{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter no 2: SAMPLING THEORY AND PULSE MODULATION

" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1, page no 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find Nquist Rate\n", "\n", "#Variable declaration\n", "#given \n", "pi=3.14\n", "w1=50*pi\n", "w2=300*pi\n", "w3=100*pi\n", "#w=2*%pi*f\n", "\n", "#Calculation\n", "f1=w1/(2*pi)\n", "f2=w2/(2*pi)\n", "f3=w3/(2*pi)\n", "fm=f2 #fm = maximum frquency is present at the signal\n", "\n", "#Result\n", "print('maximum frquency of the signal is = %.2f Hz' %f2)\n", "fs=2*fm #Nyquist rate\n", "print('Nquist Rate of Signal is = %.2f Hz' %fs)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum frquency of the signal is = 150.00 Hz\n", "Nquist Rate of Signal is = 300.00 Hz\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2 , page no 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Find Nquist Rate and Nquist time interval\n", "\n", "#Variable declaration\n", "#given\n", "w1=5000*math.pi\n", "w2=3000*math.pi;\n", "f1=w1/(2*math.pi);\n", "f2=w2/(2*math.pi);\n", "\n", "#Calculation\n", "fm=f1 #fm = maximum frquency is present at the signal\n", "fs=2*fm #Nyquist rate\n", "Ts=1.0/(2.0*fm) #frequncy =1/time\n", "Ts=Ts*(10**3)\n", "\n", "#Result\n", "print('maximum frquency of the signal is = %.f Hz' %f1)\n", "print('Nquist Rate of the given Signal is = %.f Hz' %fs)\n", "print('Nquist Interval of the given signal is = %.1f m Sec' %Ts)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum frquency of the signal is = 2500 Hz\n", "Nquist Rate of the given Signal is = 5000 Hz\n", "Nquist Interval of the given signal is = 0.2 m Sec\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3, page no 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Find Nquist Rate \n", "\n", "#Variable declaration\n", "#given\n", "f=100.0 # Frequency component of continuous-time signal\n", "\n", "#Calculation\n", "fs=2*f #Nyquist rate\n", "\n", "#Result\n", "print('i) To avoid aliasing Nquist Rate is = %.f Hz' %fs)\n", "print('ii) It is theoretical example ')\n", "print('iii) It is theoretical example ')\n", "print('iv) It is theoretical example ')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i) To avoid aliasing Nquist Rate is = 200 Hz\n", "ii) It is theoretical example \n", "iii) It is theoretical example \n", "iv) It is theoretical example \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4, page no 52 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Find Nquist Rate of Continous signal\n", "\n", "#Variable declaration\n", "#given\n", "w1=50*math.pi\n", "w2=300*math.pi\n", "w3=100*math.pi\n", "\n", "#Calculation\n", "f1=w1/(2*math.pi)\n", "f2=w2/(2*math.pi)\n", "f3=w3/(2*math.pi)\n", "fmax=f2 #fmax = Highest frquency component of the message signal\n", "fs=2*fmax #Nyquist rate\n", "\n", "#Result\n", "print('Highest frquency component of the message signal will be fmax = %.f Hz' %fmax)\n", "print('Nquist Rate of the given Signal is = %.f Hz' %fs)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Highest frquency component of the message signal will be fmax = 150 Hz\n", "Nquist Rate of the given Signal is = 300 Hz\n" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Example 2.7, page no 67

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find amplitude distortion at highest frquency\n", "\n", "#Variable declaration\n", "#given\n", "fs=9.5 #samplig frequncy\n", "fmax=1 #maximum frequncy\n", "t=0.2 #pulse width\n", "\n", "#Calculation\n", "c=3*10**8\n", "f=fmax\n", "H1=t*(0.9933) #aperture effect at highest frequency, sinc(f*t)=0.9933 (given)\n", "H1=H1*100\n", "\n", "#Result\n", "print('|H(1)|=%.2f' %H1)\n", "print('Approximation error')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "|H(1)|=19.87\n", "Approximation error\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8, page no 74 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate Transmission Bandwidth\n", "\n", "#Variable declaration\n", "#given\n", "fm=3.0*(10^3)\n", "fs=8.0*(10^3) # sampling frequncy\n", "\n", "#Calculation\n", "Ts=1.0/fs\n", "t=0.1*Ts\n", "BW=1.0/(2*t) #Bandwidth\n", "BW=BW/(10^3)\n", "\n", "#Result\n", "print('Transmission Bandwidth of PAM signal is kHz = %.f Khz ' %BW)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transmission Bandwidth of PAM signal is kHz = 40 Khz \n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }