{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4:LASERS " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 4.1, Page number 4.32" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Divergence = 0.5 *10**-3 radian\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "r1 = 2; #in radians\n", "r2 = 3; #in radians\n", "d1 = 4; #Converting from mm to radians\n", "d2 = 6; #Converting from mm to radians\n", "\n", "#calculations\n", "D = (r2-r1)/(d2*10**3-d1*10**3) #Divergence\n", "\n", "#Result\n", "print \"Divergence =\",round(D*10**3,3),\"*10**-3 radian\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 4.2, Page number 4.32" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Frequency (V) = 4.32 *10**14 Hz\n", "Relative Population= 1.081 *10**30\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "C=3*10**8 #The speed of light\n", "Lamda=6943 #Wavelength\n", "T=300 #Temperature in Kelvin\n", "h=6.626*10**-34 #Planck constant \n", "k=1.38*10**-23 #Boltzmann's constant\n", "\n", "#Calculations\n", "\n", "V=(C)/(Lamda*10**-10) #Frequency\n", "R=math.exp(h*V/(k*T)) #Relative population\n", "\n", "#Result\n", "print \"Frequency (V) =\",round(V/10**14,2),\"*10**14 Hz\"\n", "print \"Relative Population=\",round(R/10**30,3),\"*10**30\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 4.3, Page number 4.32" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Frequency= 4.74 *10**14 Hz\n", "no.of photons emitted= 7.322 *10**15 photons/sec\n", "Power density = 2.3 kWm**-2\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "C=3*10**8 #Velocity of light\n", "W=632.8*10**-9 #wavelength\n", "P=2.3\n", "t=1\n", "h=6.626*10**-34 #Planck constant \n", "S=1*10**-6\n", "\n", "#Calculations\n", "V=C/W #Frequency\n", "n=((P*10**-3)*t)/(h*V) #no.of photons emitted\n", "PD=P*10**-3/S #Power density\n", "\n", "#Result\n", "print \"Frequency=\",round(V/10**14,2),\"*10**14 Hz\"\n", "print \"no.of photons emitted=\",round(n/10**15,3),\"*10**15 photons/sec\"\n", "print \"Power density =\",round(PD/1000,1),\"kWm**-2\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 4.4, Page number 4.33" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wavelenght = 8628.0 Angstrom\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "h=6.626*10**-34 #Planck constant \n", "C=3*10**8 #Velocity of light\n", "E_g=1.44 #bandgap \n", "\n", "#calculations\n", "lamda=(h*C)*10**10/(E_g*1.6*10**-19) #Wavelenght\n", "\n", "#Result\n", "print \"Wavelenght =\",round(lamda),\"Angstrom\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 4.5, Page number 4.33" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Band gap = 0.8 eV\n" ] } ], "source": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "W=1.55 #wavelength\n", "\n", "#Calculations\n", "E_g=(1.24)/W #Bandgap in eV \n", "\n", "#Result\n", "print \"Band gap =\",E_g,\"eV\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }