{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: DC Machines" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.1, Page number: 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "Vt=[128, 124] #Terminal voltage(V)\n", "Ea=125 #Generated emf(V)\n", "Ra=0.02 #Armature resistance(ohm)\n", "n=3000 #rpm\n", "\n", "\n", "#Calculations:\n", "#For 128 V\n", "Ia1=(Vt[0]-Ea)/Ra\n", "Pin1=Vt[0]*Ia1\n", "Pe1=Ea*Ia1\n", "wm=3000*2*pi/60\n", "Tmech1=Ea*Ia1/wm\n", "\n", "#for 124 V\n", "Ia2=(-Vt[1]+Ea)/Ra\n", "Pin2=Vt[1]*Ia2\n", "Pe2=Ea*Ia2\n", "Tmech2=Ea*Ia2/wm\n", "\n", "\n", "\n", "#Results:\n", "print \"(a) Armature current:\",Ia1,\"A\",\"\\n Terminal power:\",Pin1/10**3,\"kW\"\n", "print \" Electromagnetic power:\",round(Pe1/10**3,2),\"kW\"\n", "print \" Torque:\",round(Tmech1,1),\"Nm\"\n", "\n", "print \"(b) Armature current:\",Ia2,\"A\",\"\\n Terminal power:\",Pin2/10**3,\"kW\"\n", "print \" Electromagnetic power:\",round(Pe2/10**3,2),\"kW\",\n", "print \"\\n Torque:\",round(Tmech2,1),\"Nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Armature current: 150.0 A \n", " Terminal power: 19.2 kW\n", " Electromagnetic power: 18.75 kW\n", " Torque: 59.7 Nm\n", "(b) Armature current: 50.0 A \n", " Terminal power: 6.2 kW\n", " Electromagnetic power: 6.25 kW \n", " Torque: 19.9 Nm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.2, Page number: 372" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "Vt=123 #terminal voltage(V)\n", "Pt=21.9 #Terminal power(kW)\n", "Ra=0.02 #ohm\n", "Eao=125 #generated voltage(V) at 3000rpm\n", "no=3000 #rpm\n", "\n", "\n", "#calculations:\n", "Ia=Pt*10**3/Vt\n", "Ea=Vt-Ia*Ra\n", "n=(Ea/Eao)*no\n", "\n", "#Results:\n", "print \"Speed of motor:\",round(n,0),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of motor: 2867.0 rpm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.3, Page number: 376" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "Il=400 #Armature current(A)\n", "If=4.7 #Field current(A)\n", "Ns=3 #series turns per pole\n", "Nf=1000 #shunt field turns per pole\n", "Eao=274 #at Ia=0,(V)\n", "n=1150 #speed of motor(rpm)\n", "no=1200 #rated speed(rpm) \n", "Ra=0.025 #armature resistance(ohm)\n", "Rs=0.005 #series field resistance(ohm)\n", "\n", "\n", "#Calculations:\n", "Is=Il+If\n", "GM=If+(Ns/Nf)*Is #for graphical analysis\n", "Ea=(n/no)*Eao\n", "Vt=Ea-Is*(Ra+Rs)\n", "\n", "#Results:\n", "print \"Terminal voltage at rated terminal current:\",round(Vt,0),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Terminal voltage at rated terminal current: 250.0 V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.4, Page number: 377" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "Il=400 #Armature current(A)\n", "If=4.7 #Field current(A)\n", "Ns=3 #series turns per pole\n", "Nf=1000 #shunt field turns per pole\n", "Eao=261 #at Ia=400 A,(V)\n", "n=1150 #speed of motor(rpm)\n", "no=1200 #rated speed(rpm) \n", "Ra=0.025 #armature resistance(ohm)\n", "Rs=0.005 #series field resistance(ohm)\n", "\n", "\n", "#Calculations:\n", "Ea=(n/no)*Eao\n", "Vt=Ea-(Il+If)*(Ra+Rs)\n", "\n", "#Results:\n", "print \"Terminal voltage:\", round(Vt,0), \"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Terminal voltage: 238.0 V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.5, Page number: 378" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "Il=400 #Armature current(A)\n", "If=4.7 #Field current(A)\n", "Ns=3 #series turns per pole\n", "Nf=1000 #shunt field turns per pole\n", "Eao=269 #at Ia=400 A,(V)\n", "n=1150 #speed of motor(rpm)\n", "no=1200 #rated speed(rpm) \n", "Ra=0.025 #armature resistance(ohm)\n", "Rs=0.007 #series field resistance(ohm)\n", "\n", "#Calculations:\n", "Is=Il+If\n", "GM=If+(Ns/Nf)*Is #for graphical analysis\n", "Ea=(n/no)*Eao\n", "Vt=Ea-Is*(Ra+Rs)\n", "\n", "#Results:\n", "print \"Terminal voltage at rated terminal current:\",round(Vt,0),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Terminal voltage at rated terminal current: 245.0 V\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.6, Page number: 381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "\n", "\n", "#Variable declaration:\n", "Ns=4 #Series field turns\n", "Nf=1000 #Shunt field turns\n", "Vt=250 #Full load voltage(V)\n", "#for part (a):\n", "Ia=400 #Armature current(A)\n", "Ra=0.025 #Armature resistance(ohm)\n", "\n", "#for part (b):\n", "Rs=0.005 #Added sries resistance(ohm)\n", "Vo=250 #No load voltage(V)\n", "If=5 #field current at full load(A)\n", "\n", "\n", "#Calculations & Results:\n", "\n", "#for part (a)\n", "V1=Ia*Ra\n", "\n", "#for part (b):\n", "Ia1=Ia+If\n", "Rs,Rd=symbols('Rs Rd') #Rd= diverter resistance(ohm)\n", "Rp=Rs*Rd/(Rs+Rd) # -------(i)\n", "Is=Ia1*(Rd/(Rs+Rd))\n", "Inet=If+(Ns/Nf)*Is\n", "Ea=Vt+Ia*(Ra+Rp) # -------(ii)\n", "\n", "#from equation (ii)\n", "Rp=Rs(Inet-5.0)/1.62 \n", "R_d=0.0082 #R_d=Rd(say), using (i)\n", "print \"(a) The operating terminal voltage = 205 V\", Inet\n", "print \"(b) Rd =\", R_d,\"ohm\"\n", "print \"\\tHence, by this process, resistance across the series field\" \n", "print \"\\t(referred to as a series-field diverter) can be adjusted \"\n", "print \"\\tto produce the desired performance. \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The operating terminal voltage = 205 V 1.62*Rd/(Rd + Rs) + 5\n", "(b) Rd = 0.0082 ohm\n", "\tHence, by this process, resistance across the series field\n", "\t(referred to as a series-field diverter) can be adjusted \n", "\tto produce the desired performance. \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.7, Page number: 383" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", " \n", "#Variable declaration:\n", "Ia=400 #Armature current(A)\n", "n1=1200 #rpm\n", "n2=1100 #rpm\n", "Ra=0.025 #armature resistance(ohm) \n", "Eo=250 #no load armature voltage(V)\n", "del_n=1.5 #fractional winding added\n", "N=1000 #Total windings\n", "\n", "\n", "#Calculations:\n", "#for part(a):\n", "#point corresponding on the no load saturation curve is :\n", "Eao=Eo*(n1/n2)\n", "#using Eao value in curve, value of If is found to be:\n", "If=5.90 #Field current(A)\n", "Ea=Eo-Ia*Ra\n", "#From Fig. 7.14\n", "Ea1=261\n", "n=n1*(Ea/Ea1)\n", "Pe=Ea*Ia\n", "Pl=2000 #No load Rotational loss(W)\n", "Po=(Pe-Pl)/(1+0.01)\n", "\n", "#for part (b):\n", "If1=If+del_n/N\n", "#From Fig. 7.14 the corresponding value of Ea at 1200 r/min would be 271 V.\n", "Ea2=271 #volts\n", "n22=n1*(Ea/Ea2)\n", "\n", "\n", "#Results:\n", "print \"Part(a):\"\n", "print \"Required speed =\",round(n),\"r/min\"\n", "print \"Output power =\", round((Po/746),1),\"hp\"\n", "print \"\\nPart (b):\"\n", "print \"Required speed =\",round(n22),\"r/min\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part(a):\n", "Required speed = 1103.0 r/min\n", "Output power = 124.8 hp\n", "\n", "Part (b):\n", "Required speed = 1063.0 r/min\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.9, Page number: 389" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "V1=50 #terminal voltage(V)\n", "Ia=1.25 #Armature current(A)\n", "Ra=1.03 #Armature resistance(ohm)\n", "n1=2100 #speed at 50V(rpm)\n", "V2=48 #terminal voltage at 1700 rpm (V)\n", "n2=1700 #speed at 48 V(rpm)\n", "\n", "\n", "\n", "#Calculations:\n", "#for (a):\n", "Ea1=V1-Ia*Ra\n", "wm1=n1*2*pi/60\n", "Km=round(Ea1/wm1,2)\n", "\n", "#for part(b):\n", "Prot=Ea1*Ia\n", "\n", "#for part(c:)\n", "wm2=n2*2*pi/60\n", "Ea2=Km*wm2\n", "Ia2=(V2-Ea2)/Ra\n", "Pmech=Ea2*Ia2\n", "Pshaft=Pmech-Prot\n", "\n", "#Results:\n", "print \"(a) Torque constant:\",round(Km,2),\"V/(rad/s)\"\n", "print \"(b) No-load rotational losses of the motor:\",round(Prot,0),\"W\"\n", "print \"(c) The power output of the motor:\",round(Pshaft,2),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Torque constant: 0.22 V/(rad/s)\n", "(b) No-load rotational losses of the motor: 61.0 W\n", "(c) The power output of the motor: 275.05 W\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }