{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9:Mechanical Properties of Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1,Page No:9.3" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Elongation = 0.435 mm\n", "Lateral contraction = 1.30 um\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "F = 8482; # Tensile force in newtons\n", "lo = 0.30; # length of steel wire in cm\n", "Y = 207*10**9; # Youngs modulus of steel Gpa\n", "r = 3*10**-3; # radius of steel wire in m\n", "v = 0.30; # poisson ratio\n", "\n", "# Calculations\n", "\n", "dl = (F*lo)/float(Y*math.pi*r**2); #elongation in mm\n", "e1 = dl/float(lo); #longitudanl strain \n", "e2 = v*e1 # lateral strain \n", "dr = e2*r; # lateral contraction in m\n", " \n", "# Result\n", "print'Elongation = %3.3f'%(dl*10**3),'mm';\n", "print'Lateral contraction = %3.2f '%(dr*10**6),'um';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.3,Page No:9.7" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Engineering stress = 14.15 MPa\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "P = 400; # tensile force in newtons \n", "d = 6*10**-3; # diameter of steel rod m\n", "\n", "# Calculations\n", "r =d/float(2);\n", "E_stress = (P)/float((math.pi/float(4))*d*d); #e_stress in N/m**2\n", "\n", "#Result\n", "\n", "print'Engineering stress = %3.2f '%(E_stress*10**-6),'MPa';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.4,Page No:9.7" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percentage of elongation = 5.75 %\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Lf = 42.3; #guage length after strain mm\n", "Lo = 40; # guage length in mm\n", "\n", "# Calculations\n", "e = ((Lf - Lo)/float(Lo))*100 #Engineering Strain in %\n", "\n", "#Result\n", "print'Percentage of elongation = %3.2f '%e,'%';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.5,Page No:9.7" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percent reduction in area = 30.1 %\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "dr = 12.8; # original diameter of steel wire in mm\n", "df = 10.7; # diameter at fracture in mm\n", "\n", "# Calculations\n", "percent_red = (((math.pi*dr*dr) - (math.pi*df*df))/float(math.pi*dr*dr))*100; #Percent reduction in area in %\n", "\n", "\n", "# Result\n", "print'Percent reduction in area = %3.1f'%percent_red,'%';" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }