{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10:Optical Properties of Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.1,Page No:10.25" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Wavelength of the photon = 6211 Å\n", " The colour of the photon is red\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "E2 = 5.56*10**-19; # Higher Energy level in J\n", "E1 = 2.36*10**-19; # Lower Energy level in J\n", "h = 6.626*10**-34; # plancks constant in J.s\n", "c = 3*10**8; # velocity of light in m\n", "\n", "# Calculations\n", "dE = E2 - E1; # Energy difference in J\n", "lamda = (h*c)/float(dE); # wavelength in m\n", " \n", "\n", "# Result\n", "\n", "print'Wavelength of the photon = %d'%(lamda*10**10),'Å';\n", "print' The colour of the photon is red';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.2,Page No:10.25" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum Wavelength for which diamond is opaque is Imax = 2219 Å\n", "\n", " Note: Imax is wrongly printed as 220 Å in textbook\n" ] } ], "source": [ "import math\n", "\n", "# Variable declaration\n", "h = 6.63*10**-34; # plancks constant in J.s\n", "c = 3*10**8; # velocity of light in m\n", "E = 5.6; # bandgap in eV\n", "e = 1.6*10**-19; # charge of electron coulombs\n", "\n", "# Calculations\n", "lamda = (h*c)/float(E*e) # wavelength in m\n", "\n", "#output\n", "print'Maximum Wavelength for which diamond is opaque is Imax = %d '%(lamda*10**10),'Å';\n", "print'\\n Note: Imax is wrongly printed as 220 Å in textbook';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.3,Page No:10.26" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Energy of radiation = 2.0719 eV\n", "Rate of energy gap varies with addition of GaP is 0.00830 eV/mol %\n", "mol percent to be added to get an energy gap of 2.0719 eV is 78.54 mol %\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "h = 6.63*10**-34; # plancks constant\n", "c = 3*10**8; # velocity of light\n", "lamda = 0.6*10**-6; # wavelength in m\n", "e = 1.6*10**-19; # charge of electron\n", "EGap = 2.25; # energy in eV\n", "EGas = 1.42; # energy in eV\n", "\n", "#Calculations\n", "E = (h*c)/float(lamda*e); # Energy in eV\n", "p_change = (EGap - EGas)/float(100); #rate of energy gap\n", "x = (E-EGas)/float(p_change); #mol % of GaP to be added to get an energy gap of E\n", "\n", "# Result\n", "print'Energy of radiation = %3.4f'%E,'eV';\n", "print'Rate of energy gap varies with addition of GaP is %3.5f'%p_change,'eV/mol %';\n", "print'mol percent to be added to get an energy gap of %3.4f'%E,'eV','is %3.2f'%x,'mol %';\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.4,Page No:10.26" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Energy of the metastable state E3 = 2.2e-19 J\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "h = 6.63*10**-34; #plancks constant in J.s\n", "c = 3*10**8; # velocity of light in m\n", "lamda = 1.1*10**-6; # wavelength in m\n", "e = 1.6*10**-19; # charge of electron in coulombs\n", "E2 = 0.4*10**-19; # energy level in joules\n", "\n", "\n", "#Calculations\n", "E3 = E2 + ((h*c)/float(lamda)); #energy in J\n", "\n", "#Result\n", "print'Energy of the metastable state E3 = %3.1e'%E3,'J';" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.5,Page No:10.26" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of Optical modes = 15\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "c = 3*10**8; # velocity of light in m\n", "L = 1.5; #length in m\n", "n = 1.0204; # refractive index \n", "BW = 1.5*10**9; # Bandwidth in Hz\n", "\n", "# Calculations\n", "dV = c/float(2*L*n); #frequency in Hz\n", "N = BW/float(dV); # Number of optical nodes\n", "\n", "# Result\n", "print'Number of Optical modes = % d'%N;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.6,Page No:10.31" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical aperture = 0.248\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "n1 = 1.55; # refractive index of core\n", "n2 = 1.53; # refractive index of cladding\n", "\n", "\n", "# Calculations\n", "NA = math.sqrt(n1**2 - n2**2);\n", "\n", "\n", "#Result\n", "print'Numerical aperture = %3.3f'%NA;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.7,Page No:10.31" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For angles above 48.75° ,there will be total internal reflection in water\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "n1 = 1.33; #refractive index of water\n", "n2 = 1; # refractive index of air\n", "\n", "# Calculations\n", "theta_c = math.asin((n2/n1))\n", "theta_c_deg = theta_c*(180/float(math.pi)); # radian to degree conversion\n", "\n", "# Result\n", "print'For angles above %3.2f° ,there will be total internal reflection in water'%theta_c_deg ;\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }