{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5:Conductivity of Metals and Superconductivity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1,Page No:5.5" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity=1.17e-07 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "d = 2*10**-3; #diameter in m \n", "I = 5*10**-3; #current in A\n", "e = 1.6*10**-19; #charge of electron in coulombs \n", "a = 3.61*10**-10; #side of cube in m\n", "N = 4; #number of atoms in per unit cell\n", " \n", " \n", "#formula\n", "#J=n*v*e\n", "\n", "#calculation\n", "r = d/float(2); #radius in m\n", "n = N/float(a**3); #number of atoms per unit volume in atoms/m**3\n", "A = math.pi*(r**2); #area in m**2\n", "J = I/float(A); #current density in Amp/m**2\n", "v = J/float(n*e); #average drift velocity in m/s\n", "\n", "#result\n", "print'velocity=%3.2e'%v,'m/s';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2,Page No:5.6" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity=1.06e-03 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "I = 6; #current in A\n", "d = 1*10**-3; #diameter in m\n", "n = 4.5*10**28; #electrons available in electron/m**3\n", "e = 1.6*10**-19; #charge of electron in coulombs\n", "\n", "\n", "#calculation\n", "r = d/float(2); #radius in m\n", "A = math.pi*(r**2); #area in m**2\n", "J = I/float(A); #current density in A/m**3\n", "vd = J/float(n*e); #density in m/s\n", " \n", " \n", "#result\n", "print'velocity=%3.2e'%vd,'m/s';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3,Page No:5.6" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity=4.80e-06 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "V = 63.5; #atomic weight in kg\n", "d = 8.92*10**3; #density of copper in kg/m**3\n", "r = 0.7*10**-3; #radius in m\n", "I = 10; #current in A\n", "e = 1.6*10**-19; #charge of electronin coulomb\n", "h = 6.02*10**28; #planck's constant in (m**2)*kg/s\n", "\n", "\n", "#calculation\n", "A = math.pi*(r**2); # area in m**2\n", "N = h*d;\n", "n = N/float(V);\n", "J = I/float(A); #current density in m/s\n", "vd = J/float(n*e); #drift velocity in m/s\n", "\n", "#result\n", "print'velocity=%2.2e'%vd,'m/s';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4,Page No:5.7" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "restivity=1.82e-08 ohm m\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "R = 0.182; #resistance in ohm\n", "l = 1; #length in m\n", "A = 0.1*10**-6; #area in m**2\n", "\n", "#formula \n", "#R=(p*l)/A\n", "\n", "#calculation\n", "p = (R*A)/float(l); #resistivity in ohm m\n", "\n", "\n", "#result\n", "print'restivity=%3.2e'%p,'ohm m';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5,Page No:5.7" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity=0.7 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "n = 5.8*10**28; #number of silver electrons in electrond/m**3\n", "p = 1.45*10**-8; #resistivity in ohm m\n", "E = 10**2; #electric field in V/m\n", "e = 1.6*10**-19; \n", "\n", "\n", "#formula\n", "#sigma = n*e*u \n", "#sigma=p\n", "#calculation\n", "u = 1/float(n*e*p);\n", "vd = u*E; #drift velocity in m/s\n", "\n", "#result\n", "print'velocity=%3.1f'%vd,'m/s';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6,Page No:5.8" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density=7.25e-03 m**2.V**-1.s**-1\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "W = 107.9; #atomic weight in amu(atomic mass unit)\n", "p = 10.5*10**3; #density in kg/m**3\n", "sigma =6.8*10**7; #conductivity in ohm**-1.m**-1\n", "e =1.6*10**-19; #charge of electron in coulombs\n", "N = 6.02*10**26; #avagadro number in mol**-1\n", " \n", "\n", "#calculation\n", "n = (N*p)/float(W); #number of atoms per unit volume \n", "u = sigma/float(n*e); #density of electron in m**2.V**-1.s**-1\n", "\n", "\n", "#result\n", "print'density=%3.2e'%u,'m**2.V**-1.s**-1';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example 5.7,Page No:5.8" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "time=2.51e-14 s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "#for common metal copper\n", "n = 8.5*10**28; #number of atoms in m**-3\n", "sigma = 6*10**7; #sigma in ohm**-1 m**-1\n", "m = 9.1*10**-31; #mass of electron in kilogram\n", "e = 1.6*10**-19; #charge of electron in coulombs\n", "\n", "#calculation\n", "t = (m*sigma)/float(n*(e**2)); #relaxation time in s\n", "\n", "#result\n", "print'time=%3.2e'%t,'s';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.9,Page No:5.14" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "thermal conductivity=1.6731 W/m-K\n", " Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "t = 3.0*10**-14; #time in s\n", "n = 2.5*10**22; #in electrons per m**3\n", "m = 9.1*10**-31; #mass of electron in kilograms\n", "e = 1.6*10**-19; #charge of electron in coulombs\n", "T = 3.25; #temperature in K\n", "\n", "\n", "#formula\n", "#K/(sigma*T)=2.44*10**-8 from wiedemann Franz law\n", "#calculation\n", "sigma = (n*(e**2)*t)/float(m*10**-6); #conductivity in m**3\n", "K = (2.44*10**-8)*sigma*T; #thermalconductivity in W/m-K\n", "\n", "\n", "#result\n", "print'thermal conductivity=%3.4f '%K,'W/m-K';\n", "print' Note: calculation mistake in textbook in calculating K as T value is taken 325 instead of 3.25';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.10,Page No:5.20" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy diefference=1.13e+02 eV\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "a = 10**-10; #one dimension in m\n", "m = 9.1*10**-31; #mass of kg\n", "h = 6.62*10**-34; #planck's constant in joule-s\n", "\n", "\n", "#formula\n", "#En = ((n**2)*(h**2))/float(8*m*(a**2))\n", "#calculation\n", "E1 = (h**2)/float(8*m*(a**2)); #energy in J\n", "E2 = (4*(h**2))/float(8*m*(a**2)); #energy in J\n", "dE = (3*(h**2))/float(8*m*(a**2)); #energy diefference in J \n", "x = dE/float(1.6*10**-19); #energy diefference in eV\n", "\n", "#result\n", "print'energy diefference=%3.2e'%x,'eV';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.11,Page No:5.20" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fermi energy=3.16 eV\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "N =6.02*10**23; #avagadro number in atoms /mole\n", "h = 6.63*10**-34; #planck's constant in joule-s\n", "m = 9.11*10**-31; #mass in kg\n", "M = 23; #atomic weight in grams /mole\n", "p = 0.971; #density in gram/cm**3\n", "\n", "\n", "#formula \n", "#x=N/V=(N*p)/M\n", "#calculation\n", "x = (N*p)/float(M);\n", "x1 = x*10**6;\n", "eF = (((h**2)/float(2*m)))*(((3*x1)/(8*math.pi))**(2/float(3))); #Fermi energy\n", "eF1 = (eF)/float(1.6*10**-19);\n", "\n", "#result\n", "print'fermi energy=%3.2f'%eF1,'eV';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.12,Page No:5.21" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fermi energy =3.16 eV\n", "fermi velocity =1.05e+06 m/s\n", "femi temperature =3.66e+04 K\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "x = 2.54*10**28; #number of electrons in per m**2\n", "h = 6.63*10**-34; # planck's constant in joule-s\n", "m = 9.11*10**-31; # mass in kg\n", "p = 0.971; #density in grams/cm**3\n", "k = 1.38*10**-23;\n", " \n", "\n", "#calculation\n", "#x = (N*p)/float(M);\n", "eF = (((h**2)/(2*m)))*(((3*x)/float(8*math.pi))**(2/float(3))); \n", "eF1 = (eF)/float(1.6*10**-19); #Fermi energy in eV\n", "vF = math.sqrt((2*eF)/float(m)); #fermi velocity in m/s\n", "TF = eF/float(k); #fermi temperature in K\n", " \n", "\n", "#result\n", "print'fermi energy =%3.2f'%eF1,'eV';\n", "print'fermi velocity =%3.2e'%vF,'m/s';\n", "print'femi temperature =%3.2e'%TF,'K';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.13,Page No:5.21" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fermi energy = 11 eV\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "M = 65.4; #atomic weight\n", "p = 7.13; #density in g/cm**3\n", "h = 6.62*10**-34; # planck's constant in joules-s\n", "m = 7.7*10**-31; # mass\n", "v = 6.02*10**23; #avagadros number in atoms/gram-atom\n", "\n", "\n", "#calculation\n", "#x =N/V\n", "V = M/float(p); #volume of one atom in cm**3\n", "n = v/float(V); # number of Zn atoms in volume v\n", "x = 2*n*(10**6); #number of free electrons in unit volume iper m**2\n", "eF = ((h**2)/float(2*m))*(((3*x)/float(8*math.pi))**(2/float(3))); # fermi energy in J\n", "eF1 = eF/float(1.6*(10**-19));\n", "\n", "\n", "#result\n", "print'fermi energy =%3.2d'%eF1,'eV';\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.14,Page No:5.22" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of electrons per unit volume =4e+28 m**-3\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "eF = 4.27; #fermi energy in eV\n", "m = 9.11*10**-31; # mass of electron in kg\n", "h = 6.63*10**-34; # planck's constant J.s\n", "\n", "\n", "#formula\n", "#x= N/V\n", "#calculation\n", "eF1 = eF*1.6*10**-19; #fermi energy in eV \n", "x = (((2*m*eF1)/float(h**2))**(3/float(2)))*((8*math.pi)/float(3)); #number of electrons per unit volume\n", "\n", "\n", "#result\n", "print'number of electrons per unit volume =%4.00e'%x,'m**-3';\n", " " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 5.15,Page No:5.23" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electron density for a metal =1.47e+28 m**-3\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "eF1 = 4.70; # fermi energy in eV\n", "eF2 = 2.20; #fermi energy in eV\n", "x1 = 4.6*10**28; # electron density of lithium per m**3\n", "\n", "\n", "#formula\n", "#N/V = (((2*m*eF1)/(h**2))**(3/2))*((8*math.pi)/3);\n", "#N/V = k*(eF**3/2)\n", "#N/V = x\n", "#calculation\n", "x2 = x1*((eF2/float(eF1))**(3/float(2))); #electron density for metal in per m**3\n", "\n", "\n", "#result\n", "print'electron density for a metal =%4.2e'%x2,'m**-3';" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Example 5.16,Page No:5.24" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average energy =3.24 eV\n", "temperature =2.50e+04 K\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "eF = 5.4; #fermi energy in eV\n", "k = 1.38*10**-23; # k in joule/K\n", "\n", "\n", "#calculation\n", "e0 = (3*eF)/float(5); #average energy in eV\n", "T = (e0*(1.6*10**-19)*2)/float(3*k); #temperature in K\n", " \n", "\n", "#result\n", "print'average energy =%3.2f'%e0,'eV';\n", "print'temperature =%3.2e'%T,'K';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.17,Page No:5.25" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average energy =9.0 eV\n", "speed =1.78e+06 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "EF = 15; #fermi energy in eV\n", "m = 9.1*10**-31; #mass of electron in kilogarams\n", "\n", "\n", "#calculation\n", "E0 = (3*EF)/float(5); #average energy en eV\n", "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed of electron in m/s\n", "\n", "\n", "#result\n", "print'average energy =%3.1f'%E0,'eV';\n", "print'speed =%3.2e'%v,'m/s';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.18,Page No:5.25" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average energy =4.50 eV\n", " speed =1.26e+06 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "EF = 7.5; #fermi energy in eV\n", "m = 9.1*10**-31; #mass of electron in kilograms\n", "\n", "#calculation\n", "E0 = (3*EF)/float(5); #average energy en eV\n", "v = math.sqrt((2*E0*1.6*10**-19)/float(m)); #speed in m\n", "\n", "#result\n", "print'average energy =%3.2f'%E0,'eV';\n", "print' speed =%3.2e'%v,'m/s';\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.19,Page No:5.25" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy=3.12 eV\n", " speed= =1.05e+06 m/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "m = 9.1*10**-31; #mass of electron in kg\n", "h = 6.62*10**-34; #planck's constant in (m**2)*kg/s\n", "#formula\n", "#x=N/V\n", "x = 2.5*10**28;\n", "\n", "#calculation\n", "EF = ((h**2)/float(8*(math.pi**2)*m))*((3*(math.pi**2)*x)**(2/float(3))); #fermi energy in J\n", "EF1 = EF/float(1.6*10**-19); #fermi energy in eV\n", "vF = (h/float(2*m*math.pi))*((3*(math.pi**2)*x)**(1/float(3))); #fermi velocity in m/s\n", "\n", "\n", "#result\n", "print'energy=%3.2f'%EF1,'eV';\n", "print' speed= =%3.2e'%vF,'m/s';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.20,Page No:5.29" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "efficiency =99.998163 %\n", "voltage drop =1.8 %\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Ps = 10**7; #power in W\n", "V = 33*10**3; #power transmitted in W\n", "R = 2; #resistance in ohm\n", " \n", "#calculation\n", "I = Ps/float(V); #current in A\n", "Pd = (I**2*R)/float(1000); #power lost in feeder in kW \n", "n = ((Ps-Pd)/float(Ps))*100; #efficiency in %\n", "v = I*R; #voltage drop in V\n", "Vd = (v/float(V))*100; #percentage voltage drop\n", " \n", "#result\n", "print'efficiency =%0f '%n,'%';\n", "print'voltage drop =%3.1f'%Vd,'%';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.21,Page No:5.36" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "aCu,Fe = -13.8 uV/°C\n", " bCu,Fe = 0.042 uV/(°C)**2\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "a1 = 2.76; #a1 in uv/°C\n", "a2 = 16.6; #a2 in uv/°C\n", "b1 = 0.012; #b1 in uv/°C\n", "b2 = -0.03; #b2 in uv/°C\n", "\n", "#calculation\n", "#aFe,Pb =a1 \n", "#aCu,Pb = a2\n", "#bCu,Fe = b1\n", "#bFe,Pb = b2\n", "\n", "#calculation\n", "a3 = a1-a2; #a3 in uv/°C\n", "b3 = b1-b2; #b3 in uv/(°C)**2\n", "\n", "#result\n", "print'aCu,Fe = %3.1f'%a3,'uV/°C';\n", "print' bCu,Fe = %3.3f'%b3,'uV/(°C)**2';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.23,Page No:5.37" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "neutral temperature =225 °C\n", "temperature of inversin = 450 °C\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "a = 15; #a in uv/°C\n", "b = -1/float(30); #b in uv/°C\n", "\n", "#E = at+bt^2\n", "#dE/dT =a+2*b*t\n", "#t=tn\n", "#dE/dT =0\n", "#calculation\n", "tn = -(a/float(2*(b))) #neutral temperature in °C\n", "#t1+t2 = 2*t2;\n", "t2 = 2*tn #inversion temperature in °C\n", " \n", "#result\n", "print'neutral temperature =%3.2d '%tn,'°C';\n", "print'temperature of inversin = %3.2d '%t2,'°C';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.24,Page No:5.37" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity of alloy =4.4533 uΩ-cm\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "p2 = 2.75; #resistivity of alloy 1 percent of Ni in uΩ-cm\n", "p1 = 1.42; #resistivity of pure copper in uΩ-cm\n", "p3 = 1.98; #resistivity of alloy 3 percent of silver in uΩ-cm\n", " \n", "#p(Ni+Cu) =p1\n", "#pCu =p2\n", "#p(Cu+silver)=p3\n", "#calculation\n", "pNi = p2-p1;\n", "p4 = (p3-p1)/float(3);\n", "palloy = p1+(2*pNi)+(2*p4); #resistivity of alloy 2 percent of silver and 2 percent of nickel in uΩ-cm\n", " \n", "#result\n", "print'resistivity of alloy =%3.4f'%palloy,'uΩ-cm';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.25,Page No:5.41" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transition temperature =4.174 K\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "M1 = 202; #mass number\n", "M2 = 200; # mass number\n", "Tc1 = 4.153; # temperature in K\n", "alpha = 0.5;\n", " \n", "\n", "#formula\n", "#m**alpha*(Tc)= conatant\n", "#calculation\n", "Tc2 = ((M1**alpha)*Tc1)/float(M2**alpha); #transition temperature in K\n", " \n", "\n", "#result\n", "print'transition temperature =%3.3f'%Tc2,'K';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.26,Page No:5.41" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical temperature =1.92 K\n" ] } ], "source": [ "import math\n", "\n", "#variable declaraion\n", "Tc1 = 2.1; #temperature in K\n", "M1 = 26.91; #mass number \n", "M2 = 32.13; #mass number \n", "\n", "\n", "#formula\n", "#Tc*(M1**2) = constant\n", "#calculation\n", "Tc2 = (Tc1*(M1**(1/float(2))))/float(M2**(1/float(2))); #critical temperature in K\n", "\n", "\n", "#result\n", "print'critical temperature =%3.2f'%Tc2,'K';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.27,Page No:5.42" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transition temperature =14.67 K\n", "critical field =1.70e+06 A/m\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Hc1 = 1.41*10**5; #critical fields in amp/m\n", "Hc2 = 4.205*10**5; # critical fields in amp/m\n", "T1 = 14.1; #temperature in K\n", "T2 = 12.9; # temperature in K\n", "T3 = 4.2; #temperature in K\n", " \n", "\n", "#formula\n", "#Hcn =Hc*((1-((T/Tc)**4)))\n", "#calculation\n", "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #temperature in K\n", "Hc0 = Hc1/float(1-((T1/float(Tc))**2)); #critical field in A/m\n", "Hc2 = Hc0*(1-(T3/float(Tc))**2); #critical field in A/m\n", "\n", "\n", "#result\n", "print'transition temperature =%3.2f'%Tc,'K';\n", "print'critical field =%3.2e'%Hc2,'A/m';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.28,Page No:5.43" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical field =4.8751e+05 A/m\n", " Note: calculation mistake in texttbook in calculating Hc\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Hc0 = 700000; #critical field at 0 K\n", "T = 4; #temperature in K\n", "Tc = 7.26; #temperature in K\n", " \n", " \n", "#calculation\n", "Hc = Hc0*(1-(T/float(Tc))**2); #critical field n A/m\n", "\n", "\n", "#result\n", "print'critical field =%3.4e'%Hc,'A/m';\n", "print' Note: calculation mistake in texttbook in calculating Hc';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.29,Page No:5.44" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical current =153.15 A\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Hc0 = 8*10**4; #critical field \n", "T = 4.5; #temperature in K\n", "Tc = 7.2; #temperature in K\n", "D = 1*10**-3; #diameter in m\n", "\n", " \n", "#calculation\n", "Hc = Hc0*(1-(T/float(Tc))**2);\n", "r = D/float(2); #radius in m\n", "Ic = 2*math.pi*r*Hc; #critical current in A\n", "\n", "#result\n", "print'critical current =%3.2f'%Ic,'A';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.30,Page No:5.44" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical field =0.0217 tesla\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Hc0 = 0.0306; #critical field at 0 K\n", "T = 2; #temperature in K\n", "Tc = 3.7; #temperature in K\n", " \n", " \n", "#calculation\n", "Hc = Hc0*(1-(T/float(Tc))**2); #critical field in tesla\n", "\n", "\n", "#result\n", "print'critical field =%3.4f'%Hc,'tesla';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.31,Page No:5.44" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transition temperature =16.00 K\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "HcT = 1.5*10**5; # critical field for niobium at 0 K\n", "Hc0 = 2*10**5; # critical field for nobium at 0 K\n", "T = 8; # temperature in K\n", " \n", "\n", "#calculation\n", "Tc = T/((1-(HcT/float(Hc0)))**0.5); #transition temperature in K\n", " \n", "\n", "#result\n", "print'transition temperature =%3.2f'%Tc,'K';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.32,Page No:5.45" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transition temperature =14.47 K\n", " critical field =2.50 T\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Hc1 = 0.176; #critical fields\n", "Hc2 = 0.528; #critical fields\n", "T1 = 14; #temperature in K\n", "T2 = 13; #temperature in K\n", "T3 = 4.2; #temperature in K\n", "\n", "#formula\n", "#Hcn =Hc*((1-((T/Tc)**4)))\n", "#calculation\n", "Tc =(((((Hc2*(T1**2))-(Hc1*(T2**2)))/float(Hc2-Hc1)))**(1/float(2))); #transition temperature in K\n", "Hc0 = Hc1/(1-((T1/float(Tc))**2)); #critical field in T\n", "Hc2 = Hc0*(1-((T3/float(Tc))**2)); #critical field in T\n", "\n", "\n", "#result\n", "print'transition temperature =%3.2f '%Tc,'K';\n", "print' critical field =%3.2f '%Hc2,'T';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.33,Page No:5.46" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical current =99.274328 A\n", "Note: calculation mistake in textbook in calculation of I\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Hc = 7900; #magnetic field in A/m\n", "r = 2.0*10**-3; #radius of super condutor in m\n", " \n", " \n", "#calculation\n", "I = 2*math.pi*r*Hc; #critical current in A\n", " \n", "#result\n", "print'critical current =%4f'%I,'A';\n", "print'Note: calculation mistake in textbook in calculation of I';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.34,Page No:5.46" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current =137 Amp\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "d = 10**-3; #diameter in m\n", "Bc = 0.0548; # Bc in T\n", " \n", " \n", "#calculation\n", "u0 = 4*math.pi*10**-7; #permiability m**2\n", "r = d/float(2); #radius in m\n", "Ic = (2*math.pi*r*Bc)/float(u0); #current in Amp\n", "\n", "#result\n", "print'current =%3.2d '%Ic,'Amp';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.35,Page No:5.52" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "penetration depth=11.33 nm\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "D =8.5*10**3; #density in kg/m**3\n", "W =93; #atomic weight \n", "m =9.1*10**-31; #mass of electron in kilograms\n", "e =2*1.6*10**-19; #charge of electron in coulombs\n", "N =6.023*10**26; #avagadro number in (lb-mol)−1\n", "\n", "\n", "#calculation\n", "u0 =4*math.pi*10**-7;\n", "ns =(D*N)/float(W); #in per m**3\n", "lamdaL =(m/float(u0*ns*e**2))**(1/float(2)); #London's penetration depth in nm\n", "\n", "#result\n", "print'penetration depth=%3.2f'%(lamdaL*10**9),'nm';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.36,Page No:5.52" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "penetration depth=467.9 Å\n", " Note: calculation mistake in textbook in calculating lamdaT\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Tc =7.2; #temperature in K\n", "lamda =380; #penetration depth in Å\n", "T =5.5; #temperature in K\n", " \n", "\n", "#calculation\n", "\n", "lamdaT=lamda*((1-((T/float(Tc))**4))**(-1/float(2))); #penetration depth in Å\n", " \n", "#result\n", "print'penetration depth=%3.1f'%lamdaT,'Å';\n", "print' Note: calculation mistake in textbook in calculating lamdaT';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.37,Page No:5.53" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical temperature =8.48 K\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "lamda1 = 16; #penetration depth in nm\n", "lamda2 = 96; #penetration depth in nm\n", "T1 = 2.18; #temperature in K\n", "T2 = 8.1; # temperature in K\n", "\n", "#formula\n", "#lamdaT =lamda0*((1-((T/Tc)**4))**(-1/4))\n", "#calculation\n", "Tc = ((((lamda2*(T2**4))-(lamda1*(T1**4)))/float(lamda2-lamda1))**(1/float(4))); #critical temperature in K\n", "\n", "\n", "#result\n", "print'critical temperature =%3.2f '%Tc,'K';\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.38,Page No:5.55" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength=0.41 mm\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Eg =30.5*1.6*10**-23; #energy gap in eV\n", "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n", "c =3.0*10**8; #velocity of light in m\n", " \n", "\n", "#formula\n", "#Eg=h*v\n", "#calculation\n", "v = Eg/float(h); #velocity in m\n", "lamda = c/float(v); #wavelength in m\n", "\n", "#result\n", "print'wavelength=%2.2f'%(lamda*10**3),'mm';\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.39,Page No:5.55" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "region of electromagnetic spectrum=1.14e-03 m\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "k =1.38*10**-23;\n", "Tc =4.2; #tempetrature in K\n", "h =6.6*10**-34; #planck's constant in (m**2)*kg/s\n", "c =3*10**8; # velocity of light in m\n", " \n", " \n", "#calculation\n", "Eg = (3*k*Tc); #energy gap in eV\n", "lamda = h*c/float(Eg); #wavelngth in m\n", "\n", "#result\n", "print'region of electromagnetic spectrum=%3.2e'%lamda,'m';" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }