{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11: Speed and Torque Control" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.1, Page number: 561" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable declaration:\n", "Vdc=240 #DC supply (V)\n", "D=0.75 #Duty cycle\n", "Rf=187 #field resistance(ohm)\n", "Lf=4.2 #field winding inductance(H)\n", "T=1 #switching period(msec)\n", "\n", "\n", "\n", "#Calculations:\n", "If=D*(Vdc/Rf)\n", "tau=Lf/Rf #time constant(msec)\n", "del_if=(2*Vdc/Rf)*(T/tau)*D*(1-D)\n", "\n", "\n", "#Results:\n", "print \"Avg field current:\",round(If,2),\"A\"\n", "print \"Magnitude of currnet ripple:\",round(del_if,1),\"mA\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Avg field current: 0.96 A\n", "Magnitude of currnet ripple: 21.4 mA\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.2, Page number: 563" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "from math import *\n", "\n", "#Variable declaration:\n", "n1=1800 #r/min\n", "n2=3600 #r/min\n", "Va=240 #terminal voltage(V)\n", "Ifo=0.34 #No-load field current(A)\n", "Ra=0.05 #Armature resistance(ohm)\n", "Rsh=187 #Shunt field resistance(ohm)\n", "\n", "#Calculations:\n", "wm=symbols('wm')\n", "wm1=float(2*pi*n1/60)\n", "wm2=float(2*pi*n2/60)\n", "def Pload(wm):\n", " return (22.4*(120*pi)**-3)*(wm)**3\n", "\n", "T1=Pload(wm1)*1000/wm1\n", "T2=Pload(wm2)*1000/wm2\n", "\n", "Kf=Va/(Ifo*wm2)\n", "def If(T,wm):\n", " return (Va/(2*Kf*wm))*(1+sqrt(1-(4*wm*T*Ra)/Va**2))\n", "\n", "Rf1tot=round(Va/float(If(T1,wm1)))\n", "Rf2tot=round(Va/float(If(T2,wm2)))\n", "Rrh1=Rf1tot-Rsh\n", "Rrh2=Rf2tot-Rsh\n", "\n", "\n", "#Results:\n", "print \"----------------------------------------------------------------\"\n", "print \"r/min Tload[N.m] If[A] R(f)tot[ohm] Rrheostat[ohm]\"\n", "print \"----------------------------------------------------------------\"\n", "print n1,\"\\t \",round(float(T1),1),\"\\t\\t \",round(float(If(T1,wm1)),3),\"\\t\",Rf1tot,\"\\t \",Rrh1\n", "print n2,\"\\t \",round(float(T2),1),\"\\t\\t \",round(float(If(T2,wm2)),3),\"\\t\",Rf2tot,\"\\t \",Rrh2\n", "print \"----------------------------------------------------------------\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "----------------------------------------------------------------\n", "r/min Tload[N.m] If[A] R(f)tot[ohm] Rrheostat[ohm]\n", "----------------------------------------------------------------\n", "1800 \t 14.9 \t\t 0.678 \t354.0 \t 167.0\n", "3600 \t 59.4 \t\t 0.333 \t720.0 \t 533.0\n", "----------------------------------------------------------------\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.3, Page number: 567" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "from math import *\n", "\n", "#Variable declaration:\n", "Rf=109 #Field resistance(ohm)\n", "Vf=300 #Rated field voltage(V)\n", "Ra=0.084 #Armature resistance(ohm)\n", "Kf=0.694 #Geometric constant(A.rad/sec)\n", "\n", "\n", "#Calculations:\n", "If=Vf/Rf #Resulting field current(A)\n", "w_rated=2500*(pi/30) #Rated speed(rad/sec)\n", "P_rated=100*746 #Watts\n", "T_rated=P_rated/w_rated #Nm\n", "Va=[0]*102\n", "NoLoadRPM=[0]*102\n", "FullLoadRPM=[0]*102 \n", "for n in range(1,102,1):\n", " Va[n-1]=250*(1+(n-1)/100)\n", " T=0 #Zero torque\n", " w=(Va[n-1]-T*Ra/(Kf*If))/(Kf*If)\n", " NoLoadRPM[n-1]=w*30/pi\n", " T=T_rated\n", " w=(Va[n-1]-T*Ra/(Kf*If))/(Kf*If)\n", " FullLoadRPM[n-1]=w*30/pi\n", "\n", "print\"The plot is as shown:\"\n", "plot(Va,NoLoadRPM)\n", "plot(Va[20] ,NoLoadRPM[20] ,'r+')\n", "plot (Va[50] , NoLoadRPM[50] , 'r+')\n", "plot (Va[80] ,NoLoadRPM[80] , 'r+')\n", "plot (Va, FullLoadRPM,'.')\n", "plot (Va[20] ,FullLoadRPM[20] ,'o')\n", "plot (Va[50] , FullLoadRPM[50] , ' o' )\n", "plot (Va[80] , FullLoadRPM[80] ,'o' )\n", "title('Speed vs Armature voltage')\n", "xlabel('Armature voltage [V] ')\n", "ylabel('Speed [r/min] ')\n", "annotate('+ = Zero torque',xy=(270,2300))\n", "annotate('o = Full load torque',xy=(270,2100))\n", "ylim(1000,2500)\n", "xlim(250,500)\n", "show()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "The plot is as shown:\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['Polygon', 'seterr', 'poly', 'cosh', 'ldexp', 'hypot', 'flatten', 'conjugate', 'diff', 'tan', 'Circle', 'roots', 'plot', 'isnan', 'eye', 'trace', 'fabs', 'floor', 'diag', 'invert', 'nan', 'modf', 'sqrt', 'frexp', 'source', 'add', 'degrees', 'take', 'var', 'zeros', 'prod', 'log10', 'plotting', 'product', 'exp', 'power', 'multinomial', 'copysign', 'transpose', 'expm1', 'ceil', 'test', 'beta', 'ones', 'isinf', 'sinh', 'vectorize', 'sign', 'trunc', 'cos', 'pi', 'e', 'f', 'tanh', 'det', 'radians', 'mod', 'binomial', 'solve', 'log', 'fmod', 'reshape', 'sin', 'log1p', 'gamma', 'interactive']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVOX+wPHPDO7ivmACSqmp4KDjmiU6ikpi5oIk4HLT\n/Gmbad66WfdW2CJloVfretMstYuau2WkaSqmlkuIC1ouBMpg7pbiBjjP74+J47DDwLB+368Xr2bO\nnDnnmePEl+d8n+f76JRSCiGEEKKA9CXdACGEEGWTBBAhhBB2kQAihBDCLhJAhBBC2EUCiBBCCLtI\nABFCCGEXCSCizDCZTHz22Wcl3QwBJCQkoNfrsVgsJd0UUYIkgIg8bdu2jc6dO1OzZk3q1q3LQw89\nxM8//1zs7dDpdOh0OoefJzk5GWdnZ/z9/R1+rsw8PDzYtm1bsZ+3sCS4V0wSQESurly5wuDBg5k2\nbRrJyclcvHiR9957j2rVqpV00xxmzZo1NGvWjKioKM6fP5/jfmlpaUV+bp1OR2Hm9t69e7cIW5N/\nxRHYRekjAUTk6tdff6VKlSoMHz4cnU5H5cqVMZlMtGvXDoDFixfzyCOPMGnSJOrXr4+HhweRkZHa\n+y9fvkxwcDD169enYcOG/P3vf89w2+Ojjz7Cw8OD2rVr06tXL+Li4rTXvv76a5o3b079+vWZNGkS\nSqlsf7mePXuWGjVqcPXqVW1bTEwMjRo14u7du/zyyy88/PDDODs706BBAwIDA3P9zEuWLGH8+PE8\n8sgjREREZHjNw8ODmTNn0r59e2rXrk1cXBx6vZ7FixfTvHlzGjRowCeffML+/ftp3749zs7O/N//\n/Z/2/ri4OHx8fKhfvz516tQhICBAa/fo0aM5c+YMgwYNolatWnz44YdERUXh7u6epQ3pvZTQ0FCG\nDx/O6NGjqVevHkuWLMnzmuf3ulksFl599VVcXFyoW7cugYGBGfYFUErxz3/+k507d/L8889Tq1Yt\nXnjhBQCee+45XF1dcXZ2xmAwsHXrVu19N27cIDAwkFq1auHl5cXMmTMzfM6EhAT8/f2pW7cu9913\nH++//36u/2aihCghcnH16lVVp04dNXbsWLVp0yZ16dKlDK8vWrRIVapUSf33v/9VSim1fv16VatW\nLXX+/HmllFL9+vVTzz33nLpz5466cuWK6tatm5o9e7ZSSqmlS5eqVq1aqd9++00ppVRYWJjq0KGD\nUkqppKQk5ezsrL755hullFLz5s1TlSpVUp999lm27ezTp4/69NNPtecvvfSSeuaZZ5RSSg0bNkzN\nmDFDKaVUamqq2rt3b46fNyEhQTk5OanExES1YMEC5e3tneF1Dw8P1bVrV3XhwgWVkpKi4uPjlU6n\nU5MmTVJpaWlq69atqkqVKmrYsGHq6tWrKikpSTVp0kRt3rxZKaVUXFyc+uGHH7Rr6+vrqyZOnJjh\n+Fu3btWeb9++Xbm5uWVpQ/o+b775pqpWrZrauHGjUkqp27dv53rNC3LdPvroI9WmTRuVlJSkbt26\npYKCglRAQIBSSmmf++7du0oppUwmU5Z/mxUrVqjr168rpZT6+OOPVb169dStW7eUUkq98MILqn//\n/io5OVlduHBBdezYUbm7uyullEpLS1Nt2rRRYWFh6u7duyoxMVE98MADat26dTn+u4mSIQFE5OnI\nkSNq1KhRytXVVen1ejVgwAD1+++/K6WsAaRZs2YZ9u/Ro4f69NNPVUJCgqpatar2S0MppZYtW6a6\nd++ulMr6S+fu3buqRo0a6vjx42r+/PmqZ8+eGY7r4eGRYwBZuHCh6tOnj1JKKYvFotzd3dXOnTuV\nUkqNGTNGTZw4USUlJeX5Wd9++22tfZcuXVKVKlVSMTExGdoQERGhPU//RXr27FltW6NGjdTKlSu1\n54GBgeqDDz7I9nwbNmxQbdu2zXD8ggaQvn37aq/ldc0zy+26Pfzww2rhwoXavr/99puqVKmSunnz\nZrYBxHbf7DRs2FDt27dPKaVU06ZN1fbt27XXlixZon3OqKioLN+pGTNmqODg4FyPL4qf3MISeWrX\nrh3/+9//MJvNHD9+nEuXLvHcc89pr7u6umbY383NjfPnz5OUlERqair33Xcf9erVo169ejz99NP8\n+eefAJjNZiZPnqy91qBBAwAuXrzIxYsXsz1uToYNG8ZPP/3EuXPn+OGHH9Dr9fTo0QOA9957j5SU\nFLp06ULbtm1ZsGBBjsf54osvtFtcDRo0wGQysWTJkgz73HfffVne5+Lioj2uWrVqlud37tzRPvOw\nYcO020LBwcHcuHEjx/bkR5MmTbTHZrM512ueWW7X7cKFCzRr1kzb193dnbt373Lp0qVsj5U5D/L2\n22/TqlUr6tSpQ7169bhy5QrJycnasW3/fW0fm81mzp49q7W/Xr16hIWF8ccffxTwyghHq1TSDRBl\nS8uWLRk7dixz5szRtiUlJWXYJzExkb59+9KkSROcnZ25cuVKtknW++67j7CwMIYPH57ltWPHjrF5\n8+YM28xmc47tqlevHv3792fFihUcO3aM4ODgDOf5/PPPAfjpp5/o3bs3JpOJBx98MMMxfvzxR06d\nOsU777zDzJkzAbh+/TqHDx8mPDwcvd7+v7fSP/+0adOoXbs2p06dolatWnzzzTc888wzWfZLV6VK\nFW7evKk9t1gsWfIQtvK65pnldt1cXFw4ffq09jwxMRG9Xk/Dhg2zDC7IfK7vv/+eefPmsWPHDu06\nN27cWMthNW7cmKSkJFq1agVk/Ldt0qQJDz74IEePHs2z/aJkSQ9E5OrEiRP85z//4cKFC4D1l8jy\n5cvp0qWLts/Zs2eZP38+YE18Hzp0iMcee4wHHniALl268Nprr2l/ZZ8+fZrdu3cDMGHCBGbMmMGp\nU6cA6/DZ9evXA+Dv7090dDTffvstAJ988kmuAQQgJCSEJUuWsGbNGkJCQrTt69ev59y5cwDUrl0b\nvV6f7S/XJUuW0L9/f3755RcOHTrEoUOHiI2N5datW1o77KFsEv83b96kSpUq1KxZk/Pnz/Phhx9m\n2Ld+/frEx8drz9u2bUtycjLffvstFouFmTNn5tpjadGiRa7XPDs5XbcRI0Ywa9Yszp49y+3bt/nX\nv/7F4MGDqV69epZjZG73jRs30Ov11KlTh7S0NGbOnMmVK1e014cPH857772njez7+OOPtX+TXr16\nYbFY+Pjjj0lJSUEpxfHjxzlw4ECOn0GUDAkgIlfOzs5s3boVb29vatasSadOnWjRogUfffSRtk+3\nbt2IjY2lQYMGvPDCCyxbtky7hbNq1SrOnj1L8+bNqV27NoMGDeLMmTMAjBo1igkTJjBgwABq165N\n69attQDi6upKREQEzzzzDPXr1+fo0aParZWcPP7445w6dYr77rsPg8Ggbd+1axdGo5GaNWvi7+/P\nzJkztb98092+fZtVq1YxadIkGjdurP14eHgwevRovvjiixzPm9df+ravh4aGsmfPHmrVqoW/vz+P\nP/54htdffvllXn/9derWrcusWbOoV68ec+bMYfTo0TRt2pTKlStnGK2U3dyY3K55Qa7b888/z+OP\nP06HDh1wcXHhzp07LFy4MNvPNWnSJCIiIqhTpw5Tpkxh4MCB9OnThwceeAAPDw90Ol2G22Hvvvsu\nzs7O3HffffTp04eAgACth1epUiW+++47tm7dqt3qGzNmTK49L1EydErJglLCfosXL+azzz5j586d\nJd0UUYZ99tlnfPrpp+zZs6ekmyIKQHogQohid+7cOfbt2wdY53x8+OGHDB48uIRbJQpKkuiiUIqr\nvIgoX1JSUvjb3/5GYmIiVatWZcSIEbz00ksl3SxRQHILSwghhF3kFpYQQgi7lJtbWB06dODQoUMl\n3QwhhChT2rdvz8GDB+16b7npgRw6dEgrtlfRf958880Sb0Np+ZFrIddCroX1JzlZ0aKFAqw/0dHW\n7YX5w7vcBBAhhBBZKQWjR4OzM8TFwbJl1m0dOxb+2BJAhBCinProI9DrISIC/v53a+CwqVZTaOUm\nByLuMZlMJd2EUkOuxT1yLe4p79di+3bo08f6+JFHYNs2qFKl6M9TbobxFnYlNyGEKOvi4+GBB6yP\nnZzg7Flo3Dj39xTmd6fcwhJCiDLuxg1o0eJe8DhwANLS8g4ehSUBRAghyiilYNQoa4L8t99g+XLr\nNqOxeM4vAUQIIcqg9AT50qXw0kvWwBEUVLBjTNgwoVBtkCS6EEKUIUWZID9x+USh2uKwHkhiYiI9\ne/bEYDDQunVrbYW3dOkrvNkuMhMWFoanpycGgyHDanTR0dEYjUa8vLyYPHmyo5oshBClVnw86HTW\n4OHkBOfPw65dBQ8eEzZMwLTYhP9Sfyo7VS5UmxwWQKpUqcK8efM4cuQI0dHRLFy4UJvxmJiYyJYt\nW2jevLm2f3R0NGvXruXIkSNs2rSJiRMnkpqaCsDYsWP5/PPPOXr0KKdPn2bdunWOarYQQpQqmRPk\n0dGFS5CfuHyCHad3sPHURmpWrlmotjksgLi4uNCuXTvAuqqdt7c3Z8+eBWDq1KlZeiSRkZEEBQXh\n5OSEq6srXl5e7N27lzNnzmCxWDD+lRUaNWoUkZGRjmq2EEKUCpkT5PbOILftcfxx+w9qVK4BQOem\nnVk8ZHGh2lgsSfSEhAT2799Pjx49+Oqrr3Bzc8Pb2zvDPklJSbi5uWnP3dzcMJvNJCUlZVjC09XV\nNc+1sYUQoiybOzdrgtzeGeS2PY4JGyawLGAZgZ6BbBm9hbrV6haqnQ5PoicnJxMYGMicOXNwcnJi\nxowZbNmyRXu9KCf/hYaGao9NJlO5n20qhChftm0DX1/rYx8f2LoVKtuRppiwYQInLp+gRuUaWp6j\nc9POLBi0gIN7DuJ51JN/H/13odvr0ACSmppKQEAAISEhDBkyhCNHjpCQkED79u0BMJvNdOrUib17\n9+Lm5kZiYqL2XrPZjLu7e7bbbXsqtmwDiBBClBW2M8j1evj994LnOGyDxrU719iduBuAwa0HE+gZ\nyIJBC6hbrW6WP66nT59ud7sdFkCUUjz11FN4enry4osvAmAwGDh//ry2z/333090dDT169fH39+f\np59+milTpnDu3DliY2Pp2rUrlStXRq/XExMTg9FoZOnSpYwZM8ZRzRZCiGJz4wYYDNYAAtYZ5PZO\nAky/VQXQpGYT4F6eo7C3qnLisBzI7t27iYiIYPv27RiNRoxGIxs3bsywj+1a2p06dWLo0KF4e3vz\n6KOPMn/+fCr/1XdbtGgR48aNw8vLi2bNmjFs2DBHNVsIIRzONkEeH2/fDPLckuN7xu8psjxHbqSY\nohBCFKO5cyF9OttLL8EHH9h3HNNik9bjSL9FNWHDBO1WVX4V5nenBBAhhCgGRZEgt81zpFpS+f63\n7+nctHOhehoSQJAAIoQonWwT5JUqWUusN2pk37Fsex2DWw+milOVAvc4MivM706phSWEEA5w4wZ4\ne1snAYL9CfKchuQ6MjmeX1KNt5RZt26dNugg/cfJyYnvvvuuSM/z559/8t///rdIjymEsCbDR468\nN4P8yy8LV2I9c+mR4kiO55fcwiqkqKgolixZwqJFixxy/AULFrB8+XK2b9+er/3Tr4HtCLfsJCQk\nMGjQII4cOZLvtty9excnJ6d87y9ERWObIH/5ZchUsSlfbHscywKWEbImhI2nNhY615ETWZGwBOX1\ni7owTpw4wdtvv83//vc/bdtbb72Ft7c3bdu25dVXXwWswaB169Y8+eSTdOjQAbPZzKRJk/D09MTT\n05Mvvvgiy7GnTZtGXFwcRqORV155BaVUtu+JiorCx8dHG2KtlOL//u//aN26NY8++igDBw5kzZo1\nAHh4eGjVlX/++Wd69+4NWKsRBAcH0759e7y8vFi1apXDrpkQJWHbNmul3MmTrQnylBT7ggc4tvRI\nUZMcSCHlJ3IvW7aMD7IZq9eqVStWrlyZ7XtSU1MJCQlh1qxZ2sz7r7/+mqSkJA4fPozFYmHw4MF8\n//33tGzZklOnTrFs2TI6derEsmXLOHnyJMeOHePKlSsYDAZ8fX1xdXXVjv/+++9z9OhRYmJitDZm\n9x6AmJgYjh8/jqurK8uXL8dsNnP8+HEuXLhA69ateeqpp4Ccg+kbb7zBY489xvLly/njjz/o3Lkz\njz76KLVq1crz2glRmhVVgjy30iN1q9VlZWD2vydKmgQQOz300EPcuXOH5ORkrly5olULnjlzJv36\n9cuwb0hICCEhIQU6/uuvv47BYCAwMFDbtnnzZjZv3qyd68aNGyQkJNCyZUuaN29Op06dAOskzqC/\nliarX78+vr6+/PTTTwwfPlw7VubAl9N7GjVqRNeuXbXgs2vXLkaMGAFA48aN6ZO+sk0uNm/ezJYt\nW/jwww8BSEtLIzExEU9PzwJdEyFKi6KcQQ4ZZ5FnLj1SmkkAsdOePXsA2LFjB4sXL841B7J06VLt\nl6etli1bZns7JyoqinXr1nHgwIEsr73++uuMGzcuw7aEhARq1sxY1982QCil8nWrLXNQSX+P7bEz\n3y+1fazX67FYLADcvn07w7G+/vpr7r///jzbIERplj6DfNky6/Plywu+jGy60jy6Kr8kB1JI+bmF\nNXLkSGJiYrL8ZBc8rl69ytixY/niiy+yBAU/Pz8WLVqk/XI+f/48ly5dynIMHx8fVq1ahVKKK1eu\nsH37drp3755hn+rVq3Pz5s0c37Nt2za6d++e5fP16NFDa/fFixeJiorSXnNzc+Pnn38GyLDol5+f\nH/PmzdOex8bG5nq9hCiN0kusL1tmTZAXdA3yzKVHSvPoqvySHkgh6XS6Ik2kf/LJJ1y8eJGnn346\nw/bXXnuNwMBAjh07RseOHalSpQpVq1blyy+/zNKGESNGsHv3bjw9PdHpdISFhdG0adMMx3NxcaFD\nhw54enoyaNAg3nvvvWzfc/LkySzH3rp1K61bt+aBBx7IEGTefPNNnnrqKVxcXPDx8dHe9/bbb/PM\nM8/g6elJpUqVcHd3l0XBRJlRVCXWbW9TTdgwIcvCTmUpcKSTYbyiUMaOHctjjz1GQEBASTdFiCJV\nFAny3EqPpL9e0rkOGcYrSpQjhzILUdySk62BIz14HDgAqan2ja7K7TZV+uiqstjzSCe3sEShOGoC\npRDFLX0G+fLl1uf2JMgzTwIsD7epciM9ECFEhZeeIF++3L4EebqyNAmwKEgORAhR8URFgclUakus\nFyepxiuEEAVwdV0U9XubgMKXWC+rkwCLggQQIUSFkZxsLbE+5q8Z5DEx0KFDwY9THiYBFgW5hSWE\nKPeUgnf6RnF3WxQAoUyHN9+0vmgyWX8KwBELO5UUuYUlhBA5uFdi3cQ//mHi/feBUCA0NN/HqGij\nq/JLAogQolyyTZD36GF9bs8Mcsg6i3xZwLJSMQmwpDlsGG9iYiI9e/bEYDDQunVrZv5VHH/q1Kna\nmhOPPfYYly9f1t4TFhaGp6cnBoOBzZs3a9ujo6MxGo14eXkxOX21FiGEyEZ8vHVtDl9fa8C4cAF2\n7swUPPJxy8q2dlVOJdYrcvAAB+ZAzp8/z8WLF2nXrh3Jycl07NiRVatWceXKFXr16oVer2fatGnc\nuXOH2bNnEx0dzdNPP82ePXs4d+4cPXr04MSJE1SuXBlvb2+WLFmC0WhkyJAh/O1vf2Po0KEZP4jk\nQISo0JKTrSXWExKsz+1JkNveqrp25xq7E3cDZT/PkZtSWcrExcWFdu3aAeDs7Iy3tzdnz56ld+/e\n6PXW0z7yyCMkJSUBEBkZSVBQEE5OTri6uuLl5cXevXs5c+YMFotFWwNj1KhRUohPCKFRCkJCoFYt\na/BIX4PcntFVthMB467EAffyHNLjyKpYciAJCQns378/S9mLBQsWaIsYJSUlZVicyM3NDbPZjJOT\nE+7u7tp2V1dXzGZzcTRbCFHKzZkDU6ZYH7/yCrz3Xu77b4vcxvq569Hd0aGqKhK7JXL1gavZJsdX\nB67m5S0vl8teR1FxeABJTk4mMDCQOXPmZFjC9N1336VKlSqMHDmyyM4VajOqwmQyYSrg0DwhRNlg\nmyDv2RO+/z7vBPm2yG0sn7yckXH3fufMPDiTfX33cevBW9kmx0vrUrKFERUVlWEdn8JwaABJTU0l\nICCAkJAQhgwZom1fsmQJkZGRbNu2Tdvm5uZGYmKi9txsNuPu7p7t9vQ1wjMLLcCwPCFE2WNbYr1y\nZUhKyv8M8vVz12cIHgD/uPAP4vbGUdtUu1wHDVuZ/7iePn263cdyWA5EKcVTTz2Fp6cnL774orZ9\n06ZNzJw5k6+//ppq1app2/39/VmxYgVpaWmYzWZiY2Pp2rUr7u7u6PV6YmJiAOvysP7+/o5qthCi\nFEpOhvvvz1hiPSWlYOVHdHeyX3agWZVmZaZuVWnjsACye/duIiIi2L59O0ajEaPRyMaNG5k0aRLJ\nycn069cPo9HIs88+C0CnTp0YOnQo3t7ePProo8yfP5/Kf/VJFy1axLhx4/Dy8qJZs2YMGzbMUc0W\nQpQiOSXI/xpTk28TNkxg36V92b7m2cxTgoedpJSJEKJU+ve/If3mxT/+gXUGuZ1Mi03s27KPbhu7\n8ebVN7XtES0iCJkTQp+BfXJ5d/kmpUyEEOXG1q3Qt6/1ca9esGVL4Uqsp4+uuvXgLa7Uv8Kq46uo\nlFIJqkHIpIodPApLAogQolT47Tdo0cL6uKAJ8syk9EjxkFtYQogSlZwM7drB6dPW50VRYr0sLuxU\nUkrlTHRRNBISEqhevbo2EKFjx46kpqbmuH9oaCjh4eEAPPnkk6xZsybLPjltt6dtBoMhy/bTp0+z\nPH1haSFyYLFAcLA1QX76dOFmkEPGWeQ1K9cs10vJlhZyC6sMaNmypTaMOS86nQ6dTpflcU77OEJ8\nfDzLli0jODg43++5e/cuTk5ODmuTKF2KKkEuCzuVLOmB2Ondd9+lbdu2tG3blvcLMzzETs7Oztrj\n1atXM3bsWO25bXc0r67pt99+i8FgwMvLi5EjR3Lnzh3AOrmoa9eutGnThieffBKLxQLATz/9RNu2\nbenSpQvz5s3L9pjTpk1j586dGI1G5syZw+3btwkODsbLywuDwcB3330HwOLFi3n88cfx8/Ojf//+\n3Lp1i8GDB+Pl5cXw4cN56KGHOHDgQK6f99y5czz22GO0b9+eDh06sGPHjnxfQ1H8tm61Vsp98UVr\ngjwlpWDBw7ZC7h+3/5BeRwmTHogdfvzxR1asWMGhQ4ewWCx07twZk8lEt27dMuwXFBTE8ePHs7z/\n73//O6NGjcr3+eLi4rRikj169OCjjz7K0IOwtzdx8+ZNxo0bx549e/Dw8GDcuHH8+9//5pVXXuHF\nF1/kzb9WbBszZgzr1q0jICCAJ598ksWLF9O9e3dee+21bI/7/vvv8+GHH7JhwwYAZsyYQe3atTl6\n9CinTp3Cx8eH+HjrmqIxMTEcO3aMWrVqERYWRpMmTfjqq684duwY7du3z/Yz2j5+9tlnefXVV3nk\nkUc4c+YMffr04dSpU3ZdD+E4tgnyKlXAbLYvQZ45OS4LO5UsCSB22LVrF8OGDaNKlSoADBs2jJ07\nd2YJIF9++WWRnK9Fixb5voWVX0opYmNjad26NR4eHoC10vGsWbN45ZVX+OabbwgPDyctLY3Lly/T\npk0bLly4wO3bt+nevTsAwcHBWpDIfGxbu3fv5uWXXwast+NatWpFbGwsOp2Ofv36aTXSdu3ape3n\n6emJt7d3np/j+++/14IRwJ07d7h+/XqGumui5BRFgjyn21QLBi3QXpfRVSVDAogdMo9aUEpl2wsY\nMWIEJ06cyLJ96tSpjB49ulBtsD3/rVu3srQvPzLvl37MGzduMGXKFA4fPkyTJk2YPn06aWlpWhn+\n7NpQkPbanrtmzZoZtuV0zJw+r06nY//+/VSqJF/l0iR9Bnn631ArVsATT9h3LNtex+DWgwn0DMwQ\nMMp77arSTHIgdujRowfr168nJSWF27dvs379enr27JllvxUrVhATE5Plp7DBA6BBgwb8+uuvKKVY\nv369tl0pla9f7DqdDoPBwIkTJ0j4awWe5cuX06tXLy1Y1K1bl1u3brFq1SoAGjZsSI0aNdizZ4/2\n+bJTo0YNbt68qT338fHR9o2Li+PkyZO0a9cuSzt79Oih7ffLL79w+PDhHD9vegDq27cvn3zyibZf\nbGxsnp9dONacOaDXW4PHtGnWYFLQ4JHTaoCyLkfpIn+22aF79+6MGDFCu0c/duxYunTp4rDzZdej\nCAsLw8/PD3d3d4xGIzdu3ND2zW9+pFq1anz22WcMGjQIi8VChw4dmDx5MlWqVGHs2LG0adOG5s2b\nZ7g1l16XzNnZmd69e2d7/A4dOpCSkoLBYGD8+PFMmTKFsWPH4uXlhV6vZ8mSJVStWjVLWydPnkxQ\nUBBeXl54enrSqVOnPD/vJ598wvjx45k/fz5KKR5++GEWLFhQgKsrikpRzCBPl1evQ5QOMpFQlFq9\ne/cmPDycjh07lnRTRC5sE+RVq1oT5A0bFuwYmUuPhKwJYeOpjTIRsBhILSwhRLHLnCA/eBBsBs4V\niJQeKZukByKEKBCLBUaOLHyCXEqPlA5SykQIUSz+/W9wcrIGj1desS9Bnk4mAZZ9cgtLCJGnokqQ\nS+mR8kVuYQkhclRUM8jTmRabMoyuquJURfIcJUyS6EKIIlVUCfLsFnYC6XWUF9IDEUJoLBbrDPL0\nOaL2JMhtg8a1O9fYnbgbQJvLIaOrSpfC/O6UACKEAGD2bJg61fp42jQIC7PvOLa3qZrUbMK5G+dk\ndFUpJrewhBB2+/576NfP+thkgs2bC7cGuW1yfHXgal7e8rL0OMophw3jTUxMpGfPnhgMBlq3bs3M\nmTMBuHLlCv369cPb2xs/Pz/++OMP7T1hYWF4enpiMBjYvHmztj06Ohqj0YiXlxeTJ092VJOFqFDi\n4qxrc/TrZ02QX7wI27fbN7oqpyG5zes2l9pV5ZlykHPnzqkjR44opZS6fv26atWqlTp48KB6/vnn\n1ezZs5Vnie7MAAAgAElEQVRSSs2ePVu98MILSimlfv75Z9W5c2eVlpamzGaz8vDwUCkpKUoppQwG\ngzpw4IBSSqnBgwertWvXZjmfAz+KEOXK9etKNWumlHUWh1IHDxb8GP/39f+pXot6qQERA9TVW1fV\ngIgBilBU5wWd1dVbV4u+0cJhCvO702E9EBcXF9q1awdYV5Pz9vYmKSmJb7/9VqtGO2rUKCIjIwGI\njIwkKCgIJycnXF1d8fLyYu/evZw5cwaLxaItqGT7HiFE/lksEBRkXYP8zBlYudIaQuwZXWXb40gv\nPSITASueYsmBJCQksH//fj7//HMuXrxIgwYNAGt58AsXLgCQlJREnz59tPe4ublhNptxcnLC3d1d\n2+7q6orZbC6OZgtRbhRFgjy3hZ3qVqsr63JUQA4PIMnJyQwfPpw5c+ZQu3Zth54rNDRUe2wymTCZ\nTA49nxClnW2CXEqsC4CoqCiioqKK5FgODSCpqakEBAQwcuRIhgwZAkCjRo24dOkSDRs25OLFizRu\n3Biw9jgSExO195rNZtzd3bPd7ubmlu35bAOIEBVZXBy0bGl9XFQl1mUSYPmQ+Y/r6dOn230sh+VA\nlFI89dRTeHp68uKLL2rb/f39iYiIACAiIgJ/f39t+4oVK0hLS8NsNhMbG0vXrl1xd3dHr9dra4Iv\nXbpUe48QIqPkZGjW7F7wOHgQbt8uePAAyXOIvDlsIuGuXbvo2bMn3t7e2qpzYWFhdO3alREjRnD+\n/HmaNGnCypUrqVvX+mWcMWMGERER6PV6wsPD8fPzA6zDeMePH09KSgq+vr7MnTs36weRiYSiAss8\ng3zlSggMLPhxpMR6xSMz0ZEAIiou2wT5q6/CjBn2H0uKHVY8DpmJPmjQoDzfXL9+fZYsWWLXiYUQ\nhWObIO/d2zqDvJIdWU0psS7slePX7ddff2XhwoXZRqb0iPXcc885tHFCiKxsE+TVq1vndBQkx5E5\nOS6jq4S9cgwg77zzDr169cr1zW+88UaRN0gIkb3r18HLC9IHJdpbYj3z+uMyukrYS3IgQpRyRZEg\nzy05nv669DoqJocm0WNjY/nwww9JTEzEYrFoJ9y2bZtdJ3QUCSCiPHJEiXVJjgtbDg0grVu3ZsqU\nKXTs2BEnJyfthJ06dbLrhI4iAUSUJ5kT5N99V7gS6zIkV+TEoQGka9eu7Nu3z66DFycJIKI8sE2Q\nV6tmzXfYMwkQpNch8sehC0r5+/vzySefMHjwYKpWraptr1+/vl0nFEJklZwMnp6FS5BL6RFR3PLs\ngXh4eGgzyW3Fx8c7rFH2kB6IKIsyJ8hXrYLhw+07lm2PQ9YfF/klM9GRACLKnlmz4O9/tz62dwa5\n5DlEYTkkgGzduhVfX1/WrFmTbQ9k2LBhdp3QUSSAiLJiyxbo39/62N41yNNJnkMUlkNyID/88AO+\nvr5s2LChTAQQIUq1qCji3E2FmkGeTkqPiNJCbmEJ4WDXr8NCt1CmXgsF7J9Bnk56HaIoOXQU1qVL\nl1i8eHGWiYTZlVQXQtyTvgb5qlXwJvYnyGV0lSit8gwg/fv3x2Qy0aFDB/R6PUqpbG9pCSHumTUL\nvv57FCai+L4H+O6aDrFYf0wm608+Za5dtSxgmYyuEqVCnrewOnfuzM8//1xc7bGb3MISpYFtgrxP\nH+sM8kqVgNBQ608+yegqUVwcegsrKCiIzz77DH9/f5lIKEQOCltiHTIGjWt3rrE7cTcgJdZF6ZVn\nAKlWrRpTp07lrbfeQq+3LqGu0+n47bffHN44IUq7zCXWDx0Cb+9sdszHLSvbW1VNajYBJM8hSrc8\nA0h4eDhxcXE0tLcgjxDlkMUCwcHW0uqQjwR5NgEkt+T46sDVvLzlZel1iFItzwDSpk0bnJ2di6Mt\nQpQJtjPIX3sN3n3XvuPklRxfGbiyiFoshGPkGUCqVq2KwWCgd+/eWg4kv8N4x40bR2RkJI0bN+bI\nkSMA7N69m+eee460tDScnJz473//y8MPPwxAWFgY//vf/3ByciI8PJz+f2Ujo6OjGT9+PCkpKfTt\n25c5c+bY/YGFsFeOCfJcRG7bxtz167mj01FVKXT3JXL7vqtZJgFK0BBlUZ6jsBYvXnxv57+y9Tqd\njr/97W95Hnznzp04OzszZswYLYD06NGD119/HT8/PzZu3MiMGTPYuXMn0dHRPP300+zZs4dz587R\no0cPTpw4QeXKlfH29mbJkiUYjUaGDBnC3/72N4YOHZrxg8goLOEg9pZYj9y2jcnLlxM3cqS2rdp/\nZ3K7VhS435JJgKJUcMgorAkTJjBgwAACAgKoVauWXQf38fEhISEhwzZ3d3f+/PNPAP744w+aN28O\nQGRkJEFBQTg5OeHq6oqXlxd79+6lWbNmWCwWjEYjAKNGjSIyMjJLABGiqOU7QZ6DuevXZwgeALef\n+Qd8GEfnbrUlOS7KvBwDyLhx49i4cSOzZs2icuXK+Pn58eijj9K+MDUYgPfee48ePXrw0ksvYbFY\n+OmnnwBISkqiT58+2n5ubm6YzWacnJxwd3fXtru6umI2mwvVBiFyYzuDHOyfQX4nhwm3DWs3Y8vo\nVRI8RJmnz+mFhx56iOnTp7Nz505WrlyJu7s74eHhdOjQgbFjx7JypX33ap966inmzp3LmTNnmD17\nNuPGjbO78UIUtfBwcHKyBo3XXgOlCh48JmyYgGmxidiz0dm+3qmRpwQPUS7kmgK0WCysWbOGwMBA\nQkJCCAkJQSlFdHQ03333nV0n3LNnD99//z0Aw4cPZ+zYsYC1x5GYfq8AMJvNuLu7Z7vdzc0t22OH\n2sz0NZlMmApQLkJUbPYkyHOija6qU52a88O5MfHv2mstIiKYFBJSBC0Wwj5RUVFERUUVybHyTKJ3\n69aNvXv32n2ChIQEBg0apCXRvby8mDdvHr169WLr1q1MmTKFI0eOaEn0n376SUuinzx5Mtsk+pgx\nY7KUk5ckurBHUcwgh5xLj7zk/jqLNm7lNlANmDR4MANtbtUKUdIcuiLhtGnTcHFxYfjw4dSsWVPb\nnp9SJsHBwezYsYNLly7h4uLCW2+9RevWrXn22WdJTU2latWqfPLJJ3Tt2hWAGTNmEBERgV6vJzw8\nHD8/PyDjMF5fX99shxBLABEFcf26dQ3y9HRaQRPkmUmJdVFWOTSAZLcmemksZSIBRORHUSXIQQoe\nivJB1kRHAojIW3g4vPSS9bE9M8gzlx4Z8uUQ6XWIMs8h80AOHDhAx44dc31zfvYRoqTZJsh9fWHT\nJvsS5JlLj8jCTqKiy7EH4u3tnWumXilF3759iYmJcVTbCkR6ICKzU6egVSvr4xo1rAnyBg0Kdozc\nblOlvy69DlGWOeQWVna5j8waNWrEvn377DpxUZMAItJdvw5t20JSkvV5YRLkkhwX5Z1DbmFlLkEi\nRGlnscCIEbB6tfX56tUQEFDw49j2OmwLHsptKiEyynEmuhBlSfoM8tWr4Z//tM4gtyd4wL1cx8ZT\nG6lZuSaBnoEyskqIbNg511aI0mHzZvhrupDdCfLcFnaSXocQOZMAIsqkokiQp8trYSchRPZyTKJH\nR0dnWP8js9I2fFeS6BVD5gT54cNgMBT8ODIJUAgrh4zCMplM6HQ6bt26RXR0NN5/DWM5fPgwnTt3\n1sqwlxYSQMq3zAnywswgBxldJUQ6h4zCSp8DMnz4cD7//HM8PT0B+OWXX3jjjTfsOpkQ9ijsDHKQ\nPIcQjpBnDuSXX37RggdA27ZtOXbsmEMbJQRkTJD37m19XugS60ieQ4iikmctrMGDB9OkSROCg4NR\nSrFixQp+//13vvrqq+JqY77ILazyo6gS5JLnECJvDi2mePPmTebMmcOuXbvQ6XT06NGDyZMnU716\ndbtO6CgSQMq+okiQ2waNa3eusTtxNyB5DiFy4vBqvNevX+fMmTN4eXnZdZLiIAGk7CqqGeSQMTne\npGYTzt04J70OIXJRmN+dec5EX7VqFUajkYEDBwIQGxurPRaisGxnkP/rXwWfQZ6+/rj/Un/+uP1H\nhuT4nvF7ZBa5EA6UZw/Ey8uL3bt307t3b63yrre3N4cPHy6WBuaX9EDKFtsEed++sHGjfQly2x5H\noGcgCwYtkOS4EAXgkGG82g6VKlG3bsb/EdPS0uw6mRC2CfKaNeH06cKVWLctdpgeNFYGriziVgsh\nspPnLSxPT0+WLl1KWloa8fHxvPzyy3Tp0qU42ibKkevXwc3tXvA4fBiSk+0bXSXFDoUoHfK8hZWc\nnMwbb7zB5s2bAfDz8+Ptt9+mRo0axdLA/JJbWKWTxQJPPAFr1lifF0WJdRmSK0TRKZY10a9du0bt\n2rXtOklxkABS+nz4Ibz8svXxv/4Fb79t/7Gk9IgQjuHQUVg7duygZcuW2hDe2NhYJkyYkK+Djxs3\nDhcXFwyZBvN/9NFHtG/fHoPBwMvpv2GAsLAwPD09MRgMWo8HrIUdjUYjXl5eTJ48OV/nFiVn82bQ\n6azBo18/SE0tePDIbXTV4iGLWRm4UoKHECVN5aF9+/bq9OnTqkOHDto2Ly+vvN6mlFLqhx9+UAcO\nHFDt2rXTtn3zzTdq4MCBKjU1VSml1KVLl5RSSv3888+qc+fOKi0tTZnNZuXh4aFSUlKUUkoZDAZ1\n4MABpZRSgwcPVmvXrs1yrnx8FOFgJ08qZR2Iq1SNGkr99U9rl16LeilCUYSiAlcGqqu3rmr/FUIU\nncL87sxzFJZSimbNmmXYltda6el8fHyyLI27cOFCXnnlFSr9NWazwV9Z1MjISIKCgnBycsLV1RUv\nLy/27t1Ls2bNsFgsGI1GAEaNGkVkZCRDhw7NVxuE4zmixLqMrhKi9MvzFpa7uzu7d1vLQaSlpfHx\nxx/zwAMP2H3CX3/9le+++44OHTrQvXt3fvzxRwCSkpJwc3PT9nNzc8NsNpOUlIS7u7u23dXVFbPZ\nbPf5RdGxWCAwEGrXtgaPNWus/Q97ggfI6Cohypo8eyALFy7k2WefJS4ujgYNGtC3b18WLlxo9wkt\nFgvXr1/n4MGD7N+/n4CAgCy9FFH6FVWCPKdeh5RYF6L0yzOANGnShLVr1xbZCd3d3Rk2bBgAXbp0\noUqVKpw/fx43NzcSExO1/cxmM+7u7tlut+2p2AoNDdUem0wmTCZTkbVbWH33HTz6qPWxPTPIM6/L\nYVtmfXDrwdpscgkeQjhGVFSUtt5ToeWVJPn1119V//79Va1atVStWrWUn5+fOn78eL6TLPHx8RmS\n6LNmzVJvvPGGUkqp48ePq/vuu0/dvXtXS6KnpqaqxMRE1bx58xyT6GvWrMlynnx8FFEIJ07cS5DX\nrGl/gjxzcnxAxABFKKrzgs6SIBeiBBTmd2eefzs+8cQTvPLKK3zzzTcArF69mieeeIKDBw/mGZyC\ng4PZsWMHly9fxt3dnbfeeovnn3+ecePG0a5dOwAWL16MXq+nU6dODB06FG9vb/R6PfPnz6dyZest\njUWLFjFu3DhSUlLw9fXVejDC8a5fhzZt4OxZ6/PClljPnBxPf116HUKUPXlOJOzcuTM///xznttK\nmkwkLFqZZ5CvWQP2xm2ZBChE6eXQYoq+vr7MnDmTJ554ArD2QPr27cuVK1cAqF+/vl0nFqVXUSTI\nJTkuRPmXZw/Ew8Mjx3kfOp2O3377zSENKyjpgRSebYLc1xc2bbJ/DXLpdQhRNji0ByJDbMu/kyfh\nwQetj4uixPqygGVZSo9I4BCi/MlxIuHevXs5d+6c9nzhwoUMGDCACRMmcP78+WJpnHCsa9egadN7\nwaOoSqxP2DCBZQHLZCKgEOVcjrew2rdvz86dO6lduzZbt25l1KhRfPzxx8TExHDo0CE2bNhQ3G3N\nldzCyr/0GeTp03vsTZBLiXUhyj6HVeNNL9++evVqJk6cSEBAAO+88w6nTp2y62Si5H3wgXUN8rVr\n761Bbu/oKik9IkTFlmMO5Pbt26SmplK5cmWioqL4z3/+c+9N9mZWRYmxTZD36wfffmtfglxGVwkh\n0uX4K+SJJ56gV69eNGrUiEqVKtGrVy/AmlSvWbNmsTVQ2CEqCv4q42KbIK9VCxISoDAjr6X0iBAi\nXY4B5O2338bX15eLFy/i5+eHk5MTAKmpqcybN6/YGijsEBXFtY4m2rSB33+3bjpyBP6a/F8gMrpK\nCJGTfC9pW9pJEt3KYoFVXqEE/RoK2Jcgtw0a1+5cY3eitZx/em9DSo8IUX44dB6IKCOiotj9bhRb\nvodQptO4J/TuDdQ3AaYCHcr2NlWTmk0AWdhJCJGVBJBywJogNwEm+vUDy0PQ+63QAh0jp+T46sDV\nvLzlZelxCCGykABShtkmyJ2drTPI69cHQgt+rNyS49LjEEJkRwJIGXTtmnUN8vQS61kS5PlYSEuS\n40KIwspzTXRRelgsEBAAdepYg8fatdaJgFlGV+UjgEjpESFEYckorDLigw/gH/+wPn79dXjrrYIf\nQ0qPCCEyK8zvTgkgpVxRzSAHKbEuhMhKhvGWQ5kT5AkJeVfJ/SEyks1z51Lpzh3Sqlal/wsvEGH5\nSkqPCCEcQnogpcy1a9C6NaRX0s/vDPIfIiP5bvJk3o2L07b9s0ULtg2qxp66RwHpdQghspJbWJT9\nAGKxwPDhsG6d9fnatTB0aP7f/y8/P97ZvDnL9gGGhmwKuCS5DiFEthxWzl0Uj/QS6+vWWRPkShUs\neABUunMn2+2d6raW0VVCCIdwaAAZN24cLi4uGAyGLK+Fh4ej1+u5cuWKti0sLAxPT08MBgObbf6a\njo6Oxmg04uXlxeTJkx3Z5GK1aRPodNbRVf37Q2qq/aOrfrx0ONvXdDWcWRm4UoKHEKLIOTSAjB07\nlk2bNmXZnpiYyJYtW2jevLm2LTo6mrVr13LkyBE2bdrExIkTSU1N1Y7z+eefc/ToUU6fPs269Ps8\nZdSJE9bAMWCAtcT65cvW0Vb5HV01YcMETItN+C/154/bf3Di8gl+an+VEfUy7vdaixb0mzSp6D+A\nEELg4FFYPj4+JCQkZNk+depUZs6cyeDBg7VtkZGRBAUF4eTkhKurK15eXuzdu5dmzZphsVgwGo0A\njBo1isjISIYW9B5PKWBvgjwz27IjEzZMoEblGiQ/CCfrt2Ta8WZUS7nL3WrVeHTSJHoOHFiEn0AI\nIe4p9mG8X331FW5ubnh7e2fYnpSURJ8+fbTnbm5umM1mnJyccHd317a7urpiNpuLrb1FobAJcsi5\n2OGCQQu012V0lRCiOBVrALl58yYzZsxgy5Yt2raiHDkVGhqqPTaZTJjyUdLD0d5/H6ZNsz5+4w2Y\nPt2+4+S1EqAUPBRC5EdUVBRRUVFFcqxiDSBxcXEkJCTQvn17AMxmM506dWLv3r24ubmRmJio7Ws2\nm3F3d892u5ubW7bHtw0gJW3TJmuOA8DPD775puAzyGX9cSFEUcv8x/V0e/+qpZiH8RoMBs6fP098\nfDzx8fG4ublx4MABXFxc8Pf3Z8WKFaSlpWE2m4mNjaVr1664u7uj1+uJiYkBYOnSpfj7+xdnswvk\n5MmsCfJNm+wrP2Jb8LBm5ZoyHFcIUao4tAcSHBzMjh07uHz5Mu7u7rz11luMHTtWe12n02mPO3Xq\nxNChQ/H29kav1zN//nwqV7b+1b1o0SLGjRtHSkoKvr6+DCvoGq3FIHOCPDYWvLwKdgwpsS6EKEtk\nJnohZU6Qr1sHQ4bYdyzbYoey/rgQojhIKRNKJoDMnAmvvGJ9bG+CXEqsCyFKkgQQijeAFEWCPJ2U\nWBdClCQp515MbEus164N8fF/rUFeQDK6SghRHkgxxXy4dg3uu+9e8IiNhT//tC94gIyuEkKUD9ID\nyUVRJchldJUQojySHEgObBPkb74JBZ2jaBs0rt25xu7E3YCMrhJClC6SRKfoAohtgrx/f4iMtC9B\nbpscb1KzCedunJPRVUKIUkeS6EXgxAnrRECwziBPSCh4jiOn5PjqwNW8vOVl6XEIIcqVCt8DKaoS\n6yBDcoUQZY/0QOxgsUBAAKxfb31uT4JckuNCiIqsQg7jff996xrk69dbE+RK2Te6ynY47oQNE1gW\nsEyG5AohKowKdQtr40ZIL+RbFCXWpfSIEKKsk1FY5H4RbBPkderAb7/ZPwlQ8hxCiPJEciA5+PNP\na+A4f9763J4S6yClR4QQIjvlMgdisVhzGnXrWoPHunXWPIc9wQOk9IgQQmSn3PVAbNcgt2cGOcjo\nKiGEyI9yFUDSFzgsbIn19B4HoI2uktIjQgiRUblKotepo4iPh3r1Cv5+GV0lhKiIZBQWha+FJaOr\nhBAVkYzCspOMrhJCCPtVqB5I5uT4kC+HSK9DCFGhFaYH4tBhvOPGjcPFxQWDwaBtmzp1Kp6ennh6\nevLYY49x+fJl7bWwsDA8PT0xGAxs3rxZ2x4dHY3RaMTLy4vJkyfb3Z7MpUcyj65aGbhSgocQQuST\nQwPI2LFj2bRpU4ZtgwYNIjY2lmPHjtGuXTveeecdwBok1q5dy5EjR9i0aRMTJ04kNTVVO87nn3/O\n0aNHOX36NOvSlwjMhwkbJmBabMJ/qX+G21QLBi2Q2lVCCFEIDg0gPj4+1Ms0JKp3797o9dbTPvLI\nIyQlJQEQGRlJUFAQTk5OuLq64uXlxd69ezlz5gwWiwWj0QjAqFGjiIyMzHcbcpsEWLdaXel1CCGE\nnUo0ib5gwQKCgoIASEpKok+fPtprbm5umM1mnJyccHd317a7urpiNptzPa4kx4UQwvFKLIC8++67\nVKlShZEjRxbZMUP/mna++eBmTtc9Dfdbk+Pp65BL8BBCVHRRUVFERUUVybFKJIAsWbKEyMhItm3b\npm1zc3MjMTFRe242m3F3d892u5ubW7bH3ddqH8sClrFvzT5OnzotvQ4hhMjEZDJhMpm059OnT7f7\nWMVeTHHTpk3MnDmTr7/+mmrVqmnb/f39WbFiBWlpaZjNZmJjY+natSvu7u7o9XpiYmIAWLp0Kf7p\ni3pkIgs7CSFE8XHoPJDg4GB27NjBpUuXcHFxYfr06YSFhZGSkkL9vxbk6N69O/PmzQNgxowZRERE\noNfrCQ8Px8/PD7CO0Bo/fjwpKSn4+voyd+7crB9Ep6PzAik9IoQQBSGlTLBehKu3rkrwEEKIApAA\nQuFrYQkhREVUameiCyGEKL8kgAghhLCLBBAhhBB2kQAihBDCLhJAhBBC2EUCiBBCCLtIABFCCGEX\nCSBCCCHsIgFECCGEXSSACCGEsIsEECGEEHaRACKEEMIuEkCEEELYRQKIEEIIu0gAEUIIYRcJIEII\nIewiAUQIIYRdJIAIIYSwiwQQIYQQdnFoABk3bhwuLi4YDAZt25UrV+jXrx/e3t74+fnxxx9/aK+F\nhYXh6emJwWBg8+bN2vbo6GiMRiNeXl5MnjzZkU0WQgiRTw4NIGPHjmXTpk0Ztr355psMHDiQw4cP\nM2DAAN58803AGiTWrl3LkSNH2LRpExMnTiQ1NVU7zueff87Ro0c5ffo069atc2Szy7yoqKiSbkKp\nIdfiHrkW98i1KBoODSA+Pj7Uq1cvw7Zvv/2W0aNHAzBq1CgiIyMBiIyMJCgoCCcnJ1xdXfHy8mLv\n3r2cOXMGi8WC0WjM8h6RPfmf4x65FvfItbhHrkXRKPYcyMWLF2nQoAEADRs25MKFCwAkJSXh5uam\n7efm5obZbCYpKQl3d3dtu6urK2azuXgbLYQQIgtJogshhLBLpeI+YaNGjbh06RINGzbk4sWLNG7c\nGLD2OBITE7X9zGYz7u7u2W637amka9GiBTqdzvEfoIyYPn16STeh1JBrcY9ci3vkWli1aNHC7vcW\newDx9/cnIiKCKVOmEBERgb+/v7b96aefZsqUKZw7d47Y2Fi6du1K5cqV0ev1xMTEYDQaWbp0KWPG\njMly3FOnThX3RxFCiApNp5RSjjp4cHAwO3bs4NKlS7i4uPDWW28xePBgRowYwfnz52nSpAkrV66k\nbt26AMyYMYOIiAj0ej3h4eH4+fkB1hFa48ePJyUlBV9fX+bOneuoJgshhMgnhwYQIYQQ5VeZSKIn\nJibSs2dPDAYDrVu3ZubMmQCEhobi5uaG0WjEaDSyceNG7T05TUos627fvk2XLl0wGo08+OCDvPji\ni4B9EzTLupyuRUX8XqS7e/cuRqORQYMGARXze5Eu87WoqN8LDw8PvL29MRqNdO3aFSjC74UqA86d\nO6eOHDmilFLq+vXrqlWrVurgwYMqNDRUhYeHZ9n/559/Vp07d1ZpaWnKbDYrDw8PdefOneJutsPc\nvHlTKaVUamqq6tatm9q2bZt6/vnn1ezZs5VSSs2ePVu98MILSqmKeS0q6vdCKaXCw8NVSEiIGjRo\nkFJKVdjvhVJZr0VF/V54eHioy5cvZ9hWVN+LMtEDcXFxoV27dgA4Ozvj7e1NUlISACqbO3DZTUrc\nt29fsbbZkapXrw5ASkoKd+/epXHjxgWaoFmer4WLiwtQMb8XZrOZb7/9lvHjx2ufv6J+L7K7Fkqp\nCvm9gKz/PxTV96JMBBBbCQkJ7N+/Hx8fHwD+85//0LZtW0aNGsWVK1eAnCcllhcWi4UOHTrg4uJC\n79698fLyKvAEzfIi87Xw9PQEKub34sUXX+SDDz5Ar7/3v3VF/V5kdy10Ol2F/F7odDrtdtXHH38M\nFN33okwFkOTkZAIDA5kzZw61atXiueeeIy4ujmPHjtGiRQteeOGFkm5isdDr9Rw8eBCz2cwPP/zA\n9u3bS7pJJSbztYiKiqqQ34tvvvmGxo0bYzQas/0ruyLJ6VpUxO8FwJ49ezhw4ABbt25l0aJFfP/9\n90V27DITQFJTUwkICCAkJIQhQ4YA1sip0+nQ6XRMnDiR/fv3AzlPSixv6tSpw8CBA9m7d682QRPI\n1wTN8ib9WuzZs6dCfi9+/PFHvv76a+6//36Cg4PZtm0bo0ePrpDfi+yuxZgxYyrk9wLQ/s0bNWrE\n8HttapcAAAgXSURBVOHD2b9/f9F9L4o8Y+MAFotFjR49Wk2ZMiXD9vPnz2uP586dq4YOHaqUupcI\nSk1NVYmJiap58+YqJSWlWNvsKJcuXVLXrl1TSlkTyD4+Puqbb77JkBSbNWuWmjRpklKqYl6LCxcu\naPtUlO+FraioKPXYY48ppVSF/F7Ysr0WFfH3xY0bN9SNGzeUUkolJyernj17qq+++qrIvhfFPhPd\nHrt37yYiIkIbigbWSYfLli3j8OHDpKSk0Lx5cz777DMAOnXqxNChQ/H29kav1zN//nwqV65ckh+h\nyJw9e5YxY8aglOL27duEhIQwcOBAunfvzogRI/j888+1CZpQMa/F6NGjK9z3IrP0sj7Tp0+vcN8L\nW0op7VpMnTqVI0eOVKjvxfnz5xkyZAg6nY6bN28SFBTE448/To8ePYrkeyETCYUQQtilzORAhBBC\nlC4SQIQQQthFAogQQgi7SAARQghhFwkgQggh7CIBRAghhF0kgIhSa/369ej1eo4fP+6wc+zYsYOf\nfvrJYccviISEBAwGAwCHDh3KUG7cUUwmE23atGHDhg188cUXhISEZHj90qVLNG7cmJSUFEaOHEmD\nBg1Ys2aNw9slygYJIKLUWr58OY899hjLly/P9vW7d+8W+hzbt2/nxx9/LNB7iuK8eYmJieHbb791\n+Hl0Oh3Lli1j0KBBDB06lC1btnDr1i3t9dWrV/P4449TpUoVli5dyuOPP65NzBNCAogolZKTk9m7\ndy8ff/wxK1as0LZHRUXh4+PD0KFDMRgM7Nixg169ehEQEEDLli2ZNm0a//vf/+jevTutW7fm5MmT\nAHz99dd069YNg8FAz549+f3330lISGD+/PnMnj2bjh07smvXLp588skMf2E7OztnOa+3tzd3797l\n+eefp3379rRt2zbbZZZfffVV5s2bpz0PDQ0lPDwcpRSTJk3C09MTT09PvvjiiwzvS01N5Y033mDF\nihUYjUZWrlzJ/v376d69O+3bt6dTp04cO3YMgBs3bjBo0CC8vLwIDAzkoYceIjo6WvvMnTp1wmAw\nMHjwYK5fv57ttU6fS1yrVi169erFhg0btNe+/PJLgoODs91fiDJRC0tUPBEREWrixIlKKaV8fHxU\ndHS0Ukqp7du3q5o1ayqz2aw9r1u3rrp48aK6c+eOatq0qXrrrbeUUkrNmTNHPffcc0oppf7880/t\n2J9++ql6/vnnlVJZFxl68skn1erVq7Xnzs7O2Z53zpw56p133lFKKXX79m3VsWNHdeLEiQyfISYm\nRvXq1Ut77unpqcxms1q6dKny8/NTSil1+fJl1bRpU5WUlKTi4+NVu3btlFJKLV68WKtPpJR1ITWL\nxaKUUmrLli1afad33nlH+4y//PKLqlSpkoqOjlbnzp1T3bt31xbceu+999Q///nPLNfZZDJp11Yp\npVavXq3ViEpKSlJNmzbVzpvd9REVW5mohSUqnuXLl2tL1AYGBrJ8+XI6duwIQNeuXXF1ddX27dKl\nCw0bNgSgZcuW9O3bF4B27dqxdetWAE6dOsXUqVO5fPkyqampNGvWTHu/yudf1Lbn3bx5MydPnmT1\n6tUAXLt2jd9++41WrVpp+3fo0IELFy7w+++/c+HCBerVq4erqyu7du0iKCgIgPr16+Pr68uPP/5I\n586dM7TJtl0XL15kxIgRnD59Gr1ez+3btwFr5dl//OMfALRp0wZvb2+UUuzcuZOTJ0/y8MMPA9YF\nt7p165bnZ/T39+fZZ5/l+vXrrFy5kuHDh8stK5EjCSCi1Lly5Qrbt28nNjYWnU7H3bt30el0fPDB\nBwDUrFkzw/5Vq1bVHuv1eu25Xq/HYrEA8Pzzz/Ovf/0Lf39/duzYQWhoaLbntn2PxWIhJSVFey3z\neT/55BN69+6d62cJDAxk9erVnDt3TgsaOp0uQ3BQNgX/cvLPf/6TgQMH8uyzz3L69GlMJlOG92dn\nwIABWW6P5aV69eo8+uijrF27lhUrVjB79uwCvV9ULJIDEaXO6tWrGTNmDAkJCcTHx3PmzBnuv/9+\ndu7cafcxb9++TZMmTQAy/FKtXr06N2/e1J67ublpOYTIyEhSU1OzPZ6fnx/z58/Xgk18fHyG5HO6\nESNGsHz5clavXk1gYCAAPj4+rFq1CqWUFiy7d++e4X01atTI0K6c2v/www9rOZvjx49z5MgRdDod\nPj4+bN++nTNnzmjvj4uLy8+lIjg4mFmzZnHhwgUeeuihfL1HVEwSQESp8+WXXzJ06NAM2wICAli+\nfLm2IFC6zM9t2b72+uuvM3ToULp160aDBg207YMGDWLZsmV06NCB3bt38/TTT/Pdd99hNBr58ccf\ntSR6+vHSPffcc9qa0e3bt2fs2LHZBhtPT0+Sk5Nxc3PT1msfMWIELVq0wNPTkx49ehAWFkbTpk0z\nnKN3795ER0fTvn17Vq5cyUsvvcRLL71Ely5dSElJ0fabMmUK8fHxtGvXjtdffx0vLy+qV6+Oi4sL\nCxYs4PH/b+8OUSCEoigMnyRYXYgIgsEigk20GAyWtyCrO3EHrkOMbsAoMm2qzjXp/F8+4bbD5cG7\nda0oipQkyffh/UxRFFrXVW3bXsrjf/GdO/Bgx3Fo33d5nqd5npVlmZZluXzPIs9z9X2vOI4v5Z1z\nqqpKTdPcGRsvwQYCPNi2bUrTVGEYqixLDcPw0zGkIAjknNM4jqfZrus0TZN8378zMl6EDQQAYMIG\nAgAwoUAAACYUCADAhAIBAJhQIAAAEwoEAGDyAeFXTM/ETGeOAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.4, Page number: 571" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from sympy import *\n", "from math import *\n", "\n", "#Variable declaration:\n", "Rf=109 #Field resistance(ohm)\n", "Vf=300 #Rated field voltage(V)\n", "n1=2000 #rpm\n", "T_rated=285 #Rated torque(Nm)\n", "n2=1975 #Dropped rpm\n", "Kf=0.694 #Geometric constant(A.rad/sec\n", "Ra=0.084 #Armature resistance(ohm)\n", "\n", "#Calculations:\n", "If=Vf/Rf #Resulting field current(A)\n", "wm1=2*pi*n1/60\n", "w_ref=wm1\n", "Vao=Kf*If*wm1\n", "Ia=T_rated/(Kf*If)\n", "wm2=2*pi*n2/60\n", "Ea=Kf*If*wm2\n", "Va=Ea+Ia*Ra\n", "G=symbols('G')\n", "x=solve(Vao-round(Va)+G*(w_ref-wm2),G)\n", "\n", "\n", "#Results:\n", "print \"Armature voltage,Vao:\",round(Va,0),\"V\"\n", "print \"Multiplicative constant,G:\",float(round(x[0],2)),\"A.sec/rad\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Armature voltage,Vao: 408.0 V\n", "Multiplicative constant,G: 3.04 A.sec/rad\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.5, Page number: 573" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "from sympy import *\n", "\n", "#Variable Declaration:\n", "Km=0.22 #torque constant(V/(rad/sec))\n", "Ra=1.03 #ohm\n", "Pl=100 #Power load(W)\n", "Va1=40 #Armature voltage(V)\n", "Va2=50 # \" \" \"\n", "\n", "\n", "#Calculations:\n", "wm1=(Va1/(2*Km))*(1+sqrt(1-(4*Pl*Ra/Va1**2)))\n", "wm2=(Va2/(2*Km))*(1+sqrt(1-(4*Pl*Ra/Va2**2)))\n", "\n", "#Results:\n", "print \"for Va=40 V, wm=\",round(wm1,1),\"rad/sec\"\n", "print \"for Va=50 V, wm=\",round(wm2,1),\"rad/sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for Va=40 V, wm= 169.2 rad/sec\n", "for Va=50 V, wm= 217.5 rad/sec\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.6, Page number: 575" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "\n", "Rf=109 #Field resistance(ohm)\n", "Vf=300 #Rated field voltage(V)\n", "Ra=0.084 #Armature resistance(ohm)\n", "Kf=0.694 #Geometric constant(A.rad/sec)\n", "Tfl=285 #Full load torque(Nm)\n", "nf=2500 #Speed at full load(r/min)\n", "#wm=2500 #rated r/min\n", "\n", "#for part (1):\n", "n1=2000 #r/min\n", "n2=2500 #r/min\n", "\n", "\n", "#Calculations:\n", "#part (a):\n", "If=Vf/Rf\n", "w1=n1*2*pi/60\n", "w2=n2*2*pi/60\n", "Ea1=Kf*If*w1 #Avg Amature voltage(V)\n", "Ea2=Kf*If*w2\n", "Ia1=n1*Tfl/(nf*Kf*If)\n", "Ia2=n2*Tfl/(nf*Kf*If)\n", "Va1 = Ea1 + Ia1*Ra\n", "Va2 = Ea2 + Ia2*Ra\n", "Tl1=(n1/nf)*Tfl\n", "Tl2=(n2/nf)*Tfl\n", "\n", "#part (b):\n", "\n", "# The dynamic equation governing the speed of the motor is\n", "\n", "# J*(dwm/dt)=Tmech-Tload\n", "# wm=(pi/30)*n & wr=(pi/30)*nf\n", "# Tload= (Tfl/wf)*wm\n", "# Tmech = Kf*If*Ia=Kf*If*(Va-Ea)/Ra #Under armature-voltage control\n", "\n", "# Thus the governing differential equation is\n", "# d(wm)/dt + 48.4*wm - 24.7*Va = 0\n", " \n", "# wm = wf + (wi-wf)*exp(-t/tau) #tau=1/48.4=20.7 msec\n", "# n = 2500- 50*exp( -t/tau )\n", "\n", "# The armature current will decrease exponentially with the \n", "# same 20.7 msec time constant from an initial value of \n", "# (Vf - Vi)/Ra = 1190 A to its final value of 149 A.\n", "\n", "# Ia = 149 + 1041*exp(-t/tau)\n", "\n", "#part (c):\n", "# J*d(wm)/dt = Tmech-Tload = Tf-(Tf/wm)*wm\n", "# or d(wm)/dt + 1.18*wm - 310 = 0\n", "\n", "#In this case, the speed will rise exponentially to wm=wf=262 rad/sec as\n", "# wm = 262-53*exp(-t/tau) #tau=1/1.18=845 msec\n", "\n", "#Results:\n", "print \"part(a):\\n\"\n", "print \"-------------------------------------------------\"\n", "print \"r/min\\tw[rad/s]\\tVa(V)\\tIa(A)\\tTload[Nm]\"\n", "print \"-------------------------------------------------\"\n", "print n1,\"\\t\",round(w1),\"\\t\\t\",round(Va1),\"\\t\",round(Ia1),\"\\t\",Tl1,\"Nm\"\n", "print n2,\"\\t\",round(w2),\"\\t\\t\",round(Va2),\"\\t\",round(Ia2),\"\\t\",Tl2,\"Nm\"\n", "print \"-------------------------------------------------\"\n", "print \"\\npart (b):\"\n", "print \" The resultant motor speed, n = 2500 - 50*exp(-t/tau) where tau=20.7 msec\"\n", "\n", "print \"\\npart (c):\"\n", "print \" The resultant motor speed, wm = 262 - 53*exp(-t/tau) where tau=845 msec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part(a):\n", "\n", "-------------------------------------------------\n", "r/min\tw[rad/s]\tVa(V)\tIa(A)\tTload[Nm]\n", "-------------------------------------------------\n", "2000 \t209.0 \t\t410.0 \t119.0 \t228.0 Nm\n", "2500 \t262.0 \t\t513.0 \t149.0 \t285.0 Nm\n", "-------------------------------------------------\n", "\n", "part (b):\n", " The resultant motor speed, n = 2500 - 50*exp(-t/tau) where tau=20.7 msec\n", "\n", "part (c):\n", " The resultant motor speed, wm = 262 - 53*exp(-t/tau) where tau=845 msec\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.7, Page number: 581" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "\n", "#Variable Calculations:\n", "f1=60 #Initial frequency(Hz)\n", "f2=50 #Changed frequency(Hz)\n", "Xs=0.836 #Saturated synch reactance(ohm)\n", "Va=1+0j #Armature voltage(V p.u)\n", "Ia=1+0j #Armature current(A p.u)\n", "If_rated=2.84 #Rated field current(A)\n", "p=6 #No. of poles\n", "\n", "\n", "#Calculations:\n", "#for part (a):\n", "ns1=120*f1/p\n", "ns2=120*f2/p\n", "Eaf=Va-1j*Xs*Ia*exp(1j*0) #field voltage(V)\n", "Ifo=abs(Eaf)*If_rated #motor field current(A)\n", "\n", "#for part(b):\n", "#Eaf= (wm/wmo)*(If/Ifo)*Eafo\n", "If=Ifo\n", "\n", "#Results:\n", "print \"part(a):\"\n", "print \"(i) The motor speed:\",ns1,\"r/min\"\n", "print \"(ii) The motor field current:\",round(Ifo,2),\"A\"\n", "print \"part(b):\"\n", "print \"(i) The changed speed:\",ns2,\"A\"\n", "print \"(ii) The mototr field current:\",round(If,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part(a):\n", "(i) The motor speed: 1200.0 r/min\n", "(ii) The motor field current: 3.7 A\n", "part(b):\n", "(i) The changed speed: 1000.0 A\n", "(ii) The mototr field current: 3.7 A\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.8, Page number: 588" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "from sympy import *\n", "\n", "#Variable declaration:\n", "iF=2.84 #rated field current(A)\n", "Vbase=220 #base voltage(V)\n", "Eaf=220/sqrt(3) #Rms voltage line-to-neutral(V)\n", "f=60 #Hz\n", "p=6 #poles\n", "P_rated=45*10**3 #rated power(W)\n", "Xs_pu=0.836 #per unit synchronous reactance(ohm)\n", "\n", "#Calculations:\n", "we=2*pi*f\n", "Laf=sqrt(2)*Eaf/(we*iF) #Armature field reactance(H)\n", "T_rated=P_rated/(we*2/p)\n", "#setting rated values to reference values.\n", "Tref=T_rated\n", "iFref=iF\n", "iQ=round((2/3)*(2/p)*Tref/(Laf*iFref),2)\n", "iD=0\n", "\n", "#since theta_me=wc*t, iD=0,we have,\n", "t=symbols('t')\n", "wc=120*pi\n", "def ia(t):\n", " return iD*cos(wc*t)-iQ*sin(wc*t)\n", "def ib(t):\n", " return iD*cos(wc*t-2*pi/3)-iQ*sin(wc*t-2*pi/3)\n", "def ic(t):\n", " return iD*cos(wc*t+2*pi/3)-iQ*sin(wc*t+2*pi/3)\n", "Ibase=P_rated/(sqrt(3)*Eaf)\n", "Imax=round(ia((pi/(2*wc))))\n", "Ia=1j*abs(round(Imax/sqrt(2)))\n", "Eaf=1j*we*Laf*iF/sqrt(2)\n", "Zbase=Vbase**2/P_rated\n", "Xs=Xs_pu*Zbase\n", "Va=1j*Xs*Ia+Eaf #line-to-neutral voltage\n", "Vt=abs(sqrt(3)*Va)/Vbase #p.u terminal voltage(line-to-line)(V)\n", "\n", "#Results:\n", "print \"part(a):\"\n", "print \"\\tia(t)=\",ia(t),\"A\"\n", "print \"\\tib(t)=\",ib(t),\"A\"\n", "print \"\\tic(t)=\",ic(t),\"A\"\n", "print \"part(b):\"\n", "print \"\\tTerminal voltage:\",round(float(Vt),2),\"per unit\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part(a):\n", "\tia(t)= -167.01*sin(120*pi*t) A\n", "\tib(t)= 167.01*sin(120*pi*t + pi/3) A\n", "\tic(t)= -167.01*cos(120*pi*t + pi/6) A\n", "part(b):\n", "\tTerminal voltage: 1.3 per unit\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.9, Page number: 591" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "iF=2.84 #rated field current(A)\n", "Vrated=220 #rated terminal voltage,l-l(V)\n", "Ibase=118 #base current(A)\n", "Eaf=220/sqrt(3) #Rms voltage, line-to-neutral(V)\n", "f=60 #Hz\n", "p=6 #poles\n", "P_rated=45*10**3 #rated power(W)\n", "Xs=0.899 #Synchronous reactance(ohm)\n", "Xs_pu=0.836 #per unit synchronous reactance(ohm)\n", "Tref=358 #Reference torque(Nm) (from Ex11.8)\n", "\n", "#Calculations:\n", "Va=Vrated/sqrt(3) #base voltage, line to neutral(V)\n", "we=2*pi*f\n", "wm=(2/p)*we\n", "Laf=sqrt(2)*Eaf/(we*iF) #Armature field reactance(H)\n", "Ia=Tref*wm/(3*Va)\n", "Ls=Xs/we #Synchronous inductance(mH)\n", "delta=-atan(we*Ls*Ia/Va)\n", "iQ_ref=sqrt(2)*Ia*cos(delta)\n", "iD_ref=sqrt(2)*Ia*sin(delta)\n", "iF_ref=(2./3)*(2/p)*Tref/(Laf*iQ_ref)\n", "\n", "#since motor is running at rated voltage, base voltage and rated voltage \n", "# are assumed to be same.\n", "Va_pu=Va/Va \n", "Ia_pu=Ia/Ibase\n", "\n", "\n", "#Results:\n", "print \"The reqd motor field current:\",round(iF_ref,2),\"A\"\n", "print \"Per unit voltage:\",Va_pu,\"p.u\"\n", "print \"Per unit current:\",round(Ia_pu),\"p.u\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The reqd motor field current: 3.7 A\n", "Per unit voltage: 1.0 p.u\n", "Per unit current: 1.0 p.u\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.10, Page number: 593" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "ns=4000 #rated speed(rpm)\n", "Va=220 #rated voltage(V)\n", "Ls=1.75*10**-3 #synchronous inductance(H)\n", "Prated=25000 #Watts\n", "n=3200 #rated OC speed(rpm)\n", "p=2 #No. of poles\n", "\n", "#Calculations:\n", "#for part(a):\n", "Eaf=Va/sqrt(3)\n", "wm=ns*pi/30 #rad/sec\n", "Trated=Prated/wm\n", "we=(p/2)*n*pi/30\n", "lambdaPM=sqrt(2)*Eaf/we #flux linked wth permanent magnet(Wb) \n", "Tref=Trated*0.65 #since motor is operated at 65% of Trated\n", "iQref=(2./3)*(2/p)*(Tref/lambdaPM)\n", "\n", "#for part(b:)\n", "lambdaD=lambdaPM #since iD=0\n", "lambdaQ=Ls*iQref\n", "lambdaa=sqrt((lambdaD**2+lambdaQ**2)/2) #rms line-to-neutral armature flux(Wb)\n", "lambdaa_base=Eaf/wm\n", "lambda_pu=lambdaa/lambdaa_base\n", "\n", "#for part(c)\n", "lambdaD=sqrt(2*(lambdaa_base)**2-lambdaQ**2)\n", "iDref=(lambdaD-lambdaPM)/Ls\n", "Ia=sqrt((iDref**2+iQref**2)/2) #rms armature current(A)\n", "Ibase=Prated/(sqrt(3)*Va)\n", "I_pu=Ia/Ibase\n", "\n", "#Results:\n", "print \"(a) Required quadrature-axis current:\",round(iQref,1),\"A\"\n", "print \"(b) Resultant armature flux linkage\",round(lambda_pu,2),\"p.u\"\n", "print \"(c) iD:\",round(iDref,1),\"A\"\n", "print \" Rms value of armature current:\",round(Ia),\"A\"\n", "print \" Per unit value of armature current:\",round(I_pu,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Required quadrature-axis current: 48.2 A\n", "(b) Resultant armature flux linkage 1.27 p.u\n", "(c) iD: -66.1 A\n", " Rms value of armature current: 58.0 A\n", " Per unit value of armature current: 0.88 A\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.11, Page number: 600" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "V10=230/sqrt(3)\n", "Nph=3\n", "p=4\n", "fe0=60\n", "R1=0.095 #Armature resistance(ohm)\n", "R2=0.2 #Rotor resistance(ohm)\n", "X10=0.680 #Armature leakage reactance(ohm)\n", "X20=0.672 #Rotor leakage reactance(ohm)\n", "Xm0=18.7 #Inductice reactance(ohm)\n", "\n", "\n", "#Calculations:\n", "#taking two frequency values:\n", "fe1=40\n", "fe2=60\n", "\n", "for m in range(1,3,1):\n", " if m==1:\n", " fe=fe1\n", " else:\n", " fe=fe2\n", " X1=X10*(fe/fe0)\n", " X2=X20*(fe/fe0)\n", " Xm=Xm0*(fe/fe0)\n", " V1=V10*(fe/fe0)\n", " \n", " ws=4*pi*fe/p\n", " ns=120*fe/p\n", " V1eq=abs(V1*1j*Xm/(R1+1j*(X1+Xm)))\n", " Z1eq=1j*Xm*(R1+1j*X1)/(R1+1j*(X1+Xm))\n", " R1eq=Z1eq.real\n", " X1eq=Z1eq.imag\n", " \n", "#Search over the slip until the Pload = Pmech \n", " s=0 #slip initialised to 0\n", " error=1\n", " \n", " while error >=0:\n", " s=s+0.00001\n", " rpm=ns*(1-s)\n", " wm=ws*(1-s)\n", " Tmech=(1/ws)*Nph*V1eq**2*(R2/s)\n", " Tmech = Tmech/((R1+R2/s)**2 + (X1+X2)**2)\n", " Pmech=Tmech*wm\n", " Pload=10.5*10**3*(rpm/1800)**3\n", " error=Pload-Pmech\n", " \n", " print \"\\nFor fe =\",fe,\"Hz :\"\n", " print \"\\tTerminal voltage=\",round(V1*sqrt(3)),\"V l-l\"\n", " print \"\\trpm =\",round(rpm)\n", " print \"\\tslip =\",round(100*s,1),\"%\"\n", " print \"\\tPload =\",round(Pload/1000,2),\"kW\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "For fe = 40 Hz :\n", "\tTerminal voltage= 153.0 V l-l\n", "\trpm = 1166.0\n", "\tslip = 2.8 %\n", "\tPload = 2.86 kW\n", "\n", "For fe = 60 Hz :\n", "\tTerminal voltage= 230.0 V l-l\n", "\trpm = 1721.0\n", "\tslip = 4.4 %\n", "\tPload = 9.17 kW\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.12, Page number: 608" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import *\n", "\n", "#Variable declaration:\n", "V10=230/sqrt(3)\n", "Nph=3\n", "p=4\n", "fe0=60\n", "R1=0.095 #Armature resistance(ohm)\n", "R2=0.2 #Rotor resistance(ohm)\n", "X10=0.680 #Armature leakage reactance(ohm)\n", "X20=0.672 #Rotor leakage reactance(ohm)\n", "Xm0=18.7 #Inductice reactance(ohm)\n", "n=1680 #rpm\n", "Pmech=9.7*10**3 #Electromagnetic power(W)\n", "\n", "\n", "#Calculations:\n", "we0=2*pi*fe0\n", "Lm=Xm0/we0\n", "LS=Lm+X10/we0\n", "LR=Lm+X20/we0\n", "Ra=R1\n", "RaR=R2\n", "lambda_rated=sqrt(2)*V10/we0\n", "lambdaDR=lambda_rated\n", "#for specified operating condition\n", "wm=n*(pi/30)\n", "Tmech=Pmech/wm\n", "iQ=(2/3)*(2/p)*(LR/Lm)*(Tmech/lambdaDR)\n", "iD=lambdaDR/Lm\n", "Ia=sqrt((iD**2+iQ**2)/2)\n", "wme=(p/2)*wm\n", "we=wme+(RaR/LR)*(iQ/iD)\n", "fe=we/(2*pi)\n", "Va=sqrt(((Ra*iD-we*(LS-Lm**2/LR)*iQ)**2 + (Ra*iQ+we*LS*iD)**2)/2)\n", "\n", "\n", "\n", "#Results:\n", "print \"Rms amplitude of the armature current:\",round(Ia,1),\"A\"\n", "print \"The electrical frequency:\",round(fe,1),\"Hz\"\n", "print \"Rms terminal voltage:\",round(sqrt(3)*Va,1),\"V line-line\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rms amplitude of the armature current: 27.9 A\n", "The electrical frequency: 58.4 Hz\n", "Rms terminal voltage: 243.6 V line-line\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.13, Page number: 610" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "%pylab inline\n", "from math import *\n", "\n", "#Variable declaration:\n", "P_rated = 12*10**3 #Watts\n", "V_rated = 230 #Rated line-line voltage(v)\n", "Va_rated = 230/sqrt(3) #Rated line to neutral(V)\n", "fe_rated = 60 #Hz\n", "we_rated = 2*pi*fe_rated #rad/sec\n", "lambda_rated = sqrt(2)*Va_rated/we_rated #Wb\n", "I_rated = P_rated/(sqrt(3)*V_rated) #A\n", "Ipeak_base = sqrt(2)*I_rated #A\n", "p = 4 #poles\n", "\n", "V10=V_rated/sqrt(3)\n", "R1=0.095 #Armature resistance(ohm)\n", "R2=0.2 #Rotor resistance(ohm)\n", "X10=0.680 #Armature leakage reactance(ohm)\n", "X20=0.672 #Rotor leakage reactance(ohm)\n", "Xm0=18.7 #Inductice reactance(ohm)\n", "\n", "#Calculations:\n", "Lm = Xm0/we_rated;\n", "LS = Lm + X10/we_rated;\n", "LR = Lm + X20/we_rated;\n", "Ra = R1\n", "RaR = R2\n", "#operating point:\n", "n = 1680 #rpm\n", "lambdaDR=lambda_rated\n", "wm = n*pi/30\n", "wme = (p/2)*wm\n", "Pmech = 9.7*10**3\n", "Tmech = Pmech/wm\n", "lambda_DRpu=[0]*42\n", "iDpu=[0]*42\n", "Iapu=[0]*42\n", "fe=[0]*42\n", "Vapu=[0]*42\n", "\n", "for n in range(1,43,1):\n", " lambdaDR = (0.8+(n-1)*0.4/40)*lambda_rated\n", " lambda_DRpu[n-1]=lambdaDR/lambda_rated\n", " iQ=(2/3)*(2/p)*(LR/Lm)*(Tmech/lambdaDR)\n", " iD=(lambdaDR/Lm)\n", " iDpu[n-1]=iD/Ipeak_base\n", " iQR=-(Lm/LR)**iQ\n", " Ia=sqrt((iD**2+iQ**2)/2)\n", " Iapu[n-1]=Ia/I_rated\n", " we=wme-(RaR/LR)*(iQ/iD)\n", " fe[n-1]=we/(2*pi)\n", " Va_rms=sqrt(((Ra*iD-we*(LS-Lm**2/LR)*iQ)**2 +(Ra*iQ+ we*LS*iD)**2)/2)\n", " Vapu[n-1]=Va_rms/Va_rated\n", "\n", "#Results:\n", "print \"The required plot is as shown:\"\n", "plot(iDpu,Iapu)\n", "plot(iDpu,Vapu,':')\n", "xlabel('i_D [per unit] ')\n", "ylabel('per unit')\n", "annotate('Ia',xy=(0.21,1.05))\n", "annotate('Va',xy=(0.21,0.85))\n", "show()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "The required plot is as shown:\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['vectorize', 'prod', 'plotting', 'Circle', 'diag', 'sinh', 'trunc', 'plot', 'eye', 'f', 'det', 'tan', 'product', 'gamma', 'roots', 'radians', 'sin', 'fmod', 'expm1', 'ldexp', 'zeros', 'cosh', 'info', 'interactive', 'conjugate', 'linalg', 'take', 'trace', 'beta', 'exp', 'random', 'frexp', 'fft', 'ceil', 'ones', 'copysign', 'isnan', 'multinomial', 'cos', 'transpose', 'solve', 'diff', 'invert', 'degrees', 'pi', 'tanh', 'Polygon', 'fabs', 'reshape', 'sqrt', 'floor', 'source', 'add', 'poly', 'mod', 'sign', 'hypot', 'power', 'binomial', 'log', 'var', 'log10', 'e', 'seterr', 'log1p', 'flatten', 'nan', 'modf', 'isinf', 'test']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEQCAYAAABIqvhxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclGX6+PHPAAoqmlpACiSGB2Q4h24eMExJ8ZzaEqa2\nHsq0vq19Xfut25ZYra6pleV+zTI72vmgmUq7HcZTHlBQUdM8IkOiiAcEBIG5f388ORspwsgMzzBc\n79eL187Mc5jr3vC5uJ77ue/boJRSCCGEEDZw0zsAIYQQ9Y8kDyGEEDaT5CGEEMJmkjyEEELYTJKH\nEEIIm0nyEEIIYTOHJo8JEybg5+dHeHj4Nbe/9957REREEB4eTmxsLDt37rRuS01NJTw8nNDQUObN\nm+fIMIUQQtjIoclj/PjxpKamVrm9c+fObN68mczMTJ5//nkmTZoEQGlpKVOmTCE1NZU9e/bw2Wef\nkZGR4chQhRBC2MChySMuLo5WrVpVub1bt240b94cgJ49e5KTkwPAtm3bMBqN+Pv74+HhQVJSEmvW\nrHFkqEIIIWzgNH0eS5cuZdiwYQCYzWYCAwOt2wICAjCbzXqFJoQQ4nc89A4AwGQysXz5cjZv3gyA\nwWDQOSIhhBDXo3vy2LNnD5MmTSI1NdV6iysgIIDs7GzrPtnZ2ZUqkSs6dOjAkSNH6ixWIYRwBcHB\nwRw+fLh2J1EOduzYMRUWFnbNbVlZWSo4OFht2bKl0ueXLl1S7dq1U2azWV2+fFnFxsaqnTt3XnV8\nHYSvq1mzZukdgkNJ++ovV26bUq7fPntcOx1aeSQnJ7N+/XrOnDlDYGAgs2fPpqysDIDJkyfz7LPP\ncu7cOaZMmQJAo0aN2L59O15eXixZsoT+/ftjsVgYO3YsMTExjgxVCCGEDRyaPD788MPrbl+2bBnL\nli275rbExEQSExMdEZYQQohacpqnrcTV4uPj9Q7BoaR99Zcrtw1cv332YPj1/le9ZDAYqMfhCyGE\nLuxx7ZTKQwghhM0keQghhLCZJA8hhBA2k+QhhBDCZpI8hBBC2EyShxBCCJtJ8hBCCGEzSR5CCCFs\nJslDCCHsoMJSQVlFmd5h1BlJHkIIYQfP/PAMb+16S+8w6oxMTyKEEHZwsfQizRo3w83g/H+Ty/Qk\nQgihE6UUj619DHOBtkR2c8/m9SJx2EvDaakQQtiRwWBgcKfBtG7SWu9QdCG3rYQQoobKKsr4z9H/\nMLDjQL1DqRWnv201YcIE/Pz8CA8Pv+b2AwcO0L17d7y8vFi4cGGlbUFBQURERBAdHU23bt0cGaYQ\nQtTIxcsX+Wz/Z5RbyvUORXcOrTw2btyIt7c348aNIzMz86rteXl5ZGVlsXLlSlq1asX06dOt29q3\nb8/OnTtp3brqklAqDyGEoymluHj5Ii08W+gdit04feURFxdHq1atqtzu4+NDbGwsjRo1uuZ2SQxC\nCL2tPLCS6d9Mr37HBsZpO8wNBgMJCQlERESwePFivcMRQjRQw0KGsXigXIN+z0PvAKqydetWfH19\nycvLY8CAAYSEhNCvX7+r9ktJSbG+jo+Pl7WHhRC1NnfjXCJvjWRgx4G4Gdzw9PDUO6RaMZlMmEwm\nu57TaZOHr68voN3aGjVqFGlpadUmDyGEsIdBnQYR0CJA7zDs5vd/WM+ePbvW53SK21a/79soLi6m\nuLgYgKKiIlJTUzEajXqEJoRoACzKwnu737POTRXhF9Fgx2/UlEMrj+TkZNavX8+ZM2cIDAxk9uzZ\nlJVp/3EmT55Mbm4uXbt2paCgADc3NxYtWsT+/fs5ffo09957LwaDgeLiYu6//36GDh3qyFCFEA2Y\nAQP78vZxruQcvs189Q6nXpBBgkKIBiu3MJdbvW/VO4w65/SP6gohhLM6eu4oIz8ZKX+A3iCpPKqw\nZQt89RXMmQMGg0O+QgihswpLBe5u7nqHUeek8nCgkBD4z39g+nSov+lVCPFbn+77lNmm/z5p1BAT\nh71I5XEd585BQgL07g0LF0oFIkR9l1+cT2lFKW2bt9U7FF1J5eFgrVpp1ceGDVKBCFFfvb/nfbLO\nZwFwc9ObG3zisBdJHtWQBCJE/WZRFi6VX9I7DJcjt61qSG5hCVF//Jz/M51u7qR3GE5LblvVIalA\nhKgfSstLmbBqAudLzusdikuTysNG587BPfdA9+6waJFUIEI4C4uyWNcQV0phkH+cVZLKQwdXKpC0\nNJgyBSwWvSMSQuzK3cWwj4ZZ30vicDypPG7QxYswaBAEB8OyZeAuj4sLoRulFDkXc1xqJlxHsse1\nU5JHLRQVwdChcOut8M474OG0E9wL4XrWHlqLRVkY3Gmw3qHUO3LbSmfNmsHXX0N+PoweDb9OGCyE\nqAO3NL1FZsDVkVQedlBSAvfdp926+vhj8Kzfi44J4bTSctKIvDWSxu6N9Q6lXpPKw0l4ecHnn2vJ\n49574ZKMRxLCId5If4ODZw7qHYZAKg+7KiuD8ePBbIbVq6F5c70jEqL+Ky0vrfdriDsbp688JkyY\ngJ+fH+Hh4dfcfuDAAbp3746XlxcLFy6stC01NZXw8HBCQ0OZN2+eI8O0m0aN4N13tRl5+/WDs2f1\njkiI+u1CyQViXo+htLxU71DE7zi08ti4cSPe3t6MGzeOzMzMq7bn5eWRlZXFypUradWqFdOnTweg\ntLSUkJAQNm3ahJ+fH927d+f1118nOjq6cvBOVnlcoRTMmAH//rc2JsTPT++IhKi/LpRc4Cavm/QO\nw6U4feURFxdHq1atqtzu4+NDbGwsjRo1qvT5tm3bMBqN+Pv74+HhQVJSEmvWrHFkqHZlMMD8+TBq\nFMTFwYkTekckRP2RlpPGs+uftb6XxOGcnLLD3Gw2ExgYaH0fEBCA2WzWMSLbGQzwzDPaKPTeveHw\nYb0jEqJ+6NC6A32C+ugdhqiGUw5rs2VqgZSUFOvr+Ph44uPj7R9QLTzxhNZxftddkJoKVXT/CNGg\n7fhlB62btOb2VrfTqkkr4trF6R2SSzGZTJhMJrue0ymTR0BAANnZ2db32dnZlSqR3/pt8nBWkyZp\nCaRfP1i5UptUUQjxX+kn02nfsj23t7pd71Bc0u//sJ49e3bVO9eQU9y2+n3HTdeuXdm7dy85OTmU\nlZXxySefkJiYqFN09pGUpE1hMmyYVoEI0dDlF+dbXz98x8MkBCfoGI2wlUOftkpOTmb9+vWcOXMG\nPz8/Zs+eTdmvc3hMnjyZ3NxcunbtSkFBAW5ubjRv3pz9+/fj7e3NunXrmDFjBhaLhbFjxzJz5syr\ng3fSp62u58cftYGEL78Mycl6RyOEPpRS3PnmnXw86mOCWgbpHU6DIxMj1sPkAZCZCYmJ8Le/wdSp\nekcjhD7KKspo5N6o+h2F3Tn9o7ri2sLDYeNGePFFePZZWZVQNAzZF7IZ9tEwLEpbBEcSR/0mlYeO\ncnNhwADtUd6XXwY3SeXChSml2JW7i+g20dXvLBxKblvV8+QBcP681onepo3WoS4z8gpXsjt3N79c\n/IXEjvX7gRdXI7etXEDLlvDNN9qkigMHQkGB3hEJYT+XKy5TeLlQ7zCEA0jl4SQqKuDxx2HzZli3\nTqtEhKiPss5n4efth5eHl96hiCpI5eFC3N1h8WJtUakePeCgLFkg6qk5G+ew1bxV7zCEg0nl4YSW\nL4enntJGo//hD3pHI0T1LMqCm0H7W1QpZdMUQ6LuSeXhoiZMgGXLYMgQWLtW72iEuL7S8lJiX4/l\nQskFwLa56UT9JZWHE9u6VRuNPns2PPyw3tEIUbWcghz8W/jrHYaoIak8XNydd2qDCefP10ajWyx6\nRySE5uf8n5m7ca71vSSOhkeSh5Pr0AG2bAGTCcaOhVJZjVM4Ab9mfnS8uaPeYQgdyW2reuLSJXjg\nAW1d9C+/hOss0CiEQxw9dxSlFMGtg/UORdSS3LZqQJo0gU8/heho6NkTsrL0jkg0NN8d/Y4dv+zQ\nOwzhJKTyqIdeflnrB1m1CmJj7Xdeb29vCgtlNLD4r4ulF2nu2VzvMISdSeXRQE2bpg0oTEzUxoLY\nizxiKX5v8IeD2Xd6n95hCCcklUc9tmMHDB+uJZPp06G21/7mzZtz8eJFCgsLGTJkCAUFBRQVFfHc\nc89x33332SdoUa9cKrtEk0ZN9A5D2JnTz6o7YcIE1qxZg6+vL5mZmdfc5/HHH+e7777D09OTN998\nk+hobbrmoKAgWrRogbu7O40aNWL79u1XB9/AkwdAdjYMHqw91rt4MTSqxRIJV5JHRUUFpaWlNG3a\nlDNnztC1a1eOHj0qlUkDkFeUx5Q1U/ho1Ed4uHnoHY5wEKe/bTV+/HhSr7Ng9+eff86JEyfYt28f\nb775JuPHj7duMxgMmEwmMjIyrpk4hCYwEDZtArNZm5X3/Pnan7OsrIxp06YRFhZGQkICp0+f5uTJ\nk7U/sXB6tzS9hWl3TpPEIarl0OQRFxdHq+s8U7p27VrGjh0LQHR0NOXl5eTk5Fi3N/SqoqaaN9c6\nz7t00Z7EOnasdud79913KSgoIDMzk4yMDHx9fSkvL7dPsMLp/Jz/M+sOrQO0P9p63dZL54hEfaBr\nh7nZbCYwMND6PiAgALPZDGi/xAkJCURERLB48WK9Qqw3PDzglVdgyhRtVt5Nm278XCUlJfj6+mIw\nGNiwYQNZ8lywSyu6XMTJQqkshW10r02rqi62bNmCn58feXl5DBgwgJCQEPr163fVfikpKdbX8fHx\nxMfHOyjS+uGxx6BjRxgxAl54Af70p5ofe6VP44EHHqB///5ERkYSGxtLly5dHBOs0M3Jiye5yesm\nmjZqSnSbaFka1sWZTCZMJpNdz+nwp62OHz/OkCFDrtlhPnHiRBITExk1ahQAYWFhfPPNN/j7V54n\nZ+5cbQ6dmTNnVvpcOsyrduCANivvsGEwb562XogQVzy65lEGdRrEwI4D9Q5F6MDpO8yrM3DgQFas\nWAFAeno67u7u+Pv7U1xcTHFxMQBFRUWkpqZiNBr1DLXeCQmBbdsgI0NLILK8rbCo/86suXjgYkkc\nolYcmjySk5Pp0aMHBw8eJDAwkOXLl7N06VKWLl0KwMiRI/H398doNDJp0iTeeustAHJzc+nevTtR\nUVFER0dz1113MXToUEeG6pJat4bUVO2JrB494OhRvSMSeimrKKPbG904U3wGkAGhovZkkGAD8a9/\nwXPPwUcfQQPvFmqwsi9kE3hTYPU7CpdX729bibrz6KPw/vtw//1aIpGc6/qOnD3C8xuet76XxCHs\nSZJHA9KvH2zeDK+9Bg89JGuDuDrfZr50bC1rbgjHkNtWDVBhITz4IJw8CZ9/Dm3a6B2RsJej545S\nbimn082d9A5FODG5bSVuiLe3tjZIYiJ06wYy+4vr2JC1QdbcEHVCKo8GbtUq7RbWggUwbpze0Ygb\ncaHkAjd53aR3GKIekcpD1NqwYdr66M8/D48/DmVlekckbHXvx/eSeeras1YL4ShSeQhAm4133Dg4\nd067pXXrrXpHJGqqtLwUTw9PvcMQ9YhUHsJuWrbUViW85x5tadstW/SOSFTldNFpBn0wiHKLNtOx\nJA6hB6k8xFXWroXx4yElBR55pPYrFAr7Ukqx8+ROYtvacQF70aA4/UqCjibJw3EOH9Zm5r3jDvi/\n/4MmshKprvae3svhs4cZHjJc71CEC5DbVsJhOnTQbl2VlmoLTMm8WPpSSnGp7JLeYQhhJZWHuC6l\ntLXRn38eli3TpnkXdePI2SP4efvh3dhb71CEi5HKQzicwQD/8z/aeJBHH4WZM0FWpK0br25/le05\nMoJTOCepPESN5eXBAw9oyePDD8HPT++IXM/liss0dm+sdxjCxdVJ5dG3b98afSZcn48PrFsHcXFa\nR3pt1kkXVystLyVmaQznS87rHYoQ1aoyeVy6dIn8/Hzy8vI4e/as9Sc7O5usrKwanXzChAn4+fkR\nHh5e5T6PP/44RqORmJgYMjIyrJ+npqYSHh5OaGgo8+bNs6FJwpHc3WH2bHjjDRg1Slsn3WKp/jhR\nPU8PTzaM30BLr5Z6hyJE9VQVXnrpJRUUFKQaN26sgoKCrD9dunRRCxYsqOqwSjZs2KDS09NVWFjY\nNbd/9tlnatiwYUoppdLT01VkZKRSSqmSkhIVFBSkzGazKisrU7GxsSo9Pf2q468TvqgDWVlKde+u\n1KBBSp05o3c09dOe3D1qxr9n6B2GaGDsce2ssvKYNm0ax44dY8GCBRw7dsz6s3//fqZPn16jxBQX\nF0erVq2q3L527VrGjh0LQHR0NOXl5ZjNZrZt24bRaMTf3x8PDw+SkpJYs2aNTUlRON5tt8H69RAa\nCjExMir9Rtze6nYSOyTqHYYQNvOoasP333/P3XffTdu2bfniiy+u2j5ixIhaf7nZbCYw8L+rmwUE\nBGA2m8nJybnqc5PJVOvvE/bXqJF26youDoYPhxkz4H//F9zkOb4qbTVvxbuxN2G+YTRr3Iw+7fvo\nHZIQNqsyeaxfv567776b1atXY7jG/BT2SB6APC3lIoYM0dYFSUrSqpG334abb9Y7Kud0/PxxWjdp\nTZhvmN6hCHHDqkwes2fPBuDtt9922JcHBASQnZ3NH/7wB+C/lUhZWRnZ2dnW/bKzsytVIr+VkpJi\nfR0fH098fLzD4hXX164dbNigjQWJidHWTI+L0zsq53D8/HHa3dQOg8HA/WH36x2OaGBMJpPd795U\nO86jqKiITz/9lOzsbCy/PlZjMBh45plnavQFx48fZ8iQIWRmXr3ewOeff87777/Pl19+SXp6OuPH\nj2f37t2UlJQQEhLC5s2b8fX1pUePHixdupSYmJjKwcs4D6e1Zg1MnKgNLPzb37SntBoqpRR93+3L\nsqHLuL3V7XqHI4Rdrp1VVh5XDBo0CD8/P+644w7cbbwCJCcns379es6cOUNgYCCzZ8+m7NfVhiZP\nnszIkSP54YcfMBqNeHp68tZbbwHg5eXFkiVL6N+/PxaLhbFjx16VOIRzGzQIdu6EMWPg+++1KsTf\nX++o6pZFWXAzuGEwGPhu3HfXvP0rRH1VbeURFhbG3r176yoem0jl4fwqKmDuXG1+rGXLYPBgvSOq\nG8fPH2fMF2PYOH6jJA3hdOpkhHmvXr2cNnkI5+fuDn//O3z2mXYLa9o0baZeVxfUMoiPRn0kiUO4\nrGorjy5dunD48GHat2+Pp6e2YpnBYGDPnj11EuD1SOVRv5w9C5MmwbFj8MEH0KWL3hHZ1zeHv+FU\n0SnGRY7TOxQhrqtO+jzWrVtXqy8Q4orWreHzz7WpTeLi4LnnXGulwnYt29G6SWu9wxCiTlRbeZw4\nceKan992220OCcgWUnnUXwcOaDP0BgTAm2/CLbfoHdGN+ebwN3QP7E4LzxZ6hyJEjdVJ5TFw4EDr\nfduSkhKOHTtG586d2bdvX62+WDRsISHadCZ//ztERmqDChMS9I7Kdj9m/4h/C38Z8CcaHJvX89i1\naxeLFy9m2bJljoqpxqTycA3ffQcPPqiNTv/HP8DLS++Iru/kxZO0ad5G7zCEuGG6rCQYFRXF1q1b\na/WlQvxW376wezdkZUG3buAEz2JU6XzJeQZ+MJDS8gbwyJgQ11Ft5bFw4ULra4vFQnp6OidPnnSK\niQql8nAtSsG778Jf/gJPPqlNsOgsI9OVUtbbtxWWCtzdnCQwIW5AnVQeFy9epLCwkMLCQkpKSrjn\nnntkenThEAaDdvsqLQ1Wr4a779aqEb2tO7SOqWumWt9L4hBC1jAXTqqiAhYuhPnztf8dO1a/R3ov\nlV3ifMl56ecQLsMe105JHsKp7dqlzY/VuTO89pq2jnpdWLx9MT0CexDTRuZUE65Hlw5zIepSVBTs\n2AEdOkBEBHz5Zd18b+ebO3NzE1mQRIiqXDd5WCwWXn755bqKRYhr8vKCefO0+bGefFK7hXXunH2/\nw6IsrDqwyvrXWEJwAu1atrPvlwjhQq6bPNzc3Pj444/rKhYhrqtnT+02VsuWWhXyzTf2O3e5pZzV\nP6+moLTAficVwoVV2+fxxBNPYLFYGDVqFM2aNbN+7gzra0ifR8P13XcwYQIMGAALFkDz5rafQynF\nqaJT3Op9q/0DFMKJ1UmHeXx8/DWnlf7hhx9q9cX2IMmjYbtwAaZPh2+/1SZbtHV6k00nNrFo2yI+\nve9TxwQohJNy+qetUlNTmTFjBhUVFTz44IP8v//3/yptz8/PZ8yYMZw4cQJvb2+WL1+O0WgEICgo\niBYtWuDu7k6jRo3Yvn371cFL8hBot68efhj699ce7b3ppqr3vfL7IgP+RENWJ09b5eTkMGbMGBJ+\n/bPu4MGDvP7669WeuLS0lClTppCamsqePXv47LPPyMjIqLRPSkoKPXr0YN++fbz77rs89NBD1m0G\ngwGTyURGRsY1E4cQV/TvD5mZ2jiQ8HBITa163xRTCu/uftf6XhKHEDem2uQxZswYhgwZwqlTpwAI\nDg7mlVdeqfbE27Ztw2g04u/vj4eHB0lJSVeNTD948CB9+vQBoHPnzpw+fZqTJ09at0tVIWqqRQtY\nulSb3v2RR2DiRDh//ur9Hol9hPvD7q/7AIVwMdUmj/z8fJKSknD/dZIhDw8PPDyqnckds9lMYGCg\n9X1AQABms7nSPuHh4XzxxRcAbN++naysLOv6IQaDgYSEBCIiIli8eHHNWyQatIQErQpp3BjCwuDL\nVRU8vu5xzpdomaRN8zZ4enjqHKUQ9V+1WaBZs2bk5+db32dkZFiXo72emqzdPGvWLKZMmYLRaKRL\nly7ExsZaj9uyZQt+fn7k5eUxYMAAQkJC6NevX7XnFKJ5c1iyBO6/HyZNcsc3vjfnIxrT0l/vyIRw\nHdUmjxdffJF77rmHo0eP0rt3b06cOMGnn1b/dEpAQADZ2dnW99nZ2ZUqEYAWLVqwYsUK6/vg4GA6\ndeoEgJ+fHwA+Pj6MGjWKtLS0ayaPlJQU6+v4+Hji4+OrjU24tgslF9icvZmBdw1kzx5ISRnFH2K0\nR3rHjHGdZW+FqCmTyWT/mdBVDVy+fFnt2LFDpaWlqdLS0pocoi5duqTatWunzGazunz5soqNjVU7\nd+6stM+FCxdUWVmZUkqp9957T40aNUoppVRRUZEqKipSSilVWFioevfurVatWnXVd9QwfNHAHD93\nXM3494xKn+3YoVRkpFIDBiiVlaVTYEI4CXtcO6utPIqLi1m0aBGbNm3CYDDQq1cv/vznP9OkSZPr\nHufl5cWSJUvo378/FouFsWPHEhMTw9KlSwGYPHkye/fuZfz48Xh5edGxY0fefPNNAE6dOsXw4cMx\nGAwUFxdz//33M3To0FonSuG6LpZepMxSRusmrWnXsh0vJLxQafsdd2hTvc+fr71++ml49FHnWS9E\niPqm2nEegwcPpm3btiQnJ6OU4uOPPyYnJ4evv/66rmKskozzEFf8Y8M/uKXpLUyOnVztvgcPauNC\nLl3SBhdGRtZBgEI4kToZJBgWFsbevXur/UwPkjwatt8O8FO/WemvJiwWeOstmDlTm+bkmWegaVNH\nRSqEc6mTQYIxMTGVBumlpaU5xbxWomFTSnHX23dx9NxRoGZP9/2Wm5s2FiQzE06c0AYX/vvfjohU\nCNdUbeUREhLCzz//TGBgIAaDgRMnTtC5c2c8PDwwGAzs2bOnrmK9ilQeDVtuYa7dJjVctw6mTNFm\n7n3xRfj1YT8hXFKd3LY6fvz4dU8QFBRUqwBqQ5JHw5J1PosXNr/A4oGLba40aqKoCJ59FpYvh+ee\n0/pF3GS5NOGCnH5iREeT5NGwlFWU8e3Rb0nsmOjQ78nM1KqQ8nJt6duoKId+nRB1TpKHJA+Xt+OX\nHVyuuEyPwB51+r1XOtT/9jcYPVqrSG5kzRAhnJGsYS5c3pniM5y9dLbOv/dKh/revdoEi6Gh8Omn\nIH+rCKGRykM4nb2n99Llli5ONV36xo0wdSrceiu8+iqEhOgdkRA3TioP4ZJmr5/NobOH9A6jkrg4\nSE+HQYOgVy9tfEhRkd5RCaEfqTyEUyguK6Zpo/oxSu/kSZgxAzZsgJdeghEjZLJFUb9I5SFcwokL\nJ4h7Kw6LsugdSo20aQPvvw/vvQezZsGAAXDggN5RCVG3pPIQTqHwciHejb31DsNmZWWweDH84x/w\npz9p05y0aKF3VEJcn1Qeot5asWcF8zfPt76vj4kDoFEjeOIJ2LcPzp7VOtLfeUd71FcIVyaVh9DF\nyYvaWvVtmrfRORL72r4dHntMm+r91VchNlbviIS4mlQeol6Zs3EOuYW5gJY0XC1xAHTrBlu3alOb\nDBmijRXJzdU7KiHsT5KHqDNBLYNwM7j+r5ybG4wfr3Wit24NYWEwbx6UluodmRD249B/yampqYSH\nhxMaGsq8efOu2p6fn09iYiJGo5E//OEP7Nu3r8bHCudXUl7CukPrrO9Hh4/Gt5mvjhHVrZtu0lYu\n3LJF+wkNhS+/lFHqwkXUeiHbKpSUlKigoCBlNptVWVmZio2NVenp6ZX2eeyxx9Szzz6rlFLqwIED\nqnv37jU+9te+GkeFL+zgdOFpNWnVJFVhqdA7FKfw7bdKhYUp1aePUrt26R2NaMjsce10WOWxbds2\njEYj/v7+eHh4kJSUxJo1ayrtc/DgQfr06QNA586dOX36NL/88kuNjhXOqaS8hNNFpwHwaebDG0Pf\naBC3qmqib1/IyIA//hH694dJk7QBh0LURw77V202mwkMDLS+DwgIwGw2V9onPDycL774AoDt27eT\nlZXFiRMnyMnJqfZY4ZyWZyznzfQ39Q7DaXl4wCOPVO4Pee45KC7WOzIhbOPhqBPXZLGeWbNmMWXK\nFIxGI126dCE2NtbmRX5SUlKsr+Pj44mPj7cxUlFb5ZZyPNy0X6VHYh+RSqMGWraEF17Q1g2ZORM6\nd9YGGo4ZIwtQCfszmUyYTCa7ntNhySMgIIDs7Gzr++zs7ErVBECLFi1YsWKF9X1wcDCdO3fm8uXL\n1R57xW+Th9DHgPcH8FL/lwj3C5fEYaP27eGjj7QO9f/9X1i0CBYsgF/v5gphF7//w3r27Nm1PqfD\n/qV37dphAOXxAAAX8UlEQVSVvXv3kpOTQ1lZGZ988gmJiZVXgCsoKKC8vByA999/n5iYGFq2bFmj\nY4Xz+HDkh4T7hesdRr3WvTv8+CM8+aQ2NmTQIG0tESGclcOSh5eXF0uWLKF///5ERkYyYsQIYmJi\nWLp0KUuXLgVg7969GI1GIiMjWblyJcuWLbvuscI5mAvMjP58tHUiQ59mPjpH5BoMBkhKgp9+gnvu\n0TrYJ06EnBy9IxPiajI9ibCZRVnYfGIzce3i9A7FpV24oA0uXLpU62R/8klt7IgQtSXTk4g6Yzpu\nIvVwKgBuBjdJHHXgpptgzhzYvVt7pLdTJ3j5ZRmpLpyDJA9RI57unni6e+odRoMUEADLl8O338L3\n32tPZr3zDlRU6B2ZaMjktpWo0jeHv6FP+z40dm+sdyjiNzZtgr/+Fc6f1yqTIUNkJUNhG7ltJRxG\nKcXXP39N9oXs6ncWdapXL9i4Ef75T3jqKW199Y0b9Y5KNDRSeQgrpRQnLpygXct2eociaqiiAlas\n0JbDDQmB55+HO+7QOyrh7KTyEHZ15NwRxq8aLwm5HnF3h3Hj4OBB7fbV0KEwahTs3693ZMLVSeXR\nwCmlKLOUWfs1lFI2TxEjnEdxMfzrX9pU8ImJWkVy++16RyWcjVQeotZe2PwCi7Yusr6XxFG/NW0K\nM2bA4cPa1CfdumljRLKl60rYmVQeDdzF0os0adTEOrGhcC35+dpcWa+/DsnJ2iSM/v56RyX0JpWH\nsJlSimEfDbM+RdXcs7kkDhd2880wd6425YmXF4SHw7Rpsq66qD1JHg2MwWBg1l2z8G8hf342JL6+\nWgVyZaXn0FD4y1/g1Cl94xL1lySPBuDouaPM3TjX+j6mTYxMnd5AtWmjTXGSmalNc9KlC0yfLpWI\nsJ1cQRqAW5reQlDLIL3DEE7E3x9efVVLImVlWiXyxBOyLK6oOUkeLmrTiU38lPcTAC08W5Acnlzt\nMXfffTf//ve/K3328ssvM3XqVIfEKPTn7w+vvKKtHaIUGI3w5z/DL7/oHZlwdpI8XFTW+SxyC227\nF5GcnMxHH31U6bOPP/6Y0aNH2zM04YTattVuZ+3bpw08DAuDqVPh+HG9IxPOSh7VdSE7ftlBbNvY\nGz7+7NmzdOnShZycHDw8PDh+/Dh33XUXiYmJ7Ny5kwsXLjBixAj++c9/2jFq4YxOn4aXXtIe8R02\nTHvEt2NHvaMS9uL0j+qmpqYSHh5OaGgo8+bNu2p7bm4uffv2xWg00rlzZ+sKgwBBQUFEREQQHR1N\nt27dHBmmSyirKGOWaRb5xfk3fI7WrVvTrVs31q5dC8BHH31EUlIS8+fPJy0tjZ9++olt27axc+dO\ne4UtnJSvr/aI7+HDEBQEPXrA6NGyNK74DeUgJSUlKigoSJnNZlVWVqZiY2NVenp6pX2eeuop9de/\n/lUppVReXp5q2bKlKikpUUopFRQUpPLz86/7HQ4Mv16wWCwqryjPrudcsWKFSk5OVkopFRUVpdLT\n09WLL76oIiIiVGRkpPLx8VErVqyw63cK51dQoNS8eUr5+Sk1bJhSW7fqHZGoDXtcOx1WeWzbtg2j\n0Yi/vz8eHh4kJSWxZs2aSvsEBgZSUFAAQEFBAT4+Pnh6/nfBISW3pK7r+2Pf8/i6x+16zqFDh/Ld\nd9+RkZFBcXExzZo141//+hebN29m165dDBo0iLKyMrt+p3B+zZtry+AeOwYJCdpa63ffDf/5j9bR\nLhoehyUPs9lMYGCg9X1AQABms7nSPg899BD79u2jbdu2REZGsmhR5TmWEhISiIiIYPHixY4Ks96p\nsFRYk+rd7e/m3Xvftev5vb296dOnD+PHj2f06NGUlJTg7e1Ns2bNOHPmDOvWrZP5rxqwJk3g0Ufh\n0CH405+0J7O6dYMvvgCLRe/oRF1y2LwUNbnAzJkzh6ioKEwmE0eOHCEhIYHdu3fTvHlztm7diq+v\nL3l5eQwYMICQkBD69et31TlSUlKsr+Pj44mPj7djK5zPlDVTGNxpMEM7D8VgMOBhsP9/wuTkZEaM\nGMEnn3xCp06dCA8Pp2PHjgQHB9OrVy+7f5+ofxo10qaCHzMGvvpK6x/529+0SRnHjAFPWbHYqZhM\nJkwmk13P6bCnrTZu3Mi8efP4+uuvAZg/fz6XL1/mqaeesu4zYMAAnn76aXr27AlA3759mTt37lUd\n5HPnaqOjZ86cWTn4Bvi0VV5RHjc3vVlGiAunohSYTPDCC7Bnj1aRTJ4MN92kd2TiWpz6aauuXbuy\nd+9ecnJyKCsr45NPPiExMbHSPsHBwXz77bcAnDp1iv379xMUFERxcTHFxcUAFBUVkZqaitFodFSo\nTq2gtICBKwZSUl4CgE8zH0kcwukYDNCnD6xbB2vXagnk9tu1fpKcHL2jE47gsKuQl5cXS5YsoX//\n/kRGRjJixAhiYmJYunSp9ZHcZ555hk2bNhEaGkrv3r15/vnn8fX1JTc3l+7duxMVFUV0dDR33XUX\nQ4cOdVSoTq2FZwtS4lPw8vDSOxQhaiQyEt5/H9LT4fJlbSbf8ePlMV9XI4MEndCGrA0cPnuYCdET\n9A5FiFo7exZee02bSysyUpuIsV8/rVoR+rDHtVOShxM6lH+I3MJc4trF6R2KEHZTWgoffKBNDe/h\noSWR+++Hxo31jqzhkeThQsljecZy7g25l1ZNWukdihAOpRR8842WRH76SXv0d/JkbeEqUTecusNc\n2KbwciEXSi/oHYYQDmcwwIAB8O23Wuf6oUPQoYO21vpPP+kdnagpqTx0UlJewpbsLfRp30fvUITQ\nXW6u1i/y2msQHa2tLZKQIP0ijiKVRz2WX5zP+3ver7fJTwh7uvVWSEnRpoC/7z5tiVyjUUsmRUV6\nRyeuRSqPOnT20lkqLBX4NPPROxQhnJpSsH69tlDVhg3aVCiPPgrt2+sdmWuQyqOeeW3Ha6w5tKb6\nHYVo4AwGiI/X5szasQPc3KBrVxg+HL7/XiZjdAZSeTjYuUvnrE9QKaVkUkEhblBREaxYoVUjFotW\niYwbp834K2wjlYeTK7eU0/vt3uQV5QE1myxSCHFtzZrBww9DZiYsWaLNpdWuHTz2mDylpQepPByg\n3FKOh5s22+3liss0dpdRUEI4gtmsLZX7+usQGqpVI0OHarP+iqrJIEEnTB7fHv2Wt3a9xYoRK/QO\nRYgG4/Jl+Pxz+L//g6NHYdIkeOghCAjQOzLnJMnDCZNHuaWci6UXZaS4EDrJzNQe8f3wQ7jrLpgy\nRZtLy01u0ltJ8nCS5DF59WRGh4/mrqC79A5FCPGrwkKtg33JEu31ww9rj/z6+uodmf4keThJ8jiU\nf4iglkE0cpcbrUI4G6Vg2zatX+TLL+Gee7RE0qdPw61G5GkrnZwqPMWDKx+kwlIBQMebO0riEMJJ\nGQxw552wfDkcOwa9e2vTn3TurK18ePq03hHWT5I8boBvM18eCH9AVvQTop5p2VJ7Imv3bnjvPe0R\n306dYNQoSE2Figq9I6w/HHr1S01NJTw8nNDQUObNm3fV9tzcXPr27YvRaKRz587WFQZrcmxdW31w\nNasPrga0ku+e4Htk3IYQ9dSVauSttyArS5uE8emntelPUlK0z8T1OazPo7S0lJCQEDZt2oSfnx/d\nu3fn9ddfJzo62rrP3//+dyoqKpg7dy5nzpyhY8eO5ObmAlR7LNRtn0daThpuBjfuaHtHnXyfEKLu\n7doFb76pLVoVGwsTJ8KwYeDpqXdk9uXUfR7btm3DaDTi7++Ph4cHSUlJrFlTeV6nwMBACgoKACgo\nKMDHxwdPT88aHetoFZYKFv64kNLyUgC6+neVxCGEi4uK0pbLNZu1qU9ef10bK/I//wMZGXpH51wc\nljzMZjOBgYHW9wEBAZjN5kr7PPTQQ+zbt4+2bdsSGRnJokWLanyso7kZ3LAoC8VlxXX6vUII/TVp\nAg88oC1YlZYGt9wC996rrTXyyiuQn693hPrzcNSJa9IfMGfOHKKiojCZTBw5coSEhAR2795tU19C\nSkqK9XV8fDzx8fE3EO3VDAYDM3rOsMu5hBD1V1AQzJql9Yn88IPWT/LMM9C3Lzz4ICQmOv90KCaT\nCZPJZNdzOix5BAQEkJ2dbX2fnZ1dqZoA2LRpE08//TQAwcHBtG/fnv3799fo2Ct+mzyEEMJR3Ny0\nhNG3L1y4AJ9+CvPna9OgJCdriSQqyjlXP/z9H9azZ8+u9Tkddtuqa9eu7N27l5ycHMrKyvjkk09I\nTEystE9wcDDffvstAKdOnWL//v20b9++RscKIYRebrpJmz9r40bYvBlatNBua0VGwpYtekdXNxw6\nwnzdunXMmDEDi8XC2LFjmTlzpvVx3MmTJ3Pq1CnGjBlDTk4OFRUVPPnkk0ycOLHKY68K3klGmAsh\nhMWirXrYsSP4++sdzfXJ9CSSPIQQwmZO/aiuEEII1yXJQwghhM0keQghhLCZJA8hhBA2k+QhhBDC\nZpI8hBBC2EyShxBCCJtJ8hBCCGEzSR5CCCFsJslDCCGEzSR5CCGEsJkkDyGEEDaT5CGEEMJmkjyE\nEELYTJKHEEIImzk0eaSmphIeHk5oaCjz5s27avuCBQuIjo4mOjqa8PBwPDw8OH/+PABBQUFEREQQ\nHR1Nt27dHBmmEEIIWykHKSkpUUFBQcpsNquysjIVGxur0tPTq9x/9erVqm/fvtb3QUFBKj8//7rf\n4cDwncIPP/ygdwgOJe2rv1y5bUq5fvvsce10WOWxbds2jEYj/v7+eHh4kJSUxJo1a6rc/4MPPiA5\nOfn3ic1R4dULJpNJ7xAcStpXf7ly28D122cPDkseZrOZwMBA6/uAgADMZvM19y0uLuabb75h5MiR\n1s8MBgMJCQlERESwePFiR4UphBDiBng46sQGg6HG+65evZpevXrRsmVL62dbt27F19eXvLw8BgwY\nQEhICP369XNEqEIIIWxV+7tn17ZhwwY1aNAg6/sXXnhBPf/889fcd/jw4erDDz+s8lxz5sxRc+bM\nuerz4OBgBciP/MiP/MiPDT/BwcG1vsYblHJMx0JJSQkhISFs3rwZX19fevTowdKlS4mJiam034UL\nF7j99tsxm800adIE0G5jATRt2pSioiIGDhzI9OnTGTp0qCNCFUIIYSOH3bby8vJiyZIl9O/fH4vF\nwtixY4mJiWHp0qUATJ48GYCVK1fSv39/a+IAOHXqFMOHD8dgMFBcXMz9998viUMIIZyIwyoPIYQQ\nrstpR5hXN8DwwIEDdO/eHS8vLxYuXFhp26xZs+jUqRMhISGMGjXKehvMWVTXtvfee4+IiAjCw8OJ\njY1l586dNT7WGdxo+7Kzs+nduzfh4eF07tyZF154oa5Dr5Ha/PcDqKioIDo6miFDhtRVyDapTfvO\nnz/PfffdR2RkJF26dGHLli11GXqN1KZ9zn5tgerbt2rVKiIiIoiMjCQ8PJzU1NQaH1tJrXtNHKAm\nAwxPnz6t0tLS1FNPPaUWLFhg/fzQoUOqffv2qrS0VCml1B//+Ee1bNmyOo3/emrStm3btqmCggKl\nlFLr1q1TUVFRNT5Wb7VpX25ursrMzFRKKXXx4kXVsWNHtWvXrrptQDVq074rFi5cqEaPHq2GDBlS\nZ3HXVG3bN2rUKPXBBx8opZSqqKhQFy5cqLvga6A27XP2a4tSNWtfYWGh9fWePXvUbbfdVuNjf8sp\nK4+aDDD08fEhNjaWRo0aVfq8devWNGrUiKKiIsrLyykuLqZdu3Z1Gf511aRt3bp1o3nz5gD07NmT\nnJycGh+rt9q0z8/Pj7CwMAC8vb2JiIjgl19+qdsGVKM27QNt/NPatWuZNGmSUw6CrU378vPz2bVr\nl3Wwr5ubGy1atKjbBlSjNu1z9msL1Kx9zZo1s74uLCykTZs2NT72t5wyedgywPD3WrduzfTp07nt\nttto27YtLVu2dKrxIba2benSpQwbNuyGjtVDbdr3W8ePHyctLY1evXo5JM4bVdv2PfHEE8yfPx83\nN6f8p1er9h06dAgfHx/++Mc/EhYWxrhx4ygsLHR4zLaoTfuc/doCNW/fypUr6dKlC4mJibzyyis2\nHXuFU/4G2zLA8PeOHDnCyy+/zPHjx/nll18oLCxkxYoVdoyudmxpm8lkYvny5dZ7/7X5/6Wu1KZ9\nVxQWFnLfffexaNEi61+AzqI27fv666/x9fUlOjraKasOqF37LBYLaWlpzJgxg71799K6dWuee+45\nR4V6Q2rTPme/tkDN2zd8+HB++uknVq9ezdixY2/o99Epk0dAQADZ2dnW99nZ2ZUy4vVs376dHj16\ncPPNN+Ph4cGIESPYtGmTo0K1WU3btmfPHiZNmsRXX31Fq1atbDpWT7VpH0BZWRkjR45k9OjRDB8+\nvE5itkVt2vfjjz/y1Vdf0b59e5KTk/n+++8ZN25cncVeE7VpX2BgIP7+/nTt2hWAUaNGsWvXrroJ\nvIZq0z5nv7aA7deIuLg4ysvLOX36NIGBgbZdXxzQZ1Nrly5dUu3atVNms1ldvnxZxcbGqp07d15z\n31mzZlXqMN++fbsyGo2quLhYWSwWNW7cuErb9VaTtmVlZang4GC1ZcsWm4/VW23aZ7FY1NixY9W0\nadPqMmSb1KZ9v2UymdTgwYMdHa7Natu+O+64Qx08eFAppf3b/POf/1wncddUbdrn7NcWpWrWvmPH\njllf79y5UwUEBCiLxWLz9cUpk4dSSq1du1YZjUbVpUsX69Qkr732mnrttdeUUkqdPHlSBQQEqBYt\nWqiWLVuqwMBAdfHiRaWU9kvboUMH1alTJ5WUlKQuXbqkWzuupbq2TZw4UbVu3VpFRUWpqKgo1bVr\n1+se62xutH0bN25UBoNBRUZGWretW7dOt3ZUpTb//a4wmUxO+bSVUrVr365du1RsbKwKDQ1ViYmJ\n6uzZs7q04Xpq0z5nv7YoVX375s6dq8LCwlRYWJjq2rWr2rRp03WPrYoMEhRCCGEzp+zzEEII4dwk\neQghhLCZJA8hhBA2k+QhhBDCZpI8hBBC2EyShxBCCJtJ8hBCCGEzSR7CZfXs2bPKbcePH6dJkybE\nxMQQExPDnXfeyTvvvHPNfd9++218fHx4+OGHHRWqzQYNGkRBQQEXLlxgyZIl1s+PHj1KVFSU080J\nJlyPDBIUDdLx48cZMmQImZmZAJw8eZJhw4YxdepU/vSnP1Xa95133mHnzp3W2Udry2Kx2G1W3d+3\n44rmzZtz8eJFu3yHENcilYdwWd7e3jXet02bNixatKjKBPHbv7Hefvtthg0bRr9+/ejQoQNPPfWU\nddsbb7xBZGQkRqORCRMmUF5ebo3lL3/5C7GxsWzbtq3SuePj462r1Z05c4b27dtbv2fEiBEMHjyY\n22+/nWnTplmPCQoKIj8/n7/+9a8cOXKE6OhonnzyyRq3V4ja8tA7ACEcxdYp7KOjozlw4ECN9k1L\nS+PAgQN4eXkRGxvL4MGDadq0KatWrSI9PR13d3emTp3K22+/zaRJkyguLqZnz54sWLDgmnFWFevu\n3bvJzMzE3d2dTp06MW3aNIKCgqzHzJs3j3379pGRkWFTW4WoLUkeQvzKlju499xzj3WVvHvvvZdN\nmzbh5uZGRkYGsbGxAFy6dAkfHx8A3N3db2iK+b59+9K0aVMAjEYjZrOZoKCgG4pZCHuS5CHErzIy\nMujSpUu1+/2+SlBKYTAYUEoxceJEnn322auO8fLyqrK6cHNzw2KxAFBSUlJpm6enp/W1u7u7dT8h\n9CZ9HkKgdZhPnz6dxx9/vNp9lVL85z//oaCggMuXL7Nq1Sp69epFQkICn3zyCefOnQOgoKCgRssE\nBwQEsGPHDgC+/PJLm+Ju0qQJxcXFNh0jhD1I5SFcVnV9HkeOHCEmJgalFJ6enkydOrVGK/sZDAa6\ndevGyJEjOXbsGElJSdx5550AzJw5k7i4ODw8PHBzc+O1114jICDgurHMmDGDkSNH8uabbzJgwADr\nvtfrC7nCz8+PqKgoQkNDGTJkCPPmzas2fiHsQR7VFaIa77zzDjt27ODVV18FtKegdu7caX3vjORR\nXeFocttKiGo0adKEdevWWQcJ1qQi0MuVQYK33nqr3qEIFyeVh3BpmZmZV92K8vLyYsuWLTpFJIRr\nkOQhhBDCZnLbSgghhM0keQghhLCZJA8hhBA2k+QhhBDCZpI8hBBC2Oz/A7Fpp7L/E1W7AAAAAElF\nTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }