{ "metadata": { "name": "", "signature": "sha256:928ec1651fbb6cf2fbaa95aabc63962db0c0ebd1296ae6aac51feaf1fa0663d8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17 : Homogeneous Chemical Reactions" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1.1 pg : 485" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\t\n", "#initialization of variables\n", "K = 1.46*10**-4 \t# lit/mol-sec (rate consmath.tant)\n", "cpyridine = 0.1 \t# mol/lit\n", "K1 = 2.0*10**-5 \t# cm**2/sec\n", "\t\n", "#Calculations\n", "D = K*cpyridine \t# sec**-1\n", "k0 = (math.sqrt(D*K1)) \t#in x*10**-5 cm/sec\n", "\t\n", "#Results\n", "print \"The diffusion co efficient of methyl iodide in benzene is %.1e cm/sec\"%(k0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diffusion co efficient of methyl iodide in benzene is 1.7e-05 cm/sec\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1.2 pg : 486" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import coth\n", "import math \n", "\t\n", "#initialization of variables\n", "R = 0.3 \t# cm\n", "K1 = 18.6 \t# sec**-1\n", "D = 0.027 \t# cm**2/sec\n", "\t\n", "#Calculations\n", "l = R/3 \t# cm\n", "n = (math.sqrt(D/(K1*(l**2))))*coth(math.sqrt(K1*(l**2)/D))\n", "\t\n", "#Results\n", "print \"The value of reduction in reaction rate due to diffusion is %.2f\"%(n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of reduction in reaction rate due to diffusion is 0.39\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1.3 pg : 486" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\t\n", "#initialization of variables\n", "k = 16.*10**-3 \t# m.t.c in cm/sec\n", "D = 1.25*10**-5 \t# Diffusion co efficient in cm**2/sec\n", "\t\n", "#Calculations \n", "K1 = (k**2)/D\n", "\t\n", "#Results\n", "print \"The rate constant is %.f sec**-1\"%(K1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate constant is 20 sec**-1\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.2.1 pg : 490" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\t\n", "#initialization of variables\n", "D2 = 5.*10**-6 \t# The diffusion co efficient of the new compound in cm**2/sec\n", "Nu = 3. \t# The factor\n", "D1 = 0.7*10**-5 \t# The diffusion co efficient of the original compound in cm**2/sec\n", "c2l = 1.5*10**-5 \t# the new solubility in mol/cc\n", "c1l = 3.*10**-7 \t# The old solubility in mol/cc\n", "\t\n", "#Calculations\n", "k = 1 + ((D2*c2l)/(Nu*D1*c1l))\t# The number of times the rate has increased to the previous rate\n", "\t\n", "#Results\n", "print \"There is about a %.f fold increase in rate\"%(k)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "There is about a 13 fold increase in rate\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.4.1 pg : 503" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "\t\n", "#initialization of variables\n", "#For first reaction\n", "D1 = 9.3*10**-5 \t# cm**2/sec\n", "D2 = 5.3*10**-5 \t# cm**2/sec\n", "K1exp = 1.4*10**11 \t# litre/mol-sec\n", "sigma12 = 2.8*10**-8 \t# cm\n", "N = (6.02*10**23)/10**3\t# liter/cc-mol\n", "K1 = 4*math.pi*(D1+D2)*sigma12*N \t# Rate consmath.tant for first reaction in litre/mol-sec\n", "print \"The rate consmath.tant for this reaction is %.1e litre/\"%(K1)\n", "if K1>K1exp:\n", " print (\"This reaction is controlled more by chemical factors\")\n", "else:\n", " print (\"This reaction is diffusion controlled\")\n", "\n", "#Second reaction\n", "D1 = 5.3*10**-5 \t# cm**2/sec\n", "D2 = 0.8*10**-5 \t# cm**2/sec\n", "sigma12 = 5.*10**-8 \t# cm\n", "K1exp = 3.8*10**7 \t# litre/mol-sec\n", "K1 = 4*math.pi*(D1+D2)*sigma12*N \t# Rate consmath.tant for second reaction in litre/mol-sec\n", "print \"The rate consmath.tant for this reaction is %.1e litre/mol-sec\"%(K1)\n", "if K1>K1exp:\n", " print (\"This reaction is controlled more by chemical factors\")\n", "else: \n", " print (\"The reaction is diffusion controlled\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate consmath.tant for this reaction is 3.1e+10 litre/\n", "This reaction is diffusion controlled\n", "The rate consmath.tant for this reaction is 2.3e+10 litre/mol-sec\n", "This reaction is controlled more by chemical factors\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.5.1 pg : 506" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#intitialization of variables\n", "d = 5. \t# cm\n", "v = 200. \t# cm/sec\n", "nu = 0.01 \t# cm**2/sec\n", "D = 3.2*10**-5 \t# cm**2/sec\n", "l = 30.*10**-4 \t# cm\n", "\t\n", "#Calculations\n", "Re = d*v/nu \t# Flow is turbulent\n", "E = d*v/2 \t# cm**2/sec\n", "tou1 = (d**2)/(4*E)\t# sec\n", "tou2 = (l**2)/(4*D)\n", "tou = tou1 + tou2 \t# sec\n", "\t\n", "#Results\n", "print \"The relaxation time is %.2f sec\"%(tou)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relaxation time is 0.08 sec\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }