{ "metadata": { "name": "", "signature": "sha256:934a14335227a49c83c2d399431a59d2d79025dde47942572f3e87ac684c8499" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Single- and Two-Phase Motors" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.1, Page number: 459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "import math\n", "\n", "#Variable declaration:\n", "Zmain=4.5+3.7j #main winding impedance(ohm)\n", "Zaux=9.5+3.5j #auxilliary winding impedance(ohm)\n", "f=60 #frequency(Hz)\n", "\n", "\n", "#Calculations:\n", "phy_main=math.degrees(math.atan(Zmain.imag/Zmain.real))\n", "phy=phy_main-90\n", "w=2*pi*60\n", "Xc=symbols('Xc')\n", "a=solve((3.5+Xc)/9.5-math.tan(math.radians(float(phy))), Xc)\n", "C=-1/(w*a[0])\n", "\n", "\n", "#Results:\n", "print \"The starting capacitance:\",round(float(C)*10**6,0), \"uF\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The starting capacitance: 176.0 uF\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.2, Page number: 467" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import cmath\n", "from math import *\n", "\n", "\n", "#Variable Declaration:\n", "R1_m=2.02 #resistance of main winding(ohm)\n", "X1_m=2.79 #resistance of main\n", "R2_m= 4.12 #Rotor resistance ref. to stator(ohm)\n", "X2_m=2.12 #Rotor reactance ref. to stator(ohm)\n", "Xm=66.8 #Magnetising reactance(ohm)\n", "s=0.05 #slip\n", "Pcu=24 #copper loss(W)\n", "Pw=13 #friction & windage loss(W)\n", "V=110 #line-to-line voltage(V)\n", "p=4 #no.of poles\n", "fc=60 #frequency(Hz)\n", "\n", "#Calculations:\n", "X22=X2_m+Xm\n", "Q2_m=X22/R2_m\n", "Rf=(Xm**2/X22)*(1/(s*Q2_m+1/(s*Q2_m)))\n", "Xf=(X2_m*Xm/X22)+Rf/(s*Q2_m)\n", "Zf=Rf+1j*Xf #forward field impedance(ohm)\n", "\n", "Rb=R2_m*(Xm/X22)**2/(2-s)\n", "Xb=(X2_m*Xm/X22)+Rb/((2-s)*Q2_m)\n", "Zb=Rb+1j*Xb #bachward field impedance\n", "Zt=0.5*(Zf+Zb)+R1_m+1j*X1_m\n", "I=V/abs(Zt) #Stator current(A)\n", "pf=cos(cmath.phase(Zt)) #power factor\n", "Pin=V*I*pf\n", "Pg_f=I**2*0.5*Rf #power absorbed by forward field(W)\n", "Pg_b=I**2*0.5*Rb #power absorbed by backward field(W)\n", "Pmech=(1-s)*(Pg_f-Pg_b)\n", "Pshaft=Pmech-(Pcu+Pw)\n", "ws=(2/p)*120*pi\n", "ns=(120/p)*fc\n", "n=(1-s)*ns #Rotor speed(rpm)\n", "wm=(1-s)*ws\n", "Tshaft=Pshaft/wm #shaft torque(Nm)\n", "eff=Pshaft/Pin\n", "\n", "#Results:\n", "print \"Stator current:\",round(I),\"A\", \"\\nPower factor:\",round(pf,3)\n", "print \"Power output:\",round(Pshaft),\"W\", \"\\nSpeed:\",n,\"rpm\"\n", "print \"Shaft torque:\",round(Tshaft,3),\"Nm\",\"Efficiency\",round(eff*100),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stator current: 4.0 A \n", "Power factor: 0.621\n", "Power output: 147.0 W \n", "Speed: 1710.0 rpm\n", "Shaft torque: 0.823 Nm Efficiency 60.0 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.3, Page number: 474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import cmath\n", "\n", "\n", "#Variable declaration:\n", "f=60 #freq(Hz)\n", "omeag=2*pi*f\n", "s=0.05 #slip\n", "R1=0.534 #resistance of main winding(ohm)\n", "X1=2.45\n", "Xm=70.1\n", "R2=0.956\n", "X2=2.96\n", "Valpha=230\n", "Vbeta=210*cmath.exp(1j*80*pi/180)\n", "\n", "#Calculations:\n", "Vf = 0.5*(Valpha - 1j*Vbeta)\n", "Vb = 0.5*(Valpha + 1j*Vbeta)\n", "Zf=R1+1j*X1+1j*Xm*(R2/s+1j*X2)/(R2/s+1j*(X2+Xm))\n", "If=Vf/Zf\n", "Zb=R1+1j*X1+1j*Xm*(R2/(2-s)+1j*X2)/(R2/(2-s)+1j*(X2+Xm))\n", "Ib = Vb/Zb\n", "Ialpha=If+Ib\n", "Ibeta=1j*(If-Ib)\n", "Pgf=2*((Vf*(If.conjugate())).real-R1*abs(If)**2)\n", "Pgb=2*((Vb*(Ib.conjugate())).real-R1*abs(Ib)**2)\n", "Pmech=(1-s)*(Pgf-Pgb)\n", "\n", "\n", "#Results:\n", "print \"(a) Positive seq components:\", round(Vf.real,1)+1j*round(Vf.imag,1),\"V\"\n", "print\" Negative seq. components:\", round(Vb.real,1)+1j*round(Vb.imag,1),\"V\"\n", "\n", "print\"\\n(b) Positive stator currents:\",round(If.real,1)+1j*round(If.imag,1),\"A\"\n", "print\" Negative stator currnets:\",round(Ib.real,1)+1j*round(Ib.imag,1),\"A\"\n", "\n", "print\"\\n(c) Positive currents:\",round(Ialpha.real,1)+1j*round(Ialpha.imag,1),\"A\"\n", "print\" Negative currnets:\",round(Ibeta.real,1)+1j*round(Ibeta.imag,1),\"A\"\n", "\n", "print \"\\n(d) Power to forward field:\",round(Pgf,0),\"W\"\n", "print \" Power to backward field:\",round(Pgb,0),\"W\"\n", "print \" Pmech:\",round(Pmech,0),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Positive seq components: (218.4-18.2j) V\n", " Negative seq. components: (11.6+18.2j) V\n", "\n", "(b) Positive stator currents: (9.3-6.3j) A\n", " Negative stator currnets: (3.7-1.5j) A\n", "\n", "(c) Positive currents: (13-7.8j) A\n", " Negative currnets: (4.8+5.6j) A\n", "\n", "(d) Power to forward field: 4149.0 W\n", " Power to backward field: 15.0 W\n", " Pmech: 3928.0 W\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.5, Page number: 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%matplotlib inline\n", "import cmath\n", "from math import *\n", "from matplotlib.pyplot import *\n", "\n", "#Variable declaration:\n", "Lmain=0.0806 #main winding inductance(H)\n", "Rmain = 0.58 #main winding resistance(ohm)\n", "Laux = 0.196 #auxilliary winding inductance(H)\n", "Raux = 3.37 #auxilliary winding resistance(ohm)\n", "Lr=4.7*10**-6 #rotor inductance(H)\n", "Rr=37.6*10**-6 #rotor resistance(ohm)\n", "Lmain_r=0.588*10**-3 #main inductance ref. to rotor(H)\n", "Laux_r = 0.909*10**-3 #aux inductance ref. to rotor(H)\n", "p=2 #poles\n", "Vo=230 #terminal voltage(V)\n", "w=120*pi #angular frequency(Hz)\n", "C=35*10**-6\n", "Prot=40 #Windage losses(W)\n", "Pcore=105 #Core loss(W)\n", "n=3500 #rpm\n", "\n", "\n", "#calculations and Results:\n", "Xc=-1/(w*C)\n", "speed=[0]*102\n", "for cal in range(1,3,1):\n", " if cal==1:\n", " mmax=2\n", " else:\n", " mmax=102\n", " for m in range(1,mmax,2):\n", " if cal==1:\n", " speed[m-1]=3500\n", " else:\n", " speed[m-1]=3599*(m-1)/100\n", " \n", " ns=(2/p)*3600\n", " s=(ns-speed[m-1])/ns\n", "\n", "#for part (a):\n", " Kplus=s*w/(2*(Rr+1j*s*w*Lr))\n", " Kminus=(2-s)*w/(2*(Rr+1j*(2-s)*w*Lr))\n", " A1=Lmain-1j*Lmain_r**2*(Kplus+Kminus)\n", " A2=Lmain_r*Laux_r*(Kplus-Kminus)\n", " A3=Laux-1j*Laux_r**2*(Kplus+Kminus)\n", " M=[[0]*2,[0]*2]\n", " M[0][0]=Rmain + 1j*w*A1\n", " M[0][1] = 1j*w*A2;\n", " M[1][0] = -1j*w*A2;\n", " M[1][1] = Raux + 1j*Xc+ 1j*w*A3\n", " V=[[Vo],[-Vo]]\n", " M1=inv(M)\n", " I=dot(M1,V)\n", " Imain=I[0][0]\n", " Iaux=I[1][0]\n", " Is=Imain-Iaux\n", " magImain=abs(Imain)\n", " angleImain=math.degrees(cmath.phase(Imain))\n", " magIaux=abs (Iaux)\n", " angleIaux=math.degrees(cmath.phase(Iaux))\n", " magIs=abs(Is)\n", " angleIs=math.degrees(cmath.phase(Is))\n", " Vcap=Iaux*Xc\n", " magVcap=abs(Vcap)\n", " \n", " #for part (b):\n", " Tmech=[0]*102\n", " Pshaft=[0]*102\n", " Tmechl = (Kplus-Kminus).conjugate()\n", " Tmechl=Tmechl*(Lmain_r**2*Imain*((Imain).conjugate())+Laux_r**2*Iaux*((Iaux).conjugate()))\n", " Tmech2 = 1j*Lmain_r*Laux_r*((Kplus+Kminus).conjugate())\n", " Tmech2 = Tmech2*((Imain).conjugate()*Iaux-Imain*((Iaux).conjugate()));\n", " Tmech[m-1] = (p/2)*(Tmechl+Tmech2).real\n", " Pshaft=((2/p)*(1-s)*w*Tmech[m-1])-Prot\n", " \n", " #for part (c):\n", " Pmech=[0]*102\n", " Pmain = (Vo*(Imain.conjugate())).real\n", " Paux = (-Vo*(Iaux.conjugate())).real\n", " Pin = Pmain+Paux+Pcore\n", " eta = Pshaft/Pin;\n", " if cal==1:\n", " print \"part (a):\"\n", " print \"\\nImain=\",round(magImain,1),\"A at an angle\",round(angleImain,1),\"degrees\"\n", " print \"\\nImain=\",round(magIaux,1),\"A at an angle\",round(angleIaux,1),\"degrees\"\n", " print \"\\nImain=\",round(magIs,1),\"A at an angle\",round(angleIs,1),\"degrees\"\n", " print \"\\nVcap=\",round(magVcap,0),\"V\"\n", " print \"\\npart (b):\"\n", " print \"\\nTmech=\",round(Tmech[0],2),\"Nm\"\n", " print \"\\nPshaft=\",round(Pshaft),\"W\"\n", " print \"\\npart (c):\"\n", " print \"\\nPmain=\",round(Pmain,0),\"W\"\n", " print \"\\nPaux=\",round(Paux,0),\"W\"\n", " print \"\\nPin=\",round(Pin,0),\"W\"\n", " print \"\\nEfficiency=\",round(eta*100,1),\"%\"\n", " else:\n", " \n", " plot(speed,Tmech,'g.')\n", " xlabel('speed (rpm)')\n", " ylabel('Tmech (Nm)')\n", " title('Electromagnetic torque vs speed')\n", " show()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (a):\n", "\n", "Imain= 15.9 A at an angle -37.6 degrees\n", "\n", "Imain= 5.2 A at an angle -150.8 degrees\n", "\n", "Imain= 18.5 A at an angle -22.7 degrees\n", "\n", "Vcap= 394.0 V\n", "\n", "part (b):\n", "\n", "Tmech= 9.75 Nm\n", "\n", "Pshaft= 3532.0 W\n", "\n", "part (c):\n", "\n", "Pmain= 2893.0 W\n", "\n", "Paux= 1043.0 W\n", "\n", "Pin= 4041.0 W\n", "\n", "Efficiency= 87.4 %\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEXCAYAAABGeIg9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX7B/BzBwYRGWQRRgRhWJUdXMBcxxTD3CVUTCRE\n6WupuaZWJmYqmWZq+s0dtXCrVCxB00TNBUJBBFQEGRAdERGUfZm5vz/8Xn8Tw+7s83m/Xvclc+4s\nzxyEh3Oec+5QNE0TAAAASSxlBwAAAKoHyQEAAKQgOQAAgBQkBwAAkILkAAAAUpAcAABACpKDBoiO\njv5g0KBBl5Udhzp79913Tx88eDBE2XFAy/D/XTGQHNQEj8cTGBgYVHI4nDLmmDdv3hZZPb9AIOCx\nWCyxWCzW+P8TkZGRkSEhIQcl206fPv1uw7bWYLFY4gcPHtjLLjoA1aCr7ACgdSiKon///ffRb7/9\n9l/yfB2apqmmzolEIh0dHR2RPF9fHTXXZ82pr6/X1dXVrZd1PACyoPF/JWqju3fv9vT39//TzMys\nuGfPnnePHTsWxJyrqqrquGjRoo08Hk9gbGxcOnjw4EvV1dX6gwcPvkQIIcbGxqVGRkYvr1+/3i86\nOvqDAQMGXFm4cOF3Xbp0ebZq1aqVL1++NJo+ffoBCwuLpzweT7BmzZrPmV+Okvc3MTEpcXR0zL56\n9Wr/ffv2hdnY2ORzudzCAwcOTGdi+eOPP0b5+PikdO7c+YWNjU3+qlWrVkq+jwMHDky3tbXN69Kl\ny7Ovv/76Cx6PJ/jrr7/eJuTVX/+TJk06Ghoaut/IyOilu7t7+o0bN3ozj338+HG3wMDAXy0sLJ7a\n29s/2Lp161xCCImPjw9Yt27d8iNHjkzmcDhlPj4+KYQQwufzE/bs2RPOPH7Xrl2zXF1dM42MjF66\nubllpKSk+DTsZ6bPvLy8bnE4nDKmn3ft2jXLycnpvpmZWfG4ceNOCoVCS+YxLBZLvH379o+cnJzu\n9+jR4x4hhHz77bdLunXr9tja2rpg7969MyRHIw3jajil0tz3WtKRI0cm9+3b9x/Jtk2bNi0YN27c\nSUJejZzc3NwyjIyMXlpbWxds3LhxUWPPk52d7ThkyJCLxsbGpebm5kVTpkw5LPnetm7dOtfBwSHH\n3Ny86NNPP10vmTj37t07w9XVNdPU1PR5QEBAfH5+vk1r3kdxcbHZ2LFjYzt37vzCz88vMScnx6Gx\n2EDGaJrGoQYHj8fLPXfu3LDGzu3bt++DgQMHXqZpmpSXl3eytrZ+GB0dHSoSiVgpKSneXbp0KcrM\nzHShaZp89NFH24YOHfrX48ePLUUiEevatWv9ampq9AQCgS1FUWKRSMSSfF5dXd26H3744WORSMSq\nqqrSDwkJOTB+/Pjj5eXlnQQCga2zs/O9PXv2zJC8f3R0dKhYLKa++OKL1VZWVgVz5szZWltbyz57\n9qw/h8N5WVFRYUDTNElISBiSnp7uRtM0SUtL8+ByuU9OnDgxjqZpkpGR4WpoaFh25cqV/rW1tezF\nixd/y2aza8+fP/82TdNk5cqVkfr6+lVxcXEBYrGYWr58+dp+/fpdo2maiEQiVq9evW6sXr36i7q6\nOt0HDx7Y2dvb55w5c2YETdMkMjJyZUhIyAHJPuTz+ReY93H06NEgKyurguTk5N40TZOcnBz7vLw8\nm8b6nqIocU5Ojj1z+/z582936dKlKCUlxbumpkZv7ty5WwYPHnxR8v4jRow4U1JSYlxdXd0hLi4u\ngMvlPsnIyHCtqKgwCA4OjpF8Tsm42vq9ljwqKys7cjicl/fv33dk2vr06fPPkSNHJtE0Tbp27Sr8\n+++/B9A0TUpLSzvfvHnTp7H3O2XKlENr165dTtM0qamp0bty5Up/yff29ttvny8pKTHOz8/v7uzs\nfG/37t3hNE2TEydOjHN0dLx/9+7dHiKRiPX1119/3r9//yuteR+TJ08+PHny5MOVlZUd09PT3ays\nrAoGDRp0Sdk/k5p+KD0AHK07bG1tBYaGhmXGxsYlzMH84En+wjh8+PDkhj84ERERO1atWvWlSCRi\ndezYsTItLc2j4fPn5ubyGksONjY2eczt+vp6HT09vZo7d+70ZNp27NgRwefzLzD3d3JyymLOpaWl\neVAUJX769Kk502ZmZvbs1q1bno29x08++eT7BQsWfEfTNFm1atWXU6dO/Zk5V1lZ2VFPT69GMjn4\n+/ufZc5nZGS4duzYsZKmaXL9+nU/ybhpmiZr165dHhYWtpd57LRp0w5Knpf8JTxixIgzW7Zsmdua\n70vD5DBjxow9S5cujWJul5eXd2Kz2bVMcqEoSnzhwgU+cz4sLGzv8uXL1zK3s7KynFqbHJr7XjcW\n67Rp0w5+9dVXK5jX4XA4L6uqqvRpmiY2NjZ5O3bsiHjx4oVRc+93+vTp+yMiInYUFBRYNdYXTAKm\naZps37599rBhw87RNE0CAgLiJN+HSCRiGRgYVOTl5dk09z7q6+t12Gx27b1795yZc5999tkapg9w\nyO/AtJKaoCiKPnny5LiSkhIT5ggPD9/T8H55eXm2iYmJfiYmJiXMERMTM7WwsJBbXFxsVl1dre/g\n4JDT2tft3r37Q+brZ8+edamrq2Pb2trmMW02Njb5jx49smJuc7ncQubrjh07VhFCiLm5eZFkW3l5\nuSEhhCQmJvoNHTr0goWFxVNjY+PSHTt2fFhcXGxGyKtpIWtr6wLJx5mZmRVLxib5WgYGBpXV1dX6\nYrGYlZeXZ/v48eNukn2wbt265U+fPrVozXsuKCiwbksfSRIKhZaS/dOpU6cKMzOzYsk+kuxToVBo\nKXnbxsYmv7Wv1dz3urH7T506NebQoUPBhBASExMzdcKECcf19fWrCSHk119/DTx9+vS7PB5PwOfz\nE65fv96vsedYv379pzRNU76+vknu7u7p+/btC5M83/C9PH78uBsT6yeffLKZiZP5Xj569Miquffx\n7NmzLvX19brt7SNoPxSkNYyNjU3+kCFDLp49e3ZEw3NisZilr69fnZ2d7ejp6ZkmeY6iqEYvzyvZ\n3qVLl2dsNrtOIBDwXFxc7hBCSH5+vo3kL/G2mDp1asy8efO2nDlz5h09Pb3aBQsWbGKSQ7du3R7f\nu3evB3Pfqqqqjsy5lnTv3v2hnZ1dblZWlnNj51kslrilx2dnZzu25b0wunXr9lggEPCY2xUVFZ2K\ni4vNrKysHjFtkn1qaWkplJx7l/yakFfJpaKiohNz+8mTJ12Zr5v7Xjdm+PDh54qKisxv3brldfjw\n4Snff//9fOZcnz59kk+cODFeJBLpbN26de6kSZOONoyFkFcJeefOnRGEEHLlypUBw4cPPzdkyJCL\n9vb2D5j4Jf9vMO/bxsYmf8WKFauDg4MPNXzOvLw826beh0gk0tHV1a3Pz8+3YWo0jcUFsoeRgxqh\nW7EqZtSoUX9kZWU5//TTT9Pq6urYdXV17H/++afv3bt3e7JYLPGMGTP2Lly48DuhUGgpEol0rl27\n9lZtba2eubl5EYvFEjdX7NPR0RFNmjTp6Oeff76mvLzcMC8vz3bTpk0Lpk2b9lN73k95ebmhiYlJ\niZ6eXm1SUpJvTEzMVOZcYGDgr6dOnRrDxBcZGRnZmvdPCCG+vr5JHA6nbP369Z9WVVV1FIlEOunp\n6e7Jycl9CHn1C04gEPCaer6ZM2fu3rBhw+KbN2/2ommays7OdmzqFxKXyy2U7LPg4OBD+/btC7t1\n65ZXTU1Nh88++2xtv379rjf11+6kSZOORkdHf3Dnzh2XyspKg4ZFeW9v79TffvttYlVVVcfs7GxH\nyeJ0c9/rxl6LzWbXBQUFHVu8ePGGkpISE39//z8JIaSuro79888/v//ixYvOOjo6Ig6HU9bUqrRj\nx44FFRQUWBPyavECRVG0ZLLdsGHD4tLSUuOHDx9237Jly7zJkycfIYSQ//znPz+uXbv2s8zMTFdC\nCHnx4kVnpug8evTo35t6Hzo6OqKJEyf+FhkZGVlVVdUxMzPTdf/+/aFN/TEDMqTseS0crTt4PF5u\nx44dKw0NDcuYY+LEib/SNE2io6NDJeds79275zxq1Kjfzc3Nn5qZmT0bNmzYOWaev6qqSn/+/Pmb\nrKysCjp37lw6ZMiQhOrq6g40TZMvv/xylbm5+VMTE5Pn169f92v4vDRNk5KSEuNp06YdNDc3f9q9\ne/f81atXfyEWi6nG4rh//74ji8USST7e2tr6IVPE/OWXXwJtbW0FHA7n5ejRo0/NnTt3i2ShODo6\nOtTGxibPzMzs2erVq7+wsrIqYIqmDYvKubm5PBaLJWJqJo8fP7YMDg6O6dq1q9DExOT5W2+9dZWp\nVxQXF5sOHDjwsomJyfPevXsn07T03P6PP/74YY8ePe4aGhqWeXh4pKWmpno19n358ccfP7S0tHxs\nbGxccuzYsfeYNgcHh2xTU9PiMWPGxD569Kgbc38WiyWSrFHQNE2ioqKWdu3aVWhlZVWwd+/eMMma\nw7Nnz8xGjBhxhsPhvBw4cODlyMjIla39Xjd2XL58eSBFUeI5c+ZsZdpqa2vZAQEBcSYmJs+NjIxe\n+Pr6JkoWmiWPTz/99BsrK6sCQ0PDMgcHh+xdu3bNZM5RFCXeunXrHHt7+xwzM7Nnixcv/layhnXw\n4MFpHh4eaUZGRi+6d++eHx4evrs176OoqKjL6NGjTxkZGb3w8/O7vmLFiq9QkJb/QdE0EjCoPmaU\nkZ2d7Sg5p6+JWCyWODs725GZqlEX6ho3NE5u00oPHz7sPnTo0Atubm4Z7u7u6Vu2bJlHCCHPnz83\n9ff3/9PZ2TlrxIgRZ0tLS43lFQOot1OnTo2prKw0qKio6LR48eINnp6eaZqeGABUhdySA5vNrtu0\nadOCjIwMt+vXr/fbtm3bx3fu3HGJiopa5u/v/2dWVpbzsGHDzkdFRS2TVwyg3mJjY8daWVk9srKy\nepSTk+Nw+PDhKcqOSRHUdT5dXeOGxilsWmn8+PEn5syZ88OcOXN+uHjx4hAul1v45MmTrnw+P6Gp\nAhoAACiHQpKDQCDgDRky5GJ6erq7jY1NfklJiQkhr1bfmJqaPmduE4K/PgAA2otu53W+GiP3pazl\n5eWGgYGBv27evPkTDodTJnmOoii6sWSg7Cp9a46VK1cqPQbEiTgRJ2JkDlmTa3Koq6tjBwYG/hoS\nEnJw/PjxJwh5tS6c2cgjFAotLSwsnsozBgAAaDu5JQeapqnw8PA9rq6umfPnz/+eaR87dmzs/v37\nQwkhZP/+/aFM0gAAANUht8tnXLlyZcBPP/00zdPTM425LPK6deuWL1u2LGrSpElH9+zZE87j8QRH\njx6dJK8Y5InP5ys7hFZBnLKFOGVLHeJUhxjlQeU2wVEURataTAAAqo6iKEKrU0EaAADUD5IDAABI\nQXIAAAApSA4AACAFyQEAAKQgOQAAgBQkBwAAkILkAAAAUpAcAABAitwunwEAoEgRpyJIVnEWMWAb\nkJjAGGKsjw+ZfBNIDgCgVppKAlnFWeRi3sXX9zkadFSZYao9TCsBgFphkkBcdhyJOBXxut2AbUAI\nIaRvt75k55idygpPYyA5AIBaaSoJxATGkCDXIHI25CymlGQAV2UFALVSWl1KIk5FkJ1jdiIJSJD1\nVVmRHABAJaHA3Da4ZDcAaIWmagugGEgOAKCSUGBWLkwrAYBKklVtQVump1BzAABoA340//X+hyDX\nII3d/4CaAwBAG2B6qn0wcgAAjaYtS18xrQQAAFJknRxwbSUAUBptKRarI9QcAEBpsJdBdSE5AIDS\noFisulBzAACl0ZZisSKgIA0AAFKwzwEAAOQOyQEAAKQgOQAAgBTscwAAucN+BvWDkQMAyB32M6gf\nJAcAkDvsZ1A/WMoKAHKH/Qzyh30OAAAgBfscAABA7rBaCQC0ElZQNQ8jBwDQSlhB1TwkBwDQSlhB\n1TwUpAFAK2naCiqsVgIAlYV5fOXBaiUAUFmYx9ccSA4AIDOYx9ccmFYCAJnRtHl8dYKaAwAASEHN\nAQAA5A7JAQAApMgtOcyYMWMvl8st9PDwuM20RUZGRlpbWxf4+Pik+Pj4pMTHxwfI6/UBAKD95JYc\nwsLC9jX85U9RFL1w4cLvUlJSfFJSUnwCAgLi5fX6AADQfnK78N6gQYMuCwQCXsP21hRMIiMjX3/N\n5/MJn8+XZWgA8Iaw2U35EhISSEJCgtyeX66rlQQCAW/MmDGnbt++7UEIIatWrVq5b9++sM6dO7/o\n06dP8saNGxcZGxuX/isgrFYCUHn8aD65mHeREEJIkGsQORp0VMkRgVqvVpo9e/Z/c3Nz7VJTU70t\nLS2FixYt2qjI1wcA2cBmN82n0ORgYWHxlKIomqIoeubMmbuTkpJ8Ffn6ACAbMYExJMg1iJwNOYsp\nJQ2l0OQgFAotma+PHz8+QXIlEwCoD2N9Y3I06CgSgwaTW0E6ODj40MWLF4c8e/asS/fu3R+uWrVq\nZUJCAj81NdWboijazs4ud8eOHR/K6/UBAKD9cPkMAAANoNYFaQAAUA9IDgAAIEVuNQcAUH/Y7Ka9\nMHIAgCbhk920F5IDADQJm920F1YrAUCT8Mlu6gOfBAcAAFKwlBUAAOQOyQEAAKQgOQAAgBQkBwAA\nkIJNcACAzW4gBSMHAMBmN5CC5AAA2OwGUrDPAQCw2U0DYBMcAABIwSY4AACQO6xWAgCQgJVbr2Dk\nAAAgASu3XsHIAUCL4K/ilmHl1isYOQBoEfxV3LKYwBgS5BpEzoac1erk2ezI4enTpxbHjh0LunTp\n0mCBQMCjKIq2tbXNGzx48KWgoKBjFhYWTxUVKAC8OfxV3DJjfWNyNOiossNQuiaXsoaHh+/Jyclx\nGDlyZJyvr2+SpaWlkKZpSigUWiYlJfnGx8cHODo6Zu/evXumTAPCUlYAucF+Bs2lsH0OaWlpnp6e\nnmnNPbg192lzQEgOAABthk1wAAAgReGb4E6dOjXGx8cnxcTEpITD4ZRxOJwyIyOjl7IKAAAAVE+L\nIwcHB4ec48ePT3B3d09nsVhiuQeEkQMAQJvJeuTQ4j4Ha2vrAjc3twxFJAYAkA3sZ4A31WJy+Oab\nb5aOHDkybujQoRf09PRqCXn11/3ChQu/k394ANAezH4GQl4lCizNhLZqMTmsWLFiNYfDKauurtav\nra3VU0RQAPBmsJ8B3lSLNQd3d/f09PR0dwXFg5oDgAxgP4P2UfhqpXfffff0mTNn3pHVCwKA/DG7\nfJEYoL1aHDkYGhqWV1ZWGujp6dWy2ew6Ql79df/y5UsjuQSEkQMAQJthExwAAEhR2FLW/Px8m+Ye\naGNjky+rIACgfbBkFeSlyZGDu7t7OkVRUieLiorMi4qKzEUikY5cAsLIAaDV+NH810tWg1yDsGRV\niyls5NBwhZJAIOBFRUUtO3fu3PDPP/98jawCAID2w5JVkJcWVytlZWU5f/DBB9EBAQHxvXv3vnHn\nzh2XuXPnblVEcADQPHwwDchLk9NKt2/f9lizZs3nGRkZbp9++un6qVOnxujo6IjkHhCmlQAA2kxh\nq5V0dHRE1tbWBaNHj/694XWVKIqit2zZMk9WQTR8biQHAIC2UVjNYc+ePeH/e8F//aamaZpqrFAN\nAACaA/scANQAlqxCSxR2+YwZM2bs/eeff/o2dT4xMdEvLCxsn6wCAYCmMVdZjcuOIxGnIpQdDmiB\nJqeVFixYsOnbb79dcv369X49evS4Z2lpKaRpmnry5EnXe/fu9ejfv//VxYsXb1BksADaCktWQdFa\nnFaqqanpkJKS4pOXl2dLURRta2ub5+XldUtfX79aLgFhWglACq6yCi3BtZUAAECKwi/Z3V4zZszY\ny+VyCz08PG4zbc+fPzf19/f/09nZOWvEiBFnS0tL8ScQAIAKkltyCAsL2xcfHx8g2RYVFbXM39//\nz6ysLOdhw4adj4qKWiav1wdQRxGnIgg/mk/e/fldUlpdquxwQIvJLTkMGjTosomJSYlkW2xs7NjQ\n0ND9hBASGhq6/8SJE+Pl9foA6girkkBVtPgZ0vfu3euxYcOGxQKBgFdfX69LyKu6wF9//fV2W1+s\nsLCQy+VyCwkhhMvlFhYWFnIbu19kZOTrr/l8PuHz+W19KQC1hFVJ0FoJCQkkISFBbs/fYkHa09Mz\nbfbs2f/t1avXTebaShRF0b17977R0pMLBALemDFjTt2+fduDEEJMTExKSkpKTJjzpqamz58/f276\nr4BQkAYthlVJ0F4Ku3wGg81m182ePfu/sngxLpdb+OTJk65du3Z9IhQKLS0sLJ7K4nkBNAXz2c8A\nytZkzeH58+emxcXFZmPGjDm1bdu2j4VCoeXz589NmaM9LzZ27NjY/fv3hxJCyP79+0PHjx9/or2B\nAwCA/DQ5rcTj8QTNXWAvNzfXrrknDg4OPnTx4sUhz54968Llcgu/+uqrL8eNG3dy0qRJR/Pz8214\nPJ7g6NGjk4yNjf+1JAPTSqANcK0kkDVsggPQAPh4T5A1hW+C27Zt28eSReSSkhKT7du3fySrAAC0\nEVYlgaprceTg5eV169atW16Sbd7e3qmpqanecgkIIwfQAliVBLKm8NVKYrGYJRaLWcynwYlEIp26\nujq2rAIA0EZYlQSqrsXk8M4775yZMmXK4Q8//HAHTdPUjh07PgwICIhXRHAAAKAcLU4riUQinZ07\nd0acP39+GCGE+Pv7/zlz5szdzIY4mQeEaSXQIFiVBIqilNVKlZWVBvn5+TY9e/a8K6sXbjIgJAfQ\nIFiVBIqi8NVKsbGxY318fFKYqaSUlBSfsWPHxsoqAABNhlVJoK5aTA6RkZGRiYmJfswVVn18fFIe\nPHhgL//QANRfTGAMCXINImdDzmJKCdRKq66t1HAXM7NyCQCah1VJoK5aHDm4ubll/Pzzz+/X19fr\n3r9/32nu3Llb+/fvf1URwQEAgHK0mBy2bt06NyMjw61Dhw41wcHBh4yMjF5+//338xURHIC6wCe4\ngabBtZUAZACrkkDZFL5D+p9//um7du3azxp+ElxaWpqnrIIAUHdYlQSapsWRg7Ozc9aGDRsWu7u7\np0sWonk8nkAuAWHkAGoI10oCZVP4JrgBAwZcuXLlygBZvWBLkBwAANpO4cnh7NmzI44cOTJ5+PDh\n5/T09Gr/FwQ9ceLE32QVxL8CQnIAFYbLYYCqUnjNYf/+/aH37t3rUV9frys5rSSv5ACgyrKKs14X\nniNORaDwDBqrxeSQnJzc5+7duz2b+8hQAG2BwjNoixb3OfTv3/9qZmamqyKCAVB1uBwGaIsmaw71\n9fW6urq69T179rybk5PjYGdnl9uhQ4caQuS7lBU1B1AFqC2AulFYzcHX1zfp5s2bveLj4wNk9WIA\n6gK1BdB2TSYHJgPJaz8DgCpDbQEa0rbRZJPTStbW1gULFy78rrFhCkVR9MKFC7+TS0CYVgIVgE1t\n0JCqXyJFYdNKIpFIp6ysjCOrFwJQJ7jUNjSkbaPJJkcOPj4+KSkpKT4KjgcjB1AobZsqgPZT9dGk\nwj8mFECTMYXnuOw4EnEqQtnhgApjRpOqmBjkocnkcO7cueGKDARAGbRtqgCgtfB5DqDVVH2qAKC1\nFH7hPUVDcgB5QG0BNB1qDgDtgNoCQNsgOYBWQG0BoG0wrQRaAbUF0HSoOQA0A7UF0FaoOQA0A7UF\nANlAcgCNgtoCgGxgWgk0CmoLoK1QcwAgqC0ANISaAwBBbQFA3pAcQC2htgAgX5hWArWE2gLAv6Hm\nAFoFtQWA1kHNAbQKagsAyoHkACoNtQUA5cC0Eqg01BYAWgc1B9BIqC0AvBnUHEAjobYAoFqQHEAl\noLYAoFqUMq3E4/EERkZGL3V0dERsNrsuKSnJ93VAmFbSaE1NH6G2APBmNKLmYGdnl3vjxo3epqam\nz6UCQnLQaPxoPrmYd5EQQkiQaxA5GnRUyREBaAaNqTnI8k2A+sD0EYB60FXGi1IURQ8fPvycjo6O\n6MMPP9wxa9asXZLnIyMjX3/N5/MJn89XcITwppqaPooJjMH0EYAMJCQkkISEBLk9v1KmlYRCoaWl\npaWwqKjI3N/f/8+tW7fOHTRo0GVCMK2kKTB9BKBYGjGtZGlpKSSEEHNz86IJEyYclyxIg2bA9BGA\nelN4cqisrDQoKyvjEEJIRUVFp7Nnz47w8PC4reg4QL5iAmNIkGsQORtyFtNHAGpI4dNKubm5dhMm\nTDhOCCH19fW677///s/Lly9f9zogTCupFexsBlANGrGUtTlIDuoFtQUA1aARNQfQHKgtAGgmjByg\nVbCzGUC1YVoJlALTRwCqDdNKoBSYPgLQLhg5wL9g+ghAPWFaCeQK00cA6knWyUEp11YC5WtqhIDp\nIwAgBDUHrdXUJ69hZzMAEIKRg9ZqaoRgrG+MqSQAQM1B06HADKAdUJCGNkGBGUA7YJ8DtAkKzADQ\nHhg5aAhMHwFoN0wrQaMwfQSg3bDPQcthfwIAKAJqDmoG+xMAQBEwclAz2J8AAIqAmoOKQoEZANoC\nBWktgQIzALQFCtIaBgVmAFBFKEgrGQrMAKCKMHJQMhSYAUAVoeagICgwA4A8oSCtplBgBgB5QkFa\nxaHADACaAAVpGUOBGQA0AUYOMoYCMwBoAtQc2gkFZgBQJShIqwgUmAFAlaAgrWAoMAOANkJBugUo\nMAOANsLI4X/aOkJAgRkANBlGDv+DEQIAwP/TupEDRggAAC3TupEDRggAAC3TupEDRggAAC3T2H0O\n2KQGANoEm+BaCZvUAECbYBOchKZGB4RgkxoAwJtQ64J0U8VlQlBgBgB4E2oxcmjPJSxQYAYAaD+1\nGDlg+SkAgGKpZHJ49+d3SWl16evbLS0/RWIAAJAtlUwOGCEAACiXSi5l7buzLxIBAEAbaMU+h5Kq\nEiQGAIA2kHVyUMlpJXVIDAkJCcoOoVUQp2whTtlShzjVIUZ5UEpyiI+PD+jZs+ddJyen+998881S\nZcTwptTlPwzilC3EKVvqEKc6xCgPCk8OIpFIZ86cOT/Ex8cHZGZmuh46dCj4zp07LoqOAwBAFiJO\nRRB+NF+U5AZhAAANk0lEQVRqlaW6U3jN4dq1a2+tWrVqZXx8fAAhhERFRS0jhJBly5ZFEfKq5kAi\nX92XXvkqNmrV/0+j6RJdUreyTqqdTdikdmXt69uS5/SIHqlZWSPV3oF0INUrq6Xa9Yk+qVpZJdXe\nkXQklSsrX7UPpQjhv2o3IAakYmWF1P07UZ1I+ZflUu2GLENStqJMqp2jwyEvv3gp1W6ka0RefP5C\nqr0zuzMp/axUqt1Yz5iULC+RitO0gykpXlYsdf8u+l1I0dIiqXaLjhak8NNCqfauBl2JcIlQqr1b\np27k0eJHUu3Whtbk4aKHUu02HBuStzBPKk47IzvyYMEDqfs7dnYk9+ffl2rvYdyD3P3krlS7q6kr\nyZibIdXu0cWDpH2cJtXubeFNUmanSLX36dqH/PPhP1Jx9uvWj1ybdU3q/gOtB5LL4Zel2ofaDCV/\nhf0l1T6CN4KcCT0j1T7KYRT5fdrvUu3jnceT48HHpdonuUwiRyYdkYpzmvs0cjDwoNT9w73Cye7x\nu6XaP+r9Edk2eptU+0K/hWRjwEap9s8GfEbWDF8j1b56yGryBf8LqfYNwzeQRQMWScW5feR2Mtt3\n9uv7ST4memw0CfUJlWo/9t4x8p7be4QQQlirWIQmr35nxE2NIwFOAYQQQvRW65E6cR2hCEUuh10m\nA2wGEEIIMY4yJuW15YRFsciNiBvEg+tBCCGk5w89yZPyJ4StwybJs5LJvu/3kcjIyCY346rKddxk\nXXMgNE0r9Dh27Nh7M2fO3MXcPnjw4LQ5c+ZsZW4TQmgcOHDgwNH2Q5a/qxV++QyKoujmzss08wEA\nQLsovOZgZWX16OHDh92Z2w8fPuxubW1doOg4AACgaQpPDn369Em+f/++k0Ag4NXW1uodOXJk8tix\nY2MVHQcAADRN4dNKurq69T/88MOcd95554xIJNIJDw/f4+LickfRcQAAQDMUXZBu7oiLiwvo0aPH\nXUdHx/tRUVFLlR2Pra2twMPDI83b2zulb9++STRNk+LiYtPhw4f/6eTklOXv73+2pKTEmLn/2rVr\nlzs6Ot7v0aPH3TNnzoyQV1xhYWF7LSwsCt3d3W8zbe2JKzk5ube7u/ttR0fH+/PmzdusiDhXrlwZ\naWVlVeDt7Z3i7e2dcvr06ZHKjDM/P787n8+/4OrqmuHm5pa+efPmearYn03FqWr9WVVVpe/r65vo\n5eWV6uLikrls2bJ1qtifTcWpav3JHPX19Tre3t4po0ePPqWo/pT5m3iTN+/g4JCdm5vLq62tZXt5\neaVmZma6KDMmHo+XW1xcbCrZtmTJkvXffPPNpzRNk6ioqKVLly6NommaZGRkuHp5eaXW1tayc3Nz\neQ4ODtkikYglj7guXbo06ObNmz6Sv3TbEpdYLKZomiZ9+/ZNSkxM9KVpmowcOfJ0XFxcgLzjjIyM\nXLlx48aFDe+rrDiFQmHXlJQUb5qmSVlZmaGzs/O9zMxMF1Xrz6biVLX+pGmaVFRUGNA0Terq6nT9\n/PyuX758eaCq9WdTcapif9I0TTZu3Lhw6tSpP48ZMyaWphXz864yl89ISkrydXR0zObxeAI2m103\nZcqUwydPnhyn7LjoBqunYmNjx4aGhu4nhJDQ0ND9J06cGE8IISdPnhwXHBx8iM1m1/F4PIGjo2N2\nUlKSrzxiGjRo0GUTE5OS9saVmJjoJxQKLcvKyji+vr5JhBAyffr0A8xj5BknIY2vSFNWnF27dn3i\n7e2dSgghhoaG5S4uLncePXpkpWr92VSchKhWfxJCiIGBQSUhhNTW1uqJRCIdExOTElXrz6biJET1\n+rOgoMD69OnT786cOXM3E5si+lNlksOjR4+sunfv/pC5bW1tXcD851cWiqLo4cOHn+vTp0/yrl27\nZhFCSGFhIZfL5RYSQgiXyy0sLCzkEkLI48ePu0muulJ0/G2Nq2G7lZXVI0XFu3Xr1rleXl63wsPD\n95SWlhqrSpwCgYCXkpLi4+fnl6jK/cnE2a9fv+uEqF5/isVilre3dyqXyy0cOnToBTc3twxV7M/G\n4iRE9fpzwYIFm7799tslLBZLzLQpoj9VJjm0tP9BGa5cuTIgJSXFJy4ubuS2bds+vnz58iDJ8xRF\n0c3Fraz31FJcyjR79uz/5ubm2qWmpnpbWloKFy1atFHZMRFCSHl5uWFgYOCvmzdv/oTD4ZRJnlOl\n/iwvLzd87733ftm8efMnhoaG5arYnywWS5yamupdUFBgfenSpcEXLlwYKnleVfqzYZwJCQl8VevP\n33//fbSFhcVTHx+flMZGNITIrz9VJjmo4v4HS0tLISGEmJubF02YMOF4UlKSL5fLLXzy5ElXQggR\nCoWWFhYWTwmRjr+goMDaysrqkaJibUtc1tbWBVZWVo8KCgqsFR2vhYXFU+Y/88yZM3czU2/KjLOu\nro4dGBj4a0hIyMHx48efIEQ1+5OJc9q0aT8xcapifzI6d+78YtSoUX/cuHGjtyr2Z8M4k5OT+6ha\nf169erV/bGzsWDs7u9zg4OBDf/3119shISEHFdKfsi6ctPeoq6vTtbe3z8nNzeXV1NToKbsgXVFR\nYfDy5UsOTdOkvLy8U//+/a+cOXNmxJIlS9YzK6nWrVu3rGEhqKamRu/Bgwd29vb2OUwhSB5Hbm4u\nr2FBuq1x+fr6Jl6/ft1PLBZT8iqkNYzz8ePHlszX33333YLg4OAYZcYpFoupkJCQA/Pnz98k2a5q\n/dlUnKrWn0VFRV2YlTOVlZUdBw0adOncuXPDVK0/m4pTKBR2VaX+lDwSEhKGMKuVFNGfMn8Db3Kc\nPn16pLOz8z0HB4fstWvXLldmLA8ePLDz8vJK9fLySnVzc0tn4ikuLjYdNmzYucaWkK1Zs+YzBweH\n7B49etyNj49/R16xTZky5ZClpeVjNptda21t/XDv3r1h7YmLWdrm4OCQPXfu3C3yjnPPnj0zQkJC\nDnh4eKR5enreGjdu3IknT55wlRnn5cuXB1IUJfby8kplli/GxcUFqFp/Nhbn6dOnR6paf6alpXn4\n+Pjc9PLySvXw8Ehbv379kvb+3CgjTlXrT8kjISFhCLNaSRH9qXKfBAcAAMqnMjUHAABQHUgOAAAg\nBckBAACkIDkAAIAUJAeAVuDz+Qk3btzo3di5yZMnH8nJyXGQx+sOGzbsfFlZGUcezw3QHCQHgFZo\nahdqdna2Y0VFRScHB4echufEYvEb/3xNmTLlMHPpFgBFQnIAtVRRUdFp1KhRf3h7e6d6eHjcPnbs\nWBAhhPB4PMHSpUu/8fT0TPPz80tk/qIvKioyf++9937x9fVN8vX1Tbp69Wp/5nlmzJix18/PL7FX\nr143Y2NjxxJCSFVVVccpU6YcdnV1zZw4ceJvVVVVHelGLl9w+PDhKZIfVmVoaFi+ePHiDd7e3qnX\nrl17q6l4Pvjgg+iPPvpo+1tvvXXNwcEhJyEhgR8aGrrf1dU1MywsbB/zfGPHjo09fPjwFPn2JkAj\n5LVhAwcOeR6//PJL4KxZs3Yyt1+8eGFE068us85sWDxw4EAIs6M0ODg45u+//x5A0zTJy8uzcXFx\nyaRpmixfvnztTz/99D5N06SkpMTY2dn5XkVFhcHGjRsXhoeH76bpVxumdHV1627cuNGrYRwBAQFx\nku0URYmPHTv2HnO7qXhCQ0Ojmd23J0+eHMvhcF6mp6e7icViqnfv3smpqalezHPY2dk9KC8v76Ts\nPsehXYfSA8CBoz1HVlaWE4/Hy126dGnU5cuXBzLtPB4vNzc3l0fTNKmtrWWbmZk9o2mamJubP2V2\nFnt7e6dYW1s/LC8v79S7d+9kd3f320y7ra2t4M6dOz3Hjx9//MKFC3zmeXv16nWjseTg4uKSKXkJ\nC11d3TrJy6Y0Fc8HH3ywLyYmJpimaZKTk2Pv5OSUxTxm+vTp+0+cODGOud2vX79rd+7c6ansPseh\nXYfCPyYUQBacnJzup6Sk+Pzxxx+jvvjii6+HDRt2fsWKFasb3o+pE9A0TSUmJvrp6enVNrzPb7/9\nNtHJyel+w3a6iatgNnc/fX396tZeqZeJhcViiTt06FDDtLNYLHF9ff3rn02apilVuIopaBfUHEAt\nCYVCS319/er333//58WLF29ISUnxYc4dOXJkMvNv//79rxJCyIgRI85u2bJlHnOfW7dueRFCyDvv\nvHNGsp15nsGDB1+KiYmZSggh6enp7mlpaZ6NxWFra5snFAotm4u1sXjaorCwkKvsKxSD9sHIAdTS\n7du3PZYsWfIti8USs9nsuh9//PE/zLmSkhITLy+vW/r6+tWHDh0KJoSQLVu2zPv444+3eXl53aqv\nr9cdMmTIxe3bt3+0YsWK1fPnz//e09MzTSwWs+zt7R/ExsaOnT179n/DwsL2ubq6Zrq4uNzp06dP\ncmNxDBw48O/k5OQ+vXv3vkFI45/h0Vg8De/b8HHM7SdPnnQ1MzMr7tSpU8Wb9hlAW+DCe6BR7Ozs\ncm/cuNHb1NT0uSJe78GDB/Zz587d+scff4ySRzw7d+6MqKio6LRgwYJNbxYpQNtgWgk0iqLn5u3t\n7R9wOJyypjbBvWk8R44cmTxr1qxdb/IcAO2BkQMAAEjByAEAAKQgOQAAgBQkBwAAkILkAAAAUpAc\nAABACpIDAABI+T9crBvDDQoKmwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x2854950>" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }