPzTUtC\nVCpzHT5CkqZdifp/mM/M9FZMLs+Eg17VF5JbRkwGmG84Zp5YugcWFpLLcy4sLiR3Snb8/tQKyf2Y\nuE/pyOz41xPDiJKkERlmz+dxokLpldSKwW1kYSG5K4gZb5upFZJrdy4sLCT3NWqF5G4DLsv+fBx4\nO7Whv7cTw4e7Zp/pZANJGqE811sOJlY5mGXhwqIvG1JMo+IKB5LUpWEur3MLcZ/MOuLGTojk8/1u\nP6zgTD6S1KVhJp/vEysETDqTjyR1qdfkk2fCweXAnwHPAvas2yRJ6kmebHU3ze/Z2X+woYycPR9J\n6tIwh92mhclHkro0jJIKxwPfBF5N857Pl7r9MEmSoH3y+R0i+fw+Jh9J0gA57FbjsJskdWmYs936\nMYxicnsCVwE/BL5BlGGAWFbnH4n7ktYDx9ad8yaiDtDNwNeBX+/1C0mS+jfM5DOsYnLvJZLPc4hh\nwfdmz7+FKPP9AuAE4G+y55cBHyaS0aFEcnrHYL6iJKkXw0w+9cXkdlArCFevVTG5dufWn3MxURgO\nIjmtzfZ/SixS+mJinbefA7sRXcPdabGqtSQpjTzJZ1fg3cCXiUkG7wJ+Ncd5rQrF5TmmWTG56rnL\niZWvyf5cnu3fTCSmJcQ9SIcTJRZ2Au8EbiWSzvOAi3LEL0kakjyrWl9ClCT4CNFz+EPg08BrOpw3\nyGJyraqnVuqev4hILDcSpbO/S6xFtzsR+6HAXcBHgTOADza+2dzc3JP7pVKJUqmU7xtI0pQol8uU\ny+W+3ydP8vlN4rpL1dVE2YJOBllMrr4A3DZiaO7HxJI/P8mefwL4i7pzriEmJTyPSDp3Zc9/nhaT\nH+qTjyRpscZ/mJ911vCKya0Dfrvu8SryrWg9rGJy88CfZPt/Qq0w3K7AU7P9E4hrRZuAO4HnEvV/\nqq/lSZ6SpCHJ0/N5MdGLuIcY4toPuJ2YulwhZpc1M6xicucQReNOIyYkvDZ7fjlRJG4n0Xt6ffb8\nT4H3EZMRdmbnvDHH95YkDUme6y2zHV6/u/8wCsGbTCWpSy4s2j+TjyR1qagrHEiStIjJR5KUnMlH\nkpScyUeSlJzJR5KUnMlHkpScyUeSlNy0FJNbBnycWJlhI3Byr19IktS/aSgmB/B+YiHSg7P3+dYA\nvp8kqUfTUEwOYs24NXWfe3+vX0qS1L9hJp+iFJOrDsudTazGfRnwjF6+kCRpMPKsat2rohSTW0rU\nA7qGqMj6LuDD1Eo5PMlicpLU3qCKyQ1zYdFVwBxx3QaieuhO4Ny6Yy4AysSwGsQEg2OJnkurczcB\nJWrF5NYS9XoaXUOUXbgdeAjYLXt+X+DrwG81HO/CopLUpSIuLFqUYnIV4HLguOy144Ef9PfVJEn9\nGHZJhdXAedQKwq1hYTE5qM1qqxaTW9fmXIip1pcRRe3uJorJPUAkqvpicqdRu260H/Bp4vrPT7LP\naSzpbc9HkrpkPZ/+mXwkqUtFHHaTJKkpk48kKTmTjyQpOZOPJCk5k48kKTmTjyQpOZOPJCm5aann\nUzUPbOjhe0iSBmjS6/nU3/h0MrHGm3eSdjCIRQMnhW1RY1vU2Bb9m5Z6PrsRq1mfjas6dOT/WDW2\nRY1tUWNb9G/S6/msyF77AFFGYXtvX0WSNEjTUM/nhcABRM9nNmdMkqQxtYpYZbrqDBZPOrgAOKXu\n8SaiJ9Pu3E3E0BxEPZ9NLT7/GqLOz58CW4G7iN7Uo8DVTY7fTC2Zubm5ubnl2zZTMEuBLdRq8qyn\n+YSDK7L9VcB1Oc79ELVE9F7gnGy/sZ5PuUlMz8bZbpI08VYTlUQ3E70XiHo+b6075vzs9ZuBwzqc\nCzHV+t9ZPNV6lugF3ZY9v2+TeGaJqdiSJEmSNNn6ufF10nRqiz8i2uAW4hraC9KFllyevxcALwEe\nJ+4bm1R52qIE3ATcSvMh7knRqS32Iq5Pryfa4o3JIkvrImJ2cbvLFtPyu9mTJcQw3iywC52vQx1J\n7TrUpMnTFr8NPC3bfwXT3RbV464G/hV4dargEsvTFnsAP6B2K8NeqYJLLE9bzAFrsv29gPsZ7izi\nUXkpkVBaJZ+ufzenbW23Xm98Xc7kydMW1wIPZvvXU/uxmTR52gLgz4EvEDcxT6o8bfGHwBeJ++8A\n/l+q4BLL0xY/AnbP9ncnks/jieJL6TvAz9u83vXv5rQln15vfJ3EH908bVHvNGr/spk0ef9evJLa\nElCVBHGNQp62OIiY+LOWuK/u9WlCSy5PW3wC+E3gPmK46Z1pQiucrn83J7F72E7eH4zGG18n8Yem\nm+90HPBm4OghxTJqedriPGJqf4X4+zGpyzTlaYtdiJmpxwNPIXrI1xHj/ZMkT1u8jxiOKwEriXUn\nDyXWkZw2Xf1uTlvy2crCKdj7Uhs6aHXMiuy5SZOnLSAmGXyCuObTrts9zvK0xeHEsAvE2P5qYihm\nfujRpZWnLe4hhtoeybZvEz+4k5Z88rTFUcAHs/0txM3sBxM9wmkyLb+bPevnxtdJk6ct9iPGvFcl\njSy9PG1R7x+Z3NluedriucS9dkuIns8GYvX5SZOnLf4WODPbX04kpz0TxZfaLPkmHEzy72Zf+rnx\nddJ0aotPEhdQb8q2G1IHmFCevxdVk5x8IF9b/CUx420DcHrS6NLq1BZ7AZcTvxUbiMkYk+hzxHWt\nx4ie75uZ3t9NSZIkSZIkSZIkSZIkSZIkSZI0vp4GvK3N69ekCkSSND1msXy7JCmxS4HtxCoR5zZ5\n/eHszxJRmO3zwEbgMy3er0ws6/K97LiXAF8mSst/IDvmqcDXiCVhNgCv7esbSJLGzrNp3/OproBc\nAh4A9iZWCP4uzVcSX0utgNnpxLIny4n1x+4h1hZ7NfDxunN2RyqQaavnI41CN+UXbiCSSYXotcy2\nOK66mvat2baNWHfrTmJF4VuAE4BzgGOAX3QbtDRMJh+pWB6t23+C1mVPqsftbDhnZ3bOHdTKHp8N\n/M/Bhin1Z9rq+Uij8BDwawk/bwZ4FlF/6bNEKfTTEn6+1JHJRxq++4np1BuImifvaXi90mK/2eNG\nlRbnPB/4a6In9Bjtp3pLkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0vD9f5xfJ0RAW6K/AAAAAElFTkSu\nQmCC\n", "text": [ "" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2 Page No : 204" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "\n", "import math \n", "from numpy import arange,ones\n", "from matplotlib.pyplot import plot,xlabel,ylabel,suptitle, subplot#Problem 11.2\")\n", "\n", "t = arange(0,1.5,0.5)\n", "i = ones(len(t))\n", "i1 = -i;\n", "\n", "subplot(2,2,1)\n", "plot(t,i)\n", "plot(t+1,i1)\n", "suptitle(\"i vs t\")\n", "xlabel('t in ms')\n", "ylabel('i in mA')\n", "#Voltage across capacitor vC = (1/C)*integrate(i*dt)\n", "#On integration\n", "t = arange(0,0.001+0.0005,0.0005)\n", "v = 2000*t\n", "v1 = 2-v;\n", "subplot(2,2,2)\n", "plot(t,v)\n", "plot(t+0.001,v1)\n", "plot(t+0.002,v)\n", "plot(t+0.003,v1)\n", "suptitle(\"v vs t\")\n", "xlabel('t in ms')\n", "ylabel('v in V')\n", "\n", "#Power is p = v*i\n", "t = arange(0,.001+.0005,.0005)\n", "p = 2000*t\n", "p1 = p-2;\n", "subplot(2,2,3)\n", "plot(t,p)\n", "plot(t+0.001,p1)\n", "plot(t+0.002,p)\n", "plot(t+0.003,p1)\n", "suptitle(\"p vs t\")\n", "xlabel('t in ms')\n", "ylabel('p in W')\n", "\n", "#Work is (C*v**2)/2\n", "t = arange(0,.001+.0005,.0005)\n", "w = t**2\n", "w1 = t**2+1*10**-6-(2*10**-3*t);\n", "subplot(2,2,4)\n", "plot(t,w)\n", "plot(t+0.001,w1)\n", "plot(t+0.002,w)\n", "plot(t+0.003,w1)\n", "suptitle(\"w vs t\")\n", "xlabel('t in ms')\n", "ylabel('w in J')\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 12, "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEhCAYAAACz9e1lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYFNW5/z8jmwsgEsIgM+DIMAwQI24IuI7hshlEgxuK\nBuISoiK5jwlXcflJbqKANyaIXsWgETCJbEZERdwug0Q22UUEgRnMMMCgLAIKzHZ+f5yq6Zqerl6r\nuqq738/z1EN39Tmn3ilO96lz3vN9XxAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQYiZ\nRl4bIAgZyLPAcOAEsM1jWwRBEIQ04SCwH/gfrw0RBEEQksPbwHZgL3oAqAE+N86XWMq9CBwAyoz3\nk4FvgX3Av4FaQAHVwBuWeuON8+ZxHLjSlb9EEARB8A13AF+jf/iPAkfQM41SYKal3HnGZ9XAGejB\n6GtgBXAY+AbIAs4EOgRd46Dx+SS3/ghBEATBX5wCVBnHQWAzenZSCQwKKluBHlD+hh6IqoEhaF9K\nLVAOPIoeZKyYg4ssiwmCIGQQh9CDyTZgOfAVerAI5hn0QHHU+LfcON8BmAp8jx6ktgbVk5mLkPac\n5LUBguBDvgCaAKcB7dCDxeEQ5V4EGhvlTgJeAwqBHOD3wGPoQSl4WeyYcf4HLtguCIIg+JQ/oH0u\nB4Hv0APBmzZldxNwzp8O3I9eFjPPVQIPB9X5HXpGIw59QRCEDCIP+MxrIwQhlZFlMUEIjfLaAEEQ\nBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBCG1+Ss6smw4NfQUdADBDcD5yTBK\nEBKkA7AYnQdmEzDGppz0bUFwicvRXyq7weVqYKHxuhc6V4Yg+J126HwvAM3RUZG7BZWRvi0ILpOH\n/eAyFbjZ8n4LkO22QYLgMPOBvkHnpG8LaY3fY4vlEEgjC7ALyPXIFkGIhzz07Hxl0Hnp20Ja4/fB\nBRpm8ZOAgkKq0ByYB/wanVAsGOnbQtrS2GsDIlBO/URLuQSy/VnIV7AjSSYJGcgOoHOMdZoAr6NT\nIM8P8XnEvp2fn6927JB+LbhKPH07Kvw+c1kA/Nx43RudfraiYbEdKKV8dzz++OOe2yB2JX4A+TH2\n2yzgZWAzMDnevr1jh3P92ol7W1OjOPtsRa8b+jPijRG+scvXbfXuzc+GD2fghg3+sss44ujbUeP1\nzOU1dBa+Nuj158fRT3ygU8guRO+q2Y7OCPgLD2wUhFi5FLgN2AisM849DHQ0Xqdk3166FE47DS7r\n/GNe2vISRyuP0rxpc6/N8i9btsDOnXTr25fnDx+m/MQJcpo189qqpOH14HJLFGVGu26FIDjLv4hu\nVSCl+vb06TByJBw50pwrzrqCeZvnMfK8kR5b5WNmzIDbb6dJ48bc8MMf8reKCh7s2DFyvTTB78ti\nKU1RUZHXJoRE7Mo8Er23R4/CG2/A8OG6rZHnjWT6+ume2+XbtmpqYOZMGDFC36927Zi+d6+5FOWd\nXUkkeLdKqqIS/U8TBDuysrLAm++Kb/r1jBkwbx689ZZ+X1lTSc6fclh510o6ndHJW+P8yHvvwWOP\nwapVACil6LJqFX/r1o1eLVt6bFwAN/u2zFwEQYiIuSRm0rRRU2455xZmbpjplUn+JuiGZWVl1c1e\nMgWZuQhCBDJ95lJaCj17Qnk5WP3Ra/es5fo517NjzA5OypLn1DoOHYK8PCgpgdat607/+/hxzl+9\nmvI+fTi5USPv7LMgMxdBEDxj5ky45Zb6AwvA+e3Op0XTFnz81cfeGOZXZs+G/v3rDSwAHU8+mQta\ntODN/fs9Miy5yOAiCIIttbXa32JdEjPJyspyzLGfVgSvIVrIpKUxGVwEQbDF1LZccEHoz4f/eDjz\nt8znaGWo6DYZiKFtoX//kB//rE0bVhial3RHBhdBEGwxH8KzbFbls5tn12leBOq0LTQOLSE8tVGj\nOs1LuiODiyAIIbFqW8IhS2MGFm1LOJzSvPgdGVwEQQjJ66/D5ZdDu3bhyw3uMpjPv/6ckoMlyTHM\nr3z4IeTkwI9+FLbYJS1bUq0Uq44cSZJh3iCDiyAIIQnjl66HaF4MorxhmaJ5EZ2LIEQgE3UudtoW\nOzJe82KjbbHDL5oX0bkIgpBU7LQtdmS85sVG22JHJmheZHARBKEe4bQtdmS85iXaNUQL6b40JoOL\nIAj1iKRtsSNjNS8RtC12pLvmRQYXQRDqEUnbYkfGal4iaFvsSHfNiwwugiDUEa22xY6MWxqLUtti\nRzprXrweXAYCW4BtwIMhPi8CvkWnil0HPJo0ywQhfv4KVACf2XxehE/7dbTaFjsyTvMSpbbFjnTW\nvHg5uDQCnkMPMN3RKY+7hSi3BDjfOP6QNOsEIX5eQffrcPiyX8fhl65HxmleErxh6ax58XJwuRjY\nDuwEqoBZwLUhyqWLFkfIHJYCByOU8V2/Li2Fzz6DwYMTa2fkeSOZsWEGtarWGcP8yqFD8O67MGxY\nQs3cnp3NnH37OF5T45Bh/sDLwSUHKLO832Wcs6KAS4ANwEL0DEcQUh1f9utYtS12ZIzmJUZtix3p\nqnmJbXuDs0TjwVoLdAC+BwYB84EuoQqOHz++7nVRURFFRUUJGyhkJsXFxRQXF7t5Cd/1a1PbMndu\n4m1ZNS9FeUWJN+hXpk+Hxx5zpClzaezmtm0dac+OJPTtOrycmvcGxhNYmx4H1AKTwtQpBS4EDgSd\nl/AvgmvEGSIjD3gL+HEUZT3v10uWwOjRsHFj7FuQQ1FxtILC5wrZ9cAumjdtnniDfmPLFrjqKigr\ni3kLcii+r6khZ/lyNvXsSU6iU8cYSNfwL6uBAvSXsClwM7AgqEw2gT/8YuN18BdQEFIN3/XreLUt\ndqS95iVObYsd6ah58XJwqQZGA+8Bm4HZwBfAKOMAuAG9nXM9MBlIzHMmCMnhNWAZUIj2K96Bj/t1\notoWO9JW85KgtsWOdNO8+G7HSpzIspjgGukeFXnGDJg3D956y9l2K2sqyflTDivvWkmnMzo527iX\nvPee9rWsWuVos0opuqxaxd+6daNXy5aOtm1Hui6LCYLgAxLVttiRtpoXl25YumleZOYiCBFI55lL\nrHlbYiXt8rzEmLclVpKd50VmLoIguIJT2hY70k7z4pC2xY500rzI4CIIGUo8eVtiJe3yvLi1hmgh\nXZbG4hlcLgf+12lDBEFILvHmbYmVtMnzEmfellhJlzwv0Q4uFwD/A3wF/B4dyVgQhBTGaW2LHWmj\neXFY22JHumhewg0uhWgF/Rfovfj/Rjt+ioBn3TZMEAT3cEvbYkfKL425pG2xIx00L+EGly/QM5YB\nwBXoASW9wnYKQgiqqqq8NsF1Es3bEispn+clwbwtsZIOeV7CDS5DgWPAx8BUoC/ps3VZEGzJycnh\nrrvu4qOPPkrpJ8dwJMEvXY+U17wk+Yalg+YlmsGiOTrPyi3AVcBM4A3gfRftihXRuQiO8c033zBv\n3jxmzZrFtm3b2L17N0AfYEWSTXGlX7utbbEjZTUvLmtb7EiG5sVrnctR4O/AYHSY8HXAQ24YIwh+\noE2bNvzqV7+iuLiYTz/91Dz9Z2AH8KR3ljmD29oWO1JW8+KytsWOVNe8RPv4cAZwLjqC8RpgrFsG\nCYKfaN++vflyKvpB6y7vrEmcZGhb7EhZzUuy1xAtpPLSWDSDy++BjWiH/tPAH41DENKWY8eOMWfO\nHIYOHWqe+gnwINDevpb/SZa2xY6U07wkSdtiRyprXqIZXG4G8oEr0T4X8xCEtOTWW2+lY8eOzJkz\nh+GBvbojgEXoVBEpS7K0LXaknOYlSdoWO1JZ8xLN4PI5ellMEDKCAQMGUFJSwrx587j++uu9Nscx\nkq1tsSNllsaSrG2xI1U1L9EMLk+infjvo9O2vkXDjJGCkDaMGDGCFi1aeG2G4yRb22JHymhekqxt\nsSNVNS/RDC4zgYnG8bTlcIKB6FAy29Dr2aGYYny+ATjfoesKgpv8FahAZ5u0I+n92kO/dD1SRvPi\nkxuWDpoXOz6NXCQuGgHb0TvQmqBTvnYLKnM1sNB43Qt7nYESBLcAYl2PuBw9YNgNLknv1yUlSv3g\nB0odP+5YkwmxZvcalTc5T9XU1nhtSmgOHlTq9NOV2r/fa0uUUkp9deyYar10qTpWXe1ou3H07aiJ\nZuayFJiAFpFdYDkS5WL04LITqAJmocWaVoYAM4zXK4FWQLYD1xaEqPjkk0/MlyOM4+dRVFsKHAzz\nedL7tVfaFjt8r3nxSNtiRypqXqLZAnEBenTrHXQ+0R1jOUCZ5f0u9FNcpDK56CUHQXCV2267jZKS\nOr/ARZaPEl3PSWq/NrUtc+e60Xp8WDUvRXlFXpvTkOnT4bHHvLaiHubS2M1t23ptSlREM7gUuXTt\naKdjwZsmQ9YbP3583euioiKKioriMkoQiouLKS4u5r333uPee+9l+fLlAPc7fJmk9eulS+HUU73T\nttgx/MfD+e8l/82RE0do0cxHGyg81rbY8bM2bRi9bRvlJ06QE+cU1OzbycDLQJS90SH9BxrvxwG1\nwCRLmalAMXrJDLTz/0oaPuEZy4eC4Bw33ngjzzzzDDk5ORD7dyUPvbPyxyE+S2q//sUv4Jxz4De/\nSbgpxxny2hCGdhvKyPNGem1KgHHj9Dbkp57y2pIG3L11K51POYUHO3Z0pD2vY4u5xWqgAP0lbIoW\nawZvcV5AYI27N3AIWRITksTXX39N9+7dzbdObsNPWr/2i7bFDt9pXnyibbEjlTQv3shONdXAaOA9\n9M6xl9E5ZEYZn7+I3lFzNdrx/x3wi+SbKWQq5pLUVVddBbFtv38NPRNpg/atPI7eEQlJ7td+0bbY\nMbjLYEa9PYqSgyV0OqOT1+b4Rttih1Xz0qtlS6/NCUu006FL0TMMczBSJO7UdBJZFhNcw82lgwgk\n3K+vugpGjwY/BxoY8+4YWp/SmvFF4702RW+pu/xyuPdery2x5YmvvmLXiRO80KVLwm252bejafRv\nQCe0DsWaidJpB2ciyOAiOMall17KJ598QvPmzcnKyuLo0aOgIyKDfrBK1iNjQv3aq7wtseKbPC8e\n5W2JFSfzvLg5uESzLHYh0B0XxTaC4CdMbYsxqJhfQB9tZ4oOv2lb7LBqXjzdluwzbYsdVs2Ln7cl\nR/OYsAk4021DBEFwDi/ztsSKb/K8+CTcSzSkQjiYaAaXHwKbkcCVgpAyeJ23JVY8z/PiU22LHamQ\n5yWaZbHxbhshCIKzeJ23JVaseV480bx4nLclVqx5XpzSvDhNinS9iIhDX3Ccp59+mmHDhpGbmwsp\ntFvs6FHIzdUP437dghyKf37xT6asnELxyOLkXrimBjp2hPff9+0W5FB88u233LV1K5t79jT9gjHj\nlYjSjNh3FDgSdBx2wxhB8BNHjhyhf2CZZDQpEjTV79oWOzzL8+JzbYsdfs/zEm5wudT4tzl6p4z1\n8Ld6RxAcYPz48Xz++efm2zOBj4GPvLMoOlLIL10Pz/K8pOgN83ueFy/DvwhCKrEX2I/e4OJbSkvh\ns89g8GCvLYmPkeeNZMaGGdSq2uRc8NAhePddGDYsOddzmNuzs5mzbx/Ha2oiF04yMrgIgg3PP/+8\nNQpxG+Au4FzPDIqCVNG22JH0PC8pom2xw895XmRwEQQbysrKmDx5svn2cfSWfN+SStoWO5KueUnR\nJTErfl0ak91ighCBVIkttmSJjiO2cWPqbEEORcXRCgqfK2TXA7to3rS5exfaskUHXysrS5ktyKH4\nvqaGnOXL2dSzZ8x5XmS3mCAIEUk1bYsdVs2Lq6SYtsUOq+bFT6R4N6xDZi6Ca6TCzCVVtS12uK55\nSVFtix3xal7SNVmYIAgOkaraFjtc17ykqLbFDj9qXmRwEYQ0IA380vVwXfOSZjfMj5oXrwaX1sAH\nwJfogJitbMrtBDYC64BVSbFMEJxhILAF2AY8GOLzIuBbdN9eBzwa74VSXdtih2ualxTXttjhN82L\nV4PLQ+jBpQta8fyQTTmF/hKeD1ycFMsEIXEaAc+hB5juwC1AtxDllqD79vnAH+K9WKprW+xwTfOS\n4toWO/ymefFqcBkCzDBezwCuC1M2XTYdCJnDxcB29My7CpgFXBuiXMJ9Ox20LXa4pnlJsyUxK35a\nGvNqcMkGzH1zFdgHBFTAh8Bq4O4k2CUITpADlFne7zLOWVHAJcAGYCF6hhMzqZa3JVYcz/OSYnlb\nYsVPeV7cHFw+AD4LcQwJKqewT6F8KXrJYBBwH3C5K5YKgrNEs394LdAB6AE8C8yP50Lpom2xw3HN\nS5poW+zwk+bFzTvcL8xnFUA7dDDAM4F9NuX2GP9+DbyBXm5YGqrg+PHj614XFRVZY0IJQkwUFxdT\nXFycSBPl6IHDpAN69mLFumf0XeB59EaXA9ZC4fr10aPwxhswYUIipvqfkeeNZMrKKYknEaup0Q6q\n9993xC6/MrJdO+7aupX/6tChgebFgb7te54isIPmIWBiiDKnosP7A5yGjhhgN5dVguAWRDcTsdIY\n2AHkAU2B9TR06GcT8LlcjPbPxNSvp09XavDgJN0EDzlRfUK1eaqN2nFgR2INLVqkVM+ezhjlY2pr\na1XnFSvUim+/jVg2jr4dNV75XCaiZzZfAj8hMLi0B94xXrdDz1LWAyuBt9HblgXB71Sjk4u9hw52\nORv4AhhlHAA3oJeJ1wOTgZj3xaaxX7oejmleMuSG+UXzki4rtcYgLAjO48fwL6Wl0LMnlJen3xbk\nUKzds5br51zPjjE7OCkrjmfiQ4cgLw9KStJuC3Io/n38OOevXk15nz6c3KiRbTkJ/yIIQj3SVdti\nR8KalzTVttjhB82LDC6CkGKks7bFjoQ1LxmyJGbF66UxGVwEIcVId22LHXFrXtJc22KH15oXGVwE\nIcVId22LHXFrXtJc22KH15oXGVwEIYUwtS3Dh3ttiTfEvDRmaltGjHDNJj9jLo15seFJBhdBSCHS\nLW9LrMSc5yXN8rbEipd5XmRwEYQUIgP90vWIWfOS4TfMS81Luqzais5FcA2/6FwyTdtiR9SalwzT\nttgRTvMiOhdBEDJO22JH1JqXDNO22OGV5kUGF0FIATJR22JH1JqXDF8Ss+LF0pgMLoKQAmSqtsWO\niJqXDNW22OGF5kUGF0FIATJV22JHRM1Lhmpb7PBC8yKDiyD4nEzXtthhuzSW4doWO5KteZHBRRB8\nTqZrW+yw1bxkuLbFjmRrXmRwEQSfI37p0NhqXuSGhSTZmpd0WcEVnYvgGl7qXEpKlGhbwtBA8yLa\nlrAEa15E5yIIGYpoW8LTQPMi2pawJFPz4tXgciPwOVADhNtcORDYAmwDHkyCXY5SXFzstQkhEbuS\nQjR9d4rx+Qbg/FAFnNK2OHlv/dSWVfNSXFzs2JKYn/5Gp9tK1tKYV4PLZ8DPgHAS20bAc+gvaXfg\nFqCb+6Y5h19/LMUu14mm714NdAYKgF8CL4RqyClti99+4Jxsy9S8vD/7H45pW/z2NzrZVrI0L14N\nLluALyOUuRjYDuwEqoBZwLXumiUIjhBN3x0CzDBerwRaAdnBDYm2JTKm5uXgisWibYmCZGle/Oxz\nyQHKLO93GecEwe9E03dDlckNbki0LdEx8se30/yLEtG2RInXKZAT5QP08lfwcY2lzGLsfS7XA9Ms\n728DnrUpux1Qcsjh0rGd2Iim774FXGp5/yENvwvSr+Vw+4i1b0eNm/PHfgnWLwc6WN53QD/dhaJz\ngtcSBCeJpu8Gl8k1zlmRfi0IcbIYuNDms8bADiAPaAqsJ8Uc+kLGEk3fvRpYaLzuDaxIlnGCkM78\nDL3efAzYC7xrnG8PvGMpNwjYip66jUumgYKQIKH67ijjMHnO+HwD4bfkC4IgCIIgCKmEI6I0l4hk\nWxHwLbDOOB5Ngk1/BSrQmyjs8OJ+RbKriOTfK9D+j8Voce8mYIxNuVjuWSJ9NlTdgegt/N8DXwPv\no7cwm4wDDgGV6GW5cO2Z73cY574Mai8PqAaOo1cY5kTR1h70SkQocfQnhl3HgXsSaCseuw4C+9D3\n+J/A6QnYZddWPHbtB3ajl00/or4PLla77NqKxa5gfgPUAtZwB+OM8luAtEiW0wi9fJAHNCHyGnYv\nkreGHY1tRcCCJNljcjn6x8XuR9yr+xXJriKSf68A2gHnGa+bo5e0EuljifTZUHV/ZJybCjxknPsj\nMNGo0x09ULxr1CuL0N5Xxvs/on+UuqF/YMz2RgKHo7TNbOsc4Au0bsc6IIwy2moCXIf+oTspzrbi\nsWsggfs/0fI3xmOXXVvx2HWGpa37gZcSsMuurVjssvbPDsAioJTA4NLdKNfEqLedMHIWP+tcrDgm\nSvPINkh+4MOl6KcsO7y6X5HsAm+CRO5Ff3EAjqJ/2NoHlYnlnsXbZ9vZ1L3POFcEvGKcO47+8cFo\n+2tgulHvc6OtUO0tM+ruBAajZ5PXGraY7fVDz4Ii2WZta5PRRpugv/MO9NbrKmA++kl6YJxtxWPX\nIgL3fyUBPVE8dtm1FY9dBy1tNQe+ScAuu7aitSu4f/4J+C/qcy3wmlF+p1H/YmxIlcHFMVGaC0Rj\nmwIuQU+lF6KfALzGq/sVCT/cqzz07Gpl0PlY7lm8fTYHPagFn88zzmWjlxV3oZdkzMGtPXpnWpml\nzmGb9qqMA6P+FqNchaW9bPQP+zqgGDgSRVvmdYPDbLZFL6WYfIueicXTViJ25aB/uM3ZYiJ2BbcV\nr119gEfQM4wJCdpltjWCwIwqWrus/fNa4/1G6tOe+lvqwwrbUyVOgoqyXPATb7T1EiGaa6xFTzO/\nR+8img90cdOoKPHifkXC63vVHJgH/Bo9gwkm2nsWb5+1KxPtdbLCfBYJU1gH+ol4KPpJ/QL0U/Kp\nMbZnZ1c8tpkkYtdF6CXAfzhgV3Bb8do1F/g3WuM0GfhFAnZZ2/qz0Vasdp0CPEx9nWK4PmprV6rM\nXJwSpblBNLYdQf9Ygl4Tb0J9J5kXeHW/IuHlvWoCvA78DT2oBRPLPYu3z+6yOV9qnKtAL2t0QD/R\n7rO0VWmpl4ue2YRqr4lxYLTXzSh3pqW9XQSc+2vRjvVmEdoy/87giIgV6ACdJqejl+3iaSteu641\n/j5rQJ147QrVViL3axd6kOqZoF2h2orWLrNuPnqWvAHd53KBNegZkF9/MxLCz6K0aGzLJjD6X4xe\nr0wGeUTn0E+2iC8Pe7u8uldZwEz0E58dsdyzRPpsqLrnGOemop8s1wNPE9qhfzb6hyJce/+moUP/\nIUt7wyy2DUX/yLeK0Jb5fiX1xdGmg7opWuN2HH2/42krHrsGo3dK9aE+8dhl11Y8dpkOctMJ/2oC\ndtm1FYtdoUTqoRz6TdF9bAdpknDSz6K0SLbdh3ZQrkdPS3snwabX0D8alei11Tvwx/2KZJcX9wrg\nMvS2y/UEtkEPIrF7lkifDVV3EHot3roV+T8t7T1MYCtySYT2zPclxrkvgc1Ge6B/iPajf4y+p/7W\nbLu29hjXP4aeVW2y1FlOYGvtfQm0dX0cdlWiHd7r0D/GxQnYZddWPHYdJbCRZC3w2wTssmsrlv/H\nUJRQf+XgYaP8FmCATR1BEARBEARBEARBEARBEJKPG+E2hMzC6fAqoNeXP6BhOBSwD31xIXqDwjbg\nGcv5K9Dr31XoNXkrI4xrfAn83P5PFAQhVpwOtyFkFk6HVzHrPkVAmWwNhxIq9IW5U2YVAaXyQvTA\nBXAW8GO00tw6uLRG77RpZRzma0FIG7zUuTgdbkPILJwOr3JtiDrWcCihQl/0QusdWqAHGNDbmc06\nX6FnNLVBdg1Az4oOGccHBAYkQUgL/CKizCPxcBtCZuF0eBWzrhleBeqHQ7ELfRF8vjyEHcHEFEZD\nEFIRP4R/STjcRn5+vtqxY4cLpgkpwF1B70cHvR8c9H51FHWD+9h2Agntkob0ayEJ7MCldNpez1wc\nCbexY8cOlFKOHI8//nhC9WtqFP36KR5+OPG2nLTLt23V1qJuvRV1550xtbV8+XIGDBhQ9/7JJ59k\n4sSJ9ewaNWoUr732Wt25wsJC9u7dG7ZuYWEhe/bsQSnF7t27KSwsBB0SI1yoltyg86FCYlgHrGhC\nw/iqX5vHlCmKZpe3Zv2e9b6yy7dtzZlDx5/9jPf27/eXXcZh9G1X8HJwyQJeRquCJ9uUWUBgJ01v\n9Pp0hU1ZXzBhAhw/Dr/7ndeWpAgvvwwbN8KUKTFVu+iii9i2bRs7d+6ksrKS2bNnM2TIkHplhgwZ\nwsyZMwFYsWIFrVq1Ijs7O2zdIUOGMGOGdrnMmDGD664z3ScsQIfSMENfFKD9LHvRoTp6ofv07TR8\nUMqi/gz8PfRus1boPBz9jHO+p7gYzjwlj+KdxV6bkhoUF5OXlUXxoUORy6YZXi6LXQrchg7rvM44\n9zDQ0Xj9InrnzdXoZYnvCEQM9SVLlsBzz8Hq1dDYDwuOfmfjRhg3DpYuhVNjC7jbuHFjnnvuOQYM\nGEBNTQ133nkn3bp148UXX6wrc/XVV7Nw4UI6d+7MaaedxiuvvBK2LsBDDz3ETTfdxMsvv0xeXh5z\n5sxh0qRJoB+C5hj/VgP3EpiN3IvOo3IKus8uMs73RGcrPAO9PDcevXvsIPB74FOj3O8I5NzwLbW1\nuo9ffE0exV8V8+vev/baJP9TXEzeJZdk5OCSLiinWLx4cVz1KiqUyslRatGixNsKRdq1dfiwUoWF\nSr36auJthcDJtvAuFYFjf4MT92PjRqUKCpSa+85c1XpSa1VTW+MLu3zbVkWFUq1aqXfff1+dtmSJ\nOlJV5Q+7LLjZt9MioiX6S+jZxWtrYeBA6NkTnnjCMzNSB6XgttvglFPgpZcil/eYrKws8Oa74mm/\nDubZZ+Gzz+Avf4HC5wqZc8McerTr4bVZ/mXuXHj1VViwgCvWrePRs86if2uvM23Ux82+7bVDPy0Q\nP0uMxOlnEbyluBiKivTrorOKxO8SCcsNK2rVKuOWxmRwSRDTz/Laa+JniQrTzzJ3bsx+FsE7TH/L\nlVfq90WmyK9eAAAgAElEQVR5RRR/VeypTb5HBhchXvbtg+HDYfp0yBEJXGSOHIGbboI//xm6dvXa\nGiEGPv8cWrcO9PMr867k468+plYFBx8QAP3jsHs39NDLhr1btmTj0aMcra722LDk4fXg8lf01mK7\nrIRF6ERBZvKmR5NjVmRqa7XbYORIGCApcyKjFPzqV3DZZfrGCSmFdUkMoH2L9rQ5tQ2fVdh9dTOc\nJUvg8suhUSMATm3UiAtatGDZ4cMeG5Y8vB5cXiFyTKUl6NAw5wN/cN2iKJkwAU6cgPHjvbYkRRA/\nS0oTPLiA+F3CEuKGZdrSmNeDy1L0nv9w+G5Hm/hZYkT8LClNsL/FRPwuYZDBxfPBJRIKuASdi2Mh\nOuy5p5h+lhkzoH1wDGehIeJnSXmC/S0m4nexIcjfYpJpfhe/P3evRcdd+h4YhA6r0SVUwfGW9ami\noiKKgufwDmD1s/TvH7G4kKJ+luLiYoqLi702wzeEWhKD+n4X0btYCPK3mFj9Ln7Tu7iBH5ac8oC3\n0GExIlGKzvp3IOh8UsRmTzwB778PH30ky2FR8dJL8MwzsHJlSi+HZbqI8vrr9XHrrQ0/G/XWKLr/\nsLuEgrFy332Qnw8PPNDgo/9XWkq1UjzZqZMHhjUkk0WU2QT+8IuN18EDS1IQP0uMiJ8lLbDzt5iI\n3yUEdlM9Msvv4vXg8hqwDChEJ2+6AxhlHAA3oLcpr0dHTh7mgY3iZ4mVJPlZFi1aRNeuXSkoKDCD\nSzZgzJgxFBQU0KNHD9atWxex7oEDB+jXrx9dunShf//+HKr/QzAO2AZsQUc1NrkQ3U+3Ac9YzjcD\nZhvnV6DTHoN+SJoCfI4OhGmt4yvs/C0m4ncJwsbfYpJpfpd0wNFgblZqapTq10+pRx5x7RLpRW2t\nUrfeqtSdd7p6merqapWfn69KS0tVZWWl6tGjh9q8eXO9Mu+8844aNGiQUkqpFStWqF69ekWsO3bs\nWDVp0iSllFITJ05UDz74oBncrzv6IacJeil3O4FZ9Sr0zBr0xhNze/29wPPG65vR6ZRB67f+ZdQ/\nCf2AFWpu4Oo9jIYpU5S6++7wZbo820Wt37M+OQb5nTlzlLrmmrBFLl+7Vr23f3+SDAoPLgau9Hrm\n4ntEzxIjSdKzrFq1is6dO5OXl0eTJk0YNmwYb775Zr0yCxYsYMSIEQD06tWLQ4cOsXfv3rB1rXVG\njBjB/Pl1qVmuRc+0q4Cd6MGlF3Am0AI9wADMBMwkMEOAGcbr14G+xut96LwwzdBh+pug88L4jjAr\nPHWI3sVCFDcsU5bGZHAJg/hZYiSJfpby8nI6dAgkc8zNzaW8vDyqMrt377atW1FRQXZ2NgDZ2dlU\nVNTlprPLex98vtw4j/FvmfG6Gh1tojV6Kex9YI9RfhGwNZa/PxlE8reYiN/FggwudcjgYoP4WWIk\nyXoWY5dLRFQUu62UUiHby8rKivo6MXIFcBV68MlBz2guc+NCiRDJ32IifheDCP4Wk0zxu3j9PP5X\n4KfoZQK7rchT0BqX74GRBLJWuoboWWLEAz1LTk4OZWVlde/LysrIzc0NW2bXrl3k5uZSVVXV4HyO\n8QuanZ3N3r17adeuHXv27KFt27YcPHgQGua9z0XPWMqN18HnzTodgd3o79rp6N2OfYB30X0a43Uf\ntB+mHsnQb9kRzZIYiN6lDht9SzBe6l0yScN1OTpmmF30u6vRDlLQ69srbMo56uT6wx+UuuIKpRxI\nHJcZTJum1DnnKPXdd0m7ZFVVlerUqZMqLS1VJ06ciOjQX758eZ1DP1zdsWPHqokTJyqllJowYUIo\nh35T4GxgBwGH/kqjf2bR0KH/gvF6GAGH/hDgA6AR2t/yIfohy9V+HStDhyr1979HV/aXC36pJi+f\n7K5Bfufee5V6+umoij5WUqLG7djhskGRwbssq0khD/vBZSp6l43JFrT2JRjHbnZxsVLt2ilVXu5Y\nk+nNhg1KtWmj1BdfJP3SCxcuVF26dFH5+fnqySefVEopNXXqVDV16tS6Mvfdd5/Kz89X5557rlqz\nZk3YukoptX//ftW3b19VUFCg+vXrpw4ePGj9Aj6MduRvAayxsM2tyNvRM22TZsAcAluR8yyf/RnY\nhN6O/Eeb/p+8mxlETY1SP/iBUrt2RVf+Hxv/oa6bdZ27Rvmd7t2VsvSxcHx04IDqE2VZNyGDB5e3\n0LHFTD5Ef5GDceRGV1QolZOj1HvvOdJc+nP4sFKFhUq9+qrXlrgK3n0BPfubN25UqqAg+vLlh8tV\n60mtVU1tjXtG+ZmKCqVatVKqujqq4t9VV6vTlixRRzxeHnGzb6eCQz/Yo+rKzaithdtvFz9L1CgF\n99yTcnHDhOiI1t9ikvH5XaL0t5hkQn4Xrx36kQjlRC0PVTBRx+eECXD8uOhZoubll2HDBh03LM3I\nJKenHcXFOp5YLJh6l4x06sc6GhPYkpwJQSy9Io/oHPq9ccmhL36WGPHQz+IFZNiyWKz+FpOM9rvE\n4G8x8YPfxc2+7fWyWKTYYguBErSj9EX07htHET1LjEh+lrQnWn1LMBmrd4lS3xJMuutdvF4WuyWK\nMqPdurjoWWIkRfOzCLERxwoPkMF6lxj9LSbpnt/F65mLp0jcsBhJUtwwwVviHVwgQ+OMJXDD0jkU\nTMYOLhI3LEYkP0tGEG08MTsyMs6YDC4hycjBRfwsMSJ+lowhXn+LScb5XeL0t5iks98l4wYX8bPE\niPhZMopElsQgA/UucfpbTNJZ7+L14DIQHUpjG/BgiM+L0GHK1xnHo4leUPwsMSJ+lowi0cEFMszv\n4sANS9elMS8Hl0bAc+gBpjt651i3EOWWoINbng/8IZELip8lRsTPklEk6m8xySi/iwwutoQbXM6j\nYegVJ7kYrV/Zic7uNwud7S8YR2wQP0uMiJ8l40jU32KSMX6XBP0tJunqdwk3uLyMzj3xIfA7oD86\nnatTWLP0QSCznxWFDly5AS2o7B7PhcTPEiMp4mdZtGgRXbt2paCggEmTJoUsM2bMGAoKCujRowfr\n1q2LWPfAgQP069ePLl260L9/fw7Vf6Ich17C3YL+PpiYUZG3Ac9YzjcDZhOIinyW5bOO6GyUm9GR\nka2feYITS2KQQX6XBP0tJunqdwm3OHQhcBp6hnEJMAb4Gzo16zLgngSvHU3YgbXo2GLfoxOGzQe6\nhCoYLraY+FlixPSz+DhuWE1NDaNHj+bDDz8kJyeHnj17MmTIELp1C6ysLly4kO3bt7Nt2zZWrlzJ\nPffcw4oVK8LWnThxIp06deLSSy/lX//6F4MHDzab645O/9Ad/RD0IVCA7scvAHcCqwjkc1lknNtv\nlLsZmITO6wIwE/g98BFwKj4IfR5PPDE7MiLOmFOjMZkdZ6w5OhXr4+gkSaUOtNkb/QU0GUdop76V\nUnQO8mBsY+dI3LAYSZG4YcuWLVMDBgyoez9hwgQ1YcKEemVGjRqlZs2aVfe+sLBQ7dmzJ2zdwsJC\ntXfvXqWUUnv27FGFhYVm/KXg/rnI6MNnAl9Yzg9D5yEyy/QyXjcGvjZedweWRujrYfu108QbT8yO\njIgzFkc8MTu8ijOGiw814WYuw9EzlvOAE8Cn6Kn9pcBeB669Gv1El4dOA3szDcPBZKNTICv0DCoL\nvVQXFeJniZEk+lnuv/9+28+aNWtG586dGT58OC1ahF6JLS8vp0OHQMDs3NxcVgbNtEKVKS8vZ/fu\n3bZ1KyoqyM7W+eiys7OpqKgwi7WnfuBUcxm3ikBaY9BRu83lXevSbzV65+MP0LPvQ8Dr6KyWHwIP\nAZ45KZzyt5hcmXclo98dTa2q5aQsrzeluoBD/hYTq9+leZrsNgr3V7wIbEU/hX1svHaSanTcsPfQ\nO8deRj8BmkErXwRuQC+/VaOXxoY1bCY04meJkST7WS688EKyskLv1aiurmbTpk0MHTqUDz74IGQZ\nu7rB6IezyGVCtZeVlRX1dWJAob93l6Mf3MrQfpmRwF+DCyeaSiJaHFzhATIgzphD/haTZMUZS2Y6\niXCDSyugB9AHvRzWlYC/ZTnwfw5c/13jsPKi5fX/GkfMiJ8lRpLsZxk5cmTEMoMGDbL9LCcnh7Ky\nwH6QsrIycnNzw5bZtWsXubm5VFVVNTifYzyyZ2dns3fvXtq1a8eePXto27YtBw8ehNC5hXYZ53ND\nnDfrdETPzBsDp6Nn3ruA9eidkqB9ib2JMLi4iZP+FpO09rs4PRqTHL9L8APK7373O9euFQvZwP1o\nn0uNx7YEU28d0fSzOLV+nPakiJ/FSlVVlerUqZMqLS1VJ06cUD169FCbN2+uV+add95RgwYNUkop\ntXz5ctWrV6+IdceOHasmTpyolNK+mAcffNBcl+6OHhCaopeydhDYJr8S7VvJIuDQB50i4gXj9TD0\ndnvQM/X1QBvj/SuE3iCTlHvptL/FJK39Lg76W0y88Lvg0UaSHugO/yr6i2RO338N9PTCoDDU3ayK\nCqVycpRatCip/0epy+HDShUWKvXqq15bEjMLFy5UXbp0Ufn5+erJJ59USik1depUNXXq1Loy9913\nn8rPz1fnnnuuWmP54oaqq5RS+/fvV3379lUFBQWqX79+6uDBg9Yv4MNobdYWYICl/5lbkbcD1lAG\nzYA5BLYi51k++w/0FvuN6BlLqFWEpNzHjRuVKihwvt3yw+Wq9aTWqqa2xvnGvaSiQqlWrZSqrna0\n2e+qq9VpS5aoI1VVjrYbDlwcXMItKK8D/oVeBlsGfOWWEQ6glFLU1sLAgdCzJzzxhNcmpQBKaf/K\nKafASy95bY1vMfwubgqK7TC+/+7y7LPw2Wfwl78433bhc4XMuWFOei2NzZ0Lr74KCxY43vQV69bx\n6FlnJW1Lspt9O5zP5Xw3LugmEybA8ePgk2VE/+MDPcu+ffuYNm0aO3fupNpQKGdlZfHXvzZwPwgu\n4Ya/xSQt/S4u+FtM0knv4vUewUiBK0EvM2xDLyHYDngSNyxGfBI37Nprr+Xw4cP069ePn/70p3WH\nkByciidmR1rGGUvC4CIkRiP0GnUe0ATt4AwOXHk12kEK2mG6gtCInyUWfORn6dGjh9cmRATv1POu\n/21u+VtM0s7v4pK/xSTZfhc3+7aXM5doAlcOAWYYr1eit0dnh2psxAgYMCDUJ0I9fBY3bPDgwbzz\nzjtem5GxuPgQDqRhnDGH9S3BpFOcsWgGl0JgGvABsNg4nNC4RBO4MlSZXEIgfpboWP/E/VSuX+Ob\n/CyTJ0/mmmuu4eSTT6ZFixa0aNGCli1bem1WHR9pjUva4vbgAmmW3yUJNyxdlsai8U7MRe/Vf4mA\nvsWJqVS0bQTvZAhZ7w9/GF/32k0lcyqzsWIj81ZN546X5tDJJ/lZjh496rUJDTBVzIeqqpi2Z4/X\n5riG6W9x+zmjKK+IOZvn8Ovev3b3QsmguBjuvNPVSxS1asWjpU6Eb/SWaLagrUHv43ea3sB4AoKz\ncejYStbY6VOBYgLisy3AlUAF9TGWDwU7jpw4Qs9pPXn0ike57Vzvl8O++OILunXrxtq1a0N+fsEF\nFyTZovpU1tZyxbp13Ni2Lb/t2BHScCvyZ5/pXWJffunaJQDYfWQ3P37hx3w99uvUjjO2bx8UFsI3\n37i2LAbwfU0NbT/5hL2XXOJ6nDGvtiKbvAXcB/wTHcDSJOoAkjZEE7hyATr+2Cz0YHSIhgOLEAGl\nFL9651dc1vEyXwwsAH/605+YNm0aDzzwQMj4XYsXL/bAqgDjSkpo27QpD+Tm8ltPLXGPZCyJQRrF\nGXPZ32KSrDhjbhPN4DISvRQV/B07O8FrRxO4ciF6x9h24DvgFwleMyN5ed3LbKzYyMq7/JOfZdq0\naQBJC6IXC29+8w2vf/01ay+6yI3Alb7BTX1LMGmhd0nWaEx66F3S5Zsjy2I2bKzYSN+ZfVn6i6V0\nbSPpiiOx89gxeq1dy/xzzqHP6acD6anQr62Ftm1hwwbnwuyH47XPXmPO5jm8cfMb7l/MLX70I63M\nT8KS7f8dPMijpaUsc/laXi2L9UVnybue0E70f7phkOAcR04c4aa5N/HnAX+WgSUKKmtrGbZ5M//V\nsWPdwJKuOJ2/JRIpn9/F4fwtkUiH/C7h/pevMP69xuYQfIwf/SxOs2jRIrp27UpBQQGTJk0KWWbM\nmDEUFBTQo0cP1q1bF7buuJISWh07xqI77qBLly7079+fQ/W3hI5DR4vYAlizBJmBK7cBz1jON0MH\nezUDV54VZF5L9Pb6Z2P92xMliSs8QBroXZLkbzFJJ71LqpMUNWsqMW3NNHXO8+eo7yq/89qUsAwf\nPlz95S9/UV/EGO6/urpa5efnq9LSUlVZWRkx5P6KFSvqQu6HqvvsJ5+os5YtU/c/8ICaNGmSUkqp\niRMnhgq53wS9CWU7geWEVWhRMDQMuf+88fpmArseTZ4B/o794OLAHQ7N0KFK/f3vrjUfkl8u+KWa\nvHxyci/qFPfeq9TTTyf1ko+VlKhxO3a4eg3SUKHfGi3K/BJ4H628D8VOdEjydegvsBAFGys2Mu6j\nccy9cS6nNvGHnsWOO+64g927d3P//fdz9tlnc/311zN58uSI9VatWkXnzp3Jy8ujSZMmDBs2jDff\nfLNemQULFjBixAgAevXqxaFDh9i7d2+DugOuv56HZs7kte7def+dd+rqjBgxgvnz55vNXQu8ho4m\nsRM9uPQCzgRaEOifM4HrjNfWCBOvo5eaTS4E2qL7f1JxO56YHSkdZyzZUz1SX0zp1eDyEHpw6YL2\n6zxkU04BReiAlRfblBEspJqf5Sc/+QmPPPIIv//977n77rv59NNPeeGFFyLWKy8vp0OHQGLI3Nxc\nysvLoyqze/fuuvOVtbW8Dpx34gR9Tj+diooKsrN1hKHs7GwqKup2vrcnkGESAhElgs+XE4g0YY0w\nUQ18i36wOgn4I/CbiH+oCyTb32JyZd6VfPzVx9Sq2uReOFGS7G8xsfpdUhGvPEVD0GJI0E92xdgP\nMOmyo811VAr6Wfr27ct3331Hnz59uOyyy1i9ejVt27aNWC/aLcIqwm6rcSUltGjUiPObNw95DRe2\nImehl8sWovVdYS9gTXPsVOQJDx7CgRTWuyTZ32Liht7FjD6RDKIZXE5BfxkuQ88klqLDwRxP4LrZ\nBMSQFdgEozSu9yE67MyL6Bhngg1+1LNE4txzz2X16tVs2rSJli1bcsYZZ9CnTx9OOeWUsPVycnIo\nKwuEnSsrKyM3NzdsmV27dpGbm0tVVRVlZWV1epbba2tpbtTNzs5m7969tGvXjj179tC2bVsO6vhi\n5UAHS/O56BlLOfXj3ZnnzTod0YNIY+B0YD9aEHw5+nvVHJ06+Qg602U9rIOLUyRT3xJMSupdvBqN\ncV7vEvyA8juPgzLORQscrwJ+go4xNjeKeh+gd9AEH0OA4GiAdmr/M41/f4h2pl5uU85Vp1cqsGHv\nBtXmqTbqi69jc4z7hcOHD6spU6aojh07qqZNm0YsX1VVpTp16qRKS0vViRMnIjr0ly9fXufQr6qq\nUh3PPlv9YO5ctWTfvnp1x44dqyZOnKiUUmrChAmhHPpN0QLiHQRmHSvR/pcsGjr0zTW+YTR06AOM\nIIkO/ZoapX7wA6V27XK86aj4x8Z/qOtmXefNxeOle3elkpzb3uSjAwdUHxevjYsO/WhmLj9Cf7FM\n/g/YHEW9fmE+qwDaAXvRA8g+m3Jm1MCvgTfQfpeloQq6sXyQKqSan8XKs88+y9KlS1mzZg1nn302\nd9xxB5dfbvcMEaBx48Y899xzDBgwgJqaGu688066devGiy++CMCoUaO4+uqrWbhwIZ07d+a0007j\nlVdeAaD2pJM45T//k2MPPsgdWVl1dQEeeugh+vXrx1NPPUWrVq248cYbzUtuBuYY/1ajBw7zi3kv\nMB09y18ILDLOvwy8it6KvB89wIQiaQpgr/wtJimnd/HI32KSDnqXcPwN6GN53xv9hUmEpwhknnwI\nmBiizKnoXTgApwGfUF9bYMW1kd3v1NbWqltfv1Xd+eadXpsSF0899ZRasWKFqqysTNo1H9i2TV2z\ncaOqra2NqjxplCxsyhSl7r7b8WZjosuzXdT6Peu9NSJa5sxR6pprPDXh8rVr1Xv797vStpt9O5qh\n8CL0D3uZYUhHYCt6iUsB58Zx3Ynop8A70ds6bzLOt0f7VX6KntmYUQAao/UASd+26XdS0c9iZezY\nsUm9XqbEDbPDS3+LSUr5XTz0t5ikapyxaL5deRE+35m4GQljDMKZhcQNi41QccOiIV1iiyU7npgd\nKRVnLInxxOxwM86Y1yH3d7pxYSExUtnP4gWZFDfMDq/9LSYp43fx2N9ikqp+Fx//zwp2qBTUs3iN\nNT9LpuKDFR4gheKMeaRvCSZV44zJ4JKCmH6WKYNczk+bJiww/CzTu3bNSD+LiV8GFwj4XXyNj25Y\nKoaCkcElxUiluGF+4Kvjx7l761Ze696d1k2aeG2OZ3gVT8yOlIgzJoNLQng1uNwIfI5W3ofzUg1E\nhzffRmDrcsYifpbYqKyt5ebPP89oP4uJX/wtJr6PM+YTf4tJKsYZ82pw+Qz4GfBxmDKNgOfQA0x3\n4Bagm/um+RPxs8TOw+JnqcNHD+FACvhdfOJvMUlFv4tXg8sWdLj9cFyMDmu+Ex3mfBY67HlGIn6W\n2FjwzTfMEz9LHX4bXMDnfhcf3rBUWxrzs8/FGq4cAiHOMw7xs8SG+Fnq4zd/i4mv/S4yuCSMm5um\nP0Cr7IN5GHgrivoxqcfSNbaY6Wf5U/8/iZ8lCkw9y9gOHeL2syQzLHkyeP11OPNM//hbTK46+ypG\nvzuaHQd2kN8632tzAnz8MRw44Bt/i0mfli3Z+v33rD1yhAtatIhcIcNZjL1DvzeBAICg85fbOfVd\nibvjNakeNywZvPvuu6qwsFB17txZTZw4Uf0mRNyw+++/X3Xu3Fmde+65au3atbZ1Tfbv36/+4z/+\nQxUUFKh+/foFx18ah95gsoX6se4uRPsSt6HTF5s0A2Yb51cAZxnnzwOWAZuADQRCIDnar3fsUOqH\nP1Rq5cqEm3KFKSumqAtevEAdrzrutSmaigqlcnKUevddry0JyayKCpW/fLk6VFXlSHt4FzfPdRaj\nv5ShaIwOa56HDnO+HnuHviM32m9MWzNNnfP8Oeq7yu+8NsWXVFdXq/z8fFVaWqoqKyvV2T/6kWr/\nj3+o/ZYgmNaw+ytWrKgLux9cNzjs/qRJk5RSSk2cONH6BTTD7jcx+uV2AqEzVhHIlhocdv954/XN\nBMLuFwDm4/qZ6JwvLZ3s18ePK3XhhUpN9nHa+traWjV09lA1+p3RXpui8xH076/UuHFeWxKWe7Zu\nVTdu2hR14NVwkIaDy8/Q/pRj6LD77xrn2wPvWMoNQgfJ3I5+YrTDgf8yf5Hq+VmSwbJly9SAAQOU\nUkrtPHZMnTZqlPrV44/XKzNq1Cg1a9asuveFhYVqz5499eoqpXO3TJgwoa7M3r17lVJK7dmzx/oF\nDJ49L0LPsM8EvrCcHwZMtZTpZbxujE4fEYr1BAYbR/r1/fcrdd11SjnwG+QqB48dVJ2e6aTmfj7X\nW0OeeEKpyy5TyqFZgVscq65W5336qfpfB5Ly4HFUZDd4wziC2Y2OiGzyLoGBJ2MQPUt0lJeX06FD\nhzo9y5Bu3Wi8fXvIMia5ubmUl5eze/fuBudXrtSRpSsqKsjO1slRzX8N2qOXtkzMTSZVBLJPgs5A\naXo4rBtTqoFvgdbUT5B3MXo2tCPqPz4Cr78Ob70Fa9eC3zfLtTq5FbNvmM3Vf7+a89ud743/5eOP\nYcoUWL0afB6/6+RGjZjTvTuXrFtH75Ytfet/8fNusYxEiZ4laswtxqaeZZBNSHIVRWRhpVTILctJ\n2MZ8JjAT+IVTDZaUwD33wOzZcMYZTrXqLhe1v4jHrniMm+bdxInqE8m9+L59cOutMH06pIgmquDU\nU3muoICbPv+cb30qrPT3EJ2BpHp+lmSSk5PDmh07OGDkZ3nx7bfJDfpxyMnJoawssKN9165d5Obm\nUlVV1eB8jrGdKjs7m71799KuXTv27Nljba4c6GB5n4uesZQbr4PPm3U6omfljYHTCcxaWgJvo3dQ\nrgr1N8a6C/LECbjpJnjkEbj44rBFfcfoi0dT/FUxv33/tzx7tV3mZ4eprYXbb4ef/xwGDoxc3kfc\n3LYtSw4d4u6tW5ndvXtUD0LpthMyGSS89ugHxM8SG9uPHFEntW+vXt+wQZ04caKeU97E6tBfvnx5\nnUO/qqpKderUSZWWljaoO3bs2LrdYxMmTAjl0G8KnI1exjK/0SvRvpUsGjr0XzBeDyPg0G8KfAT8\n2sl+nSp+FjuS7n9JET+LHYn6X0hDh77TOPxflnwOHz+sCp8tVK9ueNVrU1KCEzU1qtfq1erOGTNU\nly5dVH5+vnryySeVUkpNnTpVTZ06ta7sfffdp/Lz89W5556r1qxZU3d+4cKFDeoqpbci9+3b124r\n8sPoDSZbgAGW8+ZW5O2ANYxCM3TWVXMrcp5x/jagElhnOYKzusZ0T+bNUyovT6kDBxK8uR7zafmn\n6odP/VBt37/d3QstWaJUdrZSZWXuXsdlvvzuO9XmX/9Saw4fjrkuLg4uXrn6bgTGA12BnsBam3I7\ngcPoAJdVBLZ6BmPcp9REKcVtb9zGKY1P4aUhL3ltTkrwm+3b2XbsGG+ec47rfpFUyERZUgK9e8Pb\nb6feclgonl35LNM3TGfZHcto1riZ8xfYt09nl3zppZRbDgvF7H37eKSkhDUXXcTpMWxIcLNv+zlw\nJehRtQg4H/uBJeWRuGGx8abkZ6lHKvtZ7Bh98WjyWuXx2/d/63zjKexnsePmtm3p37o1d2/dGtUG\nlmTg58CVJmn96yFxw2Jj57Fj/FLihtVj7Fjo0AHGjPHaEufIysri5SEvs3D7QuZtnuds4xMnwvff\nw+WeKBoAAAvXSURBVH//t7Ptesyf8vPZduwYL+ze7bUpviBc+BeAEvRa9Grg7jDlHF3DTBbiZ4kN\n08/yx3//O6nXxTunZ0Tb0sXPYofj/pc08bPYEav/xc2+7efAlQCXAnuAHxrtbQGWhiqYaoErlehZ\nYmZckvKzpMp2TVPP8vbbqaNniRWr/iVh/0sK6llixap/idX/4jReLzktBn6DvUPfyuPAUeDpEJ8Z\ng3Dq8NLal3hm5TOsvGulLIdFwZvffMOvt21j7UUXJX05zI8O/RMn4NJLtevg1+E2M6cBSilumHsD\n7Zu3j1//UlsLgwbBhRfCk086a6APuffLL/mmqiqi/iUdHfpW7P6wUwEzrsFp6Ai0Pk1bFxviZ4kN\n8bM0JB39LHY44n9JUz+LHZnsf4kmcGUntGBtPToseVoErhQ/S2x45Wexgs98LunuZ7Ejbv9LmvtZ\n7IjG/+Jm3/Z6WcwpjPvkb5ToWWImmXoWO/y0LJZuepZYiVn/kmZ6lliJpH9J92WxjEH0LLEhepb6\npKOeJVZi0r+koZ4lVrzUv8jgkiTEzxIb4mdpSCb5WeyIyf+SYX4WOzLZ/+IESVnDjBfxs8SGH/ws\nVvCBzyVT/Sx2RPS/ZKifxQ47/4ubfdurmcv/oDP3bQD+iQ5DHoqBaG3LNupnAEwZlOhZYiZaPcui\nRYvo2rUrBQUFTJo0KWSZMWPGUFBQQI8ePVi3bl3EugcOHKBfv3506dKF/v37c+jQoXqmofviFvTu\nRRMzaOU24BnL+WbAbAJBK8+yfDYCHaXiS+Dn4f7OVMzP4jZh879kgJ4lVlIh/4tT9CMwsE00jmAa\noSPM5qGz9K0Hutm059gIv3jxYkfbmrZmmjrn+XPUd5XfJdyWU/i5rflff63OWrZM7a+sDFu2urpa\n5efnq9LSUlVZWdkg3P7ixYvrhdtfsWJFXbj9cHXHjh2rJk2apJRSauLEierBBx80n+7McPtNjD65\nnYAjdBWB2HfB4fafN17fTCDcfmt0uP5WxmG+btCvjx9X6sILlZo8OfF76xR+aau2tlYNnT1UjX5n\ndKCtmhql+vdXatw4z+zyc1v3bN2qbty0SdUaORlIw5nLB0Ct8Xol9RMtmVyM/gLvREdEngVc67Zh\nTiqzZ7892zE/i5N2+bWt+R98ELWfZdWqVXTu3Jm8vDyaNGnCsGHDePPNN+vZtWDBAkaMGAFAr169\nOHToEHv37g1b11pnxIgRzJ8/32zyWuA1dF/cie6bvdCZJFsQSPY1E7jOeD0EmGG8fh3oa7weALwP\nHDKODwgMSPVwys/i1//zRNoK9r8UFxc75mfxy9/odFvJ9L/4IRPlHegvbTDW3OOgM/v1SopFDnDk\nxBHmbp7L5J9Ppmubrl6b43sqa2uZ9/XX/FfHjvQ53W6VNEB5eTkdOgSSQubm5rJy5cqIZcrLy9m9\ne7dt3YqKCrKzswGdkbKiosIs1h69tGWyC91HqwhknQSdeTLHeG3tw9XAt8APjLasdXZZ6tTjrbdg\n7VqQzXKhaXVyK2bfMJur/341t315OfzfJ7B6NXgY9sTPnNyoEXO6d+eSdevo3bKlq9dyc+byAXod\nOvi4xlLmEXTCpH+EqO9/4UoY7lt4Hx1P7yh+lih5pLSUUxs1ijpuWLRbk1UU2y+VUiHby8rK8nwL\ntPhZInNR+4t4oscDnPTP+VS//JL4WSJg9b+kKyOBT4CTbT7vDSyyvB+HvVN/O3owkkMON47twEPG\nYbIIPZNuh96cYnILgbTGi9D9GPQqwdfG62HAVEudF9E+mWCkX8vh9rGdNGMg8DnQJkyZxmhHZx46\n33g4h76QeUTTP65GO9hB/8iviKLuUwQeYh4isNnEdOg3Bc426pvTmpXogSaLhg59c6AZRn2Hfgna\niX+G5bUgCAmyDfiKQO5wc0eNNbYYwCBgK3p0DRdbTMhMQvWPUcZh8pzx+Qbq5w6y61utgQ/RW4Tf\np/6P/sNG+S1op7yJuRV5O2ANv9AMmENgK3Ke5bNfGOe3obclC4IgCIIgCKlANGLJKcbnG4Dzw9Q1\n3+8wzoV6Av0EvZHgOHBPAm3loXcBHUdHeJ4TRVt70JGga2iYhTNWu+zaiseug8A+QgtbY7XLrq14\n7NoP7EYvSX0EdLDUidUuu7ZisSuY36C31be2nDPFlmXAv8PUhej7tXnuS+B7tP8muF+PQ29trkT3\n2US+J3lI35a+bd+3g4XEviQasaR17bwXgbXzUHW/Mt7/EX2zu6FvnLl2Pgo4bJS/Dn3TT4qzrZFG\nW7HYdQ7aAbyS+l+aeOyyayseuwYSuPdWYWs8dtm1FY9dZ1jauh8ww0nHY5ddW7HYZe2bHdBO+1IC\nX0DTN9MMrYfZSXQ+oUjX/ZFxbiraF7Qe3S+tPqEd6PQVeeiBLZHvSSz3RPp2ZvVtq5DYdsexHwJX\nRiOWtIrRVqKfrtqFqLsM/R+xExgM/NVoawYBYdsd6DTLVcB89Kg+MM62+qGfFGOxa5PRRvBmhnjs\nsmsrHrsWEbj3VmFrPHbZtRWPXQctbTUHvknALru2orUruG/+Cfgv6mOKLS9AP91tMV4n0q9nAfcZ\n54qAV4xzxwn0xWvRs5npRr3Pjbbi/Z5I35a+bde3rUJi2/jcflAaRSOWDFUmB70BwHq+yjgAstFf\n7F5AhfEeoC2B5GSghW0/Qu/YibWtbHTnX2e0cyQKu0z7g5NRxGOXXVuJ2NULuJSAsDURu4Lbiteu\nPsBP0E/YZmeO1y6zrXIC24SjtcvaN6813m+kPqbY0uyzWcbrRPr1LuAK45zZB832zL7YHj1DKrPU\naW/TnvTtxO3K5L5trRNS/Av+GFxUlOUSUbOZe7rt2orWhuC2jgND0U8zF6CfJBKJ85KIXVYSsesi\ndEe3ClvjtSu4rXjtmov2XZQDk9E7reK1y9rWn422YrXrFPTOsX6Wc+FsCWdXNP06K0wbweezwnwW\nCenb0rej6dtR2eWHwaWc+o6sDtQPjRGqTK5RpknQ+SbGAfoprJtR7ky0E848X2Cpczp6CeFgHG3t\nIuAAXYt2PjYLYa+1LfNvDArlGpdddm3Fa9e1xt93lQN2hWorkfu1C/2UaPooErlfwW1Fa5dZNx+9\n5rzBOJ8LrEE/+Zl1ii11y9FPlPH261z02ndn4+9uZ3z+LYG+WI52AHew1Dndpj3p24nZlel9G8tn\n5fgYp8Vw/6aho9IqhjOdZU2Bn6FH9qw42xpmsWso+ovQKkJb5vuVaH2ESTx22bUVj12D0btJ+lCf\neOyyayseu0wnoumofDUBu+zaisWuUELeUE7PU9DO1q/C1I2lX59jnJuKfrJcDzxNaIf+2egfikS+\nJ9K3pW9D6L4dSkjsW5wUw5nvS4xzXwKbgf+01FlOYJvffQm0NRS9BfAEenvomCja2oN2sB1DP3lu\nSsAuu7auj8OuSvST0Tp0hy1OwC67tuKx6yh6S+p69JOXNb9trHbZtRXL/2MoSqi/XdMUW5YZh1Mi\nz0HobaDWrcj/aWnvYQJbkUsitCd9Oz67pG+HFhILgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI\ngiAIgiAImcnp1A/BHcwnyTJEEBxG+rYgeEgeOuuhIKQbeUjfFgTPmIVW2q4DJoX4/KjxbxFaPTwX\nnRfjbzbtFaPDa39qlOsJvIFWbP/eKHMaOv30evSX/6aE/gJBCI30bUHwkLMI/3R3xPi3CB0+oz06\n/s8ydIjwYBYDE4zXY9BxprIJhG9vjQ5t8RdLnZbxmS4IYZG+nUb4IVmYEBuxBIpbhf5CKfSTWZ5N\nuQXGv5uMo4JAfKpcdF6HfuighpcRyGwnCE4ifTuNkMElvbGGK6/BPsWCWa42qE6tUWcbOh/7Z8Af\ngMecNVMQYkb6ts/xQz4XITaOAC2SeL0sdO6Kg8Df0RFq70zi9YXMQfp2GiGDS+qxH70l8zN0noYH\ngz4PlwExUja74Iyd5rkfA/+DftqrJPx2UUGIF+nbgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI\ngiAIgiAIgiAIgiAIgiAIgr/5/42yfhlSbeFgAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4 Page No : 206" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.4\")\n", "\n", "# Given\n", "#Veff = 110V Z = 10+i8 ohm\")\n", "Veff = 110;\n", "Z = 10+1j*8\n", "Zmag = math.sqrt(10**2+8**2)\n", "Zph = (math.tan(8./10)*180)/math.pi\n", "P = (Veff**2*R)/(Zmag**2)\n", "pf = math.cos((Zph*math.pi)/180)\n", "\n", "print \"Power factor is : %.4f\"%pf" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power factor is : 0.5151\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.5 Page No : 211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.5\")\n", "\n", "# Given\n", "#Veff = 110V Ieff = 20(-50 deg)\")\n", "Imagn = 20;Iph = -50;\n", "Veff = 110;\n", "\n", "P = Veff*Imagn*math.cos((abs(Iph)*math.pi)/180)\n", "Q = Veff*Imagn*math.sin((abs(Iph)*math.pi)/180)\n", "print \"Average power is %3.1fW\"%(P)\n", "print \"Reactive power is %3.1fvar\"%(Q)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average power is 1414.1W\n", "Reactive power is 1685.3var\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.10 Page No : 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from scipy.linalg import polar\n", "#Problem 11.10\")\n", "\n", "# Given\n", "#Veff = 10V v = 10*math.sqrt(2)*math.cos(w*t)\");\n", "Veff = 10;vmag = 10*1.414\n", "\n", "#a)\")\n", "Z1 = 1+1j\n", "R,Theta = polar([[Z1]])\n", "R = R[0][0].real\n", "Theta = Theta[0][0].real\n", "print \"i1 = %d*math.cosw*t-%d)\"%(vmag/R,Theta)\n", "I1eff = (vmag/R)/1.414\n", "#p1(t) = 100*math.sqrt(2)*math.cos(wt)*math.cos(wt-45)\n", "#On solving\n", "#p1(t) = 50+50*math.sqrt(2)*math.cos(2*w*t-45) W\")\n", "P1 = Veff*I1eff*math.cos(Theta)\n", "Q1 = Veff*I1eff*math.sin(Theta)\n", "S1 = P1+1j*Q1\n", "S1mag = math.sqrt(P1**2+Q1**2)\n", "pf1 = P1/S1mag\n", "print \"P1 = %dWQ1 = %dvarpf1 = %0.4flag)\"%(P1,Q1,pf1)\n", "\n", "\n", "#b)\")\n", "Z2 = 1-1j\n", "R,Theta = polar([[Z2]])\n", "R = R[0][0].real\n", "Theta = Theta[0][0].real\n", "\n", "print \"i2 = %d*math.cosw*t%d)\"%((vmag/R),Theta)\n", "I2eff = (vmag/R)/1.414\n", "#p2(t) = 100*math.sqrt(2)*math.cos(wt)*math.cos(wt+45)\n", "#On solving\n", "#p2(t) = 50+50*math.sqrt(2)*math.cos(2*w*t+45) W\")\n", "P2 = Veff*I2eff*math.cos(Theta)\n", "Q2 = Veff*I2eff*math.sin(Theta)\n", "S2 = P2+1j*Q2\n", "S2mag = math.sqrt(P2**2+Q2**2)\n", "pf2 = P2/S2mag\n", "print \"P2 = %dWQ2 = %dvarpf2 = %0.4flag)\"%(P2,Q2,pf2)\n", "\n", "#c)\")\n", "Zmag = (Z1*Z2)/(Z1+Z2)\n", "print \"i = %d*math.cosw*t)\"%(vmag/Zmag).real\n", "Ieff = (vmag/Zmag)/1.414\n", "#p(t) = 100*math.sqrt(2)*math.sqrt(2)*math.cos(wt)*math.cos(wt)\n", "#On solving\n", "#p2(t) = 200*math.cos(w*t)**2 W\")\n", "P = (Veff*Ieff).real\n", "Q = 0\n", "S = P*Q\n", "Smag = math.sqrt(P**2+Q**2)\n", "pf = P/Smag\n", "print \"P = %dWQ = %dvarpf = %0.4f\"%(P,Q,pf)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i1 = 19*math.cosw*t-1)\n", "P1 = 22WQ1 = 139varpf1 = 0.1559lag)\n", "i2 = 19*math.cosw*t1)\n", "P2 = 22WQ2 = 139varpf2 = 0.1559lag)\n", "i = 14*math.cosw*t)\n", "P = 100WQ = 0varpf = 1.0000\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11 Page No : 218" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.11\")\n", "\n", "# Given\n", "#v = 42.5*math.cos(1000*t+30 deg)V Z = 3+i4 ohm\")\n", "Vmag = 42.5;\n", "Z = 3+1j*4;\n", "R = math.sqrt(3**2+4**2)\n", "Theta = math.tan(4./3)*(180/math.pi)\n", "Veffm = Vmag/math.sqrt(2)\n", "Veffph = 30\n", "Ieffm = Veffm/R\n", "Ieffph = 30-Theta\n", "\n", "Smag = Veffm*Ieffm\n", "Sph = Veffph-Ieffph\n", "x = Smag*math.cos((Sph*math.pi)/180)\n", "y = Smag*math.sin((Sph*math.pi)/180)\n", "z = complex(x,y)\n", "pf = math.cos((Theta*math.pi)/180);\n", "\n", "print \"Real Power is %fW\"%(x)\n", "print \"Reactive Power is %fvarinductive)\"%(y)\n", "print \"Complex Power is %fVA\"%(Smag)\n", "print \"Power factor is %3.1flag)\"%(pf)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Real Power is -99.086517W\n", "Reactive Power is -151.020703varinductive)\n", "Complex Power is 180.625000VA\n", "Power factor is -0.5lag)\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.12 Page No : 220" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.12\")\n", "\n", "# Given\n", "#pf1 = 1 ; pf2 = 0.5 ; pf3 = 0.5\")\n", "#P1 = 10kW;P2 = 20kW;P3 = 15kW\")\n", "#Power supply is 6kV\")\n", "P1 = 10000;\n", "P2 = 20000;\n", "P3 = 15000;\n", "Veff = 6000;\n", "pf1 = 1 #implifies that theta1 = 0\n", "t1 = 0\n", "Q1 = P1*t1\n", "\n", "pf2 = 0.5 #implifies that theta1 = 60\n", "t2 = 1.73;\n", "Q2 = P2*t2\n", "\n", "pf3 = 1 #implifies that theta1 = 53.13\n", "t3 = 1.33;\n", "Q3 = P3*t3\n", "\n", "PT = P1+P2+P3\n", "QT = Q1+Q2+Q3\n", "ST = math.sqrt(PT**2+QT**2)\n", "pfT = PT/ST\n", "Ieff = ST/Veff\n", "Ieffph = math.cos(pfT)*(180/math.pi)\n", "print \"PT = %dWQT = %dvarST = %dVApf = %0.2flag)Ieff = %3.1f%3.2f deg)\"%(PT,QT,ST,pfT,Ieff,Ieffph)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "PT = 45000WQT = 54550varST = 70715VApf = 0.64lag)Ieff = 11.846.08 deg)\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.13 Page No : 221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.13\")\n", "\n", "# Given\n", "#Power factor is 0.95(lag)\")\n", "vmag = 240;Zmag = 3.5;Zph = 25;\n", "I1mag = vmag/Zmag;iph = 0-Zph;\n", "#Smag = Veff*Ieff\n", "Smag = (vmag/math.sqrt(2))*(I1mag/math.sqrt(2))\n", "Sph = 0+abs(iph)\n", "x = Smag*math.cos((Sph*math.pi)/180)\n", "y = Smag*math.sin((Sph*math.pi)/180)\n", "z = complex(x,y)\n", "pf = 0.95\n", "theta = math.cos(0.95)*(180/math.pi)\n", "#From fig 11.11\n", "#Solving for Qc\n", "Qc = y-(math.tan((theta*math.pi)/180)*x)\n", "print \" Qc = %dvarCapacitive )\"%(Qc)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Qc = -1426varCapacitive )\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.14 Page No : 223" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.14\")\n", "\n", "# Given\n", "#Power = 1000kW ; pf = 0.5(lag)\")\n", "#Voltage source is 5kV\")\n", "#Improved power factor is 0.8\")\n", "\n", "#Before improvement\n", "P = 1000*10**3;\n", "pf = 0.5;V = 5*10**3;\n", "S = (P/pf)*10**-3\n", "I = S/V\n", "\n", "#After improvement\n", "P = 1000*10**3;\n", "pf = 0.8;V = 5*10**3;\n", "S = (P/pf)*10**-3\n", "I1 = S/V\n", "\n", "#Current is reduced by \")\n", "red = ((I-I1)/I)*100\n", "print \"Percentage reduction in current is %3.1fpercent\"%(red)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage reduction in current is 37.5percent\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.16 Page No : 228" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import real,imag\n", "#Problem 11.16\")\n", "\n", "# Given\n", "#Vg = 100V(rms)\")\n", "#Zg = 1+i Z1 = 2\")\n", "Vg = 100;\n", "\n", "#a)\")\n", "Zg = 1+1j;\n", "Z1 = 2\n", "Z = Z1+Zg\n", "Zmag = math.sqrt(Z.real**2+Z.imag**2)\n", "I = Vg/Zmag\n", "PZ1 = real(Z1)*(I**2)\n", "Pg = real(Zg)*(I**2)\n", "PT = PZ1+Pg\n", "print \"PZ = %dW Pg = %dW PT = %dW\"%(PZ1,Pg,PT);\n", "\n", "#b)\")\n", "#If Z2 = a+i*b\n", "#Zg* = 1-i\n", "#Given that\n", "#(Z1*Z2)/(Z1+Z2) = 1-i\n", "#As Z1 = 2 and solving for Z2\n", "print (-1j,\"Z2 = \") \n", " \n", "#c)\")\n", "#If Z2 is taken the value as calculated in b) then Z = 1-i\n", "Zg = 1+1j;\n", "Z1 = 2;\n", "Z = 1-1j;\n", "Zt = Z+Zg\n", "Zmag = math.sqrt(real(Zt)**2+imag(Zt)**2)\n", "I = Vg/Zmag\n", "PZ = real(Z)*(I**2)\n", "Pg = real(Zg)*(I**2)\n", "#To calculate PZ1 and PZ2 we need to first calculate IZ1 nad IZ2\n", "VZ = I*(1-1j)\n", "IZ1 = VZ/Z1\n", "IZ1mag = math.sqrt(real(IZ1)**2+imag(IZ1)**2)\n", "PZ1 = real(Z1)*(IZ1mag**2)\n", "PZ2 = PZ-PZ1\n", "PT = PZ1+PZ2+Pg\n", "print \"PZ = %dW Pg = %dW PT = %dW\"%(PZ,Pg,PT);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "PZ = 2000W Pg = 1000W PT = 3000W\n", "(-1j, 'Z2 = ')\n", "PZ = 2500W Pg = 2500W PT = 5000W\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.17 Page No : 233" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Problem 11.17\")\n", "\n", "# Given\n", "#v1 = 5*math.cos(w1*t) v2 = 10*math.cos(w2*t+60)\")\n", "#The circuit is modeled as\n", "#resistance is 10ohm and inducmath.tance is 5mH\")\n", "R = 10;L = 5*10**-3;\n", "#Let V be phasor voltage between the terminals\n", "Vmag = 10;\n", "Vph = 60; \n", "x = Vmag*math.cos((Vph*math.pi)/180);\n", "y = Vmag*math.sin((Vph*math.pi)/180);\n", "z = complex(x,y)\n", "\n", "#a)\")\n", "w1 = 2000;w2 = 4000;\n", "#Let Z be the impedance of the coil\n", "Z1 = R+1j*L*w1\n", "Z2 = R+1j*L*w2\n", "V1 = 5;\n", "#By applying superposition i = i1-i2\n", "I1 = V1/Z1\n", "R1,Theta = polar([[I1]])\n", "R1 = R1[0][0].real\n", "Theta = Theta[0][0].real\n", "\n", "print \"i1 = %0.2f*math.cos%dt%d deg)\"%(R1,w1,Theta*180/math.pi);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i1 = 0.71*math.cos2000t20 deg)\n" ] } ], "prompt_number": 39 } ], "metadata": {} } ] }