{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 - Mixtures" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - Pg 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#For the mixture, determine the molefractions, average mol. wt., specific gas constant, volume and density, partial pressures and volumes\n", "#Initialization of variables\n", "m1=10. #lbm\n", "m2=15. #lnm\n", "p=50. #psia\n", "t=60.+460 #R\n", "M1=32.\n", "M2=28.02\n", "R0=1545 \n", "#calculations\n", "n1=m1/M1\n", "n2=m2/M2\n", "x1=n1/(n1+n2)\n", "x2=n2/(n1+n2)\n", "M=x1*M1+x2*M2\n", "R=R0/M\n", "V=(n1+n2)*R0*t/p/144.\n", "rho=p*144/(R0*t)\n", "rho2=M*rho\n", "p1=x1*p\n", "p2=x2*p\n", "v1=x1*V\n", "v2=x2*V\n", "#results\n", "print '%s' %(\"part a\")\n", "print '%s %.3f %s %.3f %s' %(\"Mole fractions of oxygen and nitrogen are\",x1,\" and\",x2,\"respectively\")\n", "print '%s' %(\"part b\")\n", "print '%s %.1f' %(\"Average molecular weight (gm) =\",M)\n", "print '%s' %(\"part c\")\n", "print '%s %.2f %s' %(\"specific gas constant =\",R,\"psia ft^3/lbm R\")\n", "print '%s' %(\"part d\")\n", "print '%s %.1f %s' %(\"volume of mixture =\",V,\"ft^3\")\n", "print '%s %.5f %s %.3f %s' %(\"density of mixture is\",rho, \"mole/ft^3 and\",rho2, \"lbm/ft^3\")\n", "print '%s' %(\"part e\")\n", "print '%s %.2f %s %.2f %s' %(\"partial pressures of oxygen and nitrogen are\",p1, \"psia and\",p2, \"psia respectively\")\n", "print '%s %.2f %s %.2f %s' %(\"partial volumes of oxygen and nitrogen are\",v1, \"ft^3 and\",v2, \"ft^3 respectively\")\n", "print '%s' %(\"The answers are a bit different due to rounding off error in textbook\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part a\n", "Mole fractions of oxygen and nitrogen are 0.369 and 0.631 respectively\n", "part b\n", "Average molecular weight (gm) = 29.5\n", "part c\n", "specific gas constant = 52.40 psia ft^3/lbm R\n", "part d\n", "volume of mixture = 94.6 ft^3\n", "density of mixture is 0.00896 mole/ft^3 and 0.264 lbm/ft^3\n", "part e\n", "partial pressures of oxygen and nitrogen are 18.43 psia and 31.57 psia respectively\n", "partial volumes of oxygen and nitrogen are 34.87 ft^3 and 59.73 ft^3 respectively\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the gravimetric analysis\n", "#Initialization of variables\n", "m1=5.28\n", "m2=1.28\n", "m3=23.52\n", "#calculations\n", "m=m1+m2+m3\n", "x1=m1/m\n", "x2=m2/m\n", "x3=m3/m\n", "C=12./44. *m1/ m\n", "O=(32./44. *m1 + m2)/m\n", "N=m3/m\n", "sum1=(x1+x2+x3)*100\n", "sum2=(C+N+O)*100\n", "#results\n", "print '%s %.1f %s %.1f %s %.1f %s' %(\"From gravimetric analysis, co2 =\",x1*100,\" percent , o2 =\",x2*100,\"percent and n2 =\",x3*100,\"percent\")\n", "print '%s %.2f %s %.2f %s %.2f %s' %(\"\\n From ultimate analysis, co2 =\",C*100,\"percent , o2 =\",O*100,\"percent and n2 =\",N*100,\"percent\")\n", "print '%s %.1f %s' %(\"\\n Sum in case 1 =\",sum1,\"percent\")\n", "print '%s %.1f %s' %(\"\\n Sum in case 2 =\",sum2,\"percent\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From gravimetric analysis, co2 = 17.6 percent , o2 = 4.3 percent and n2 = 78.2 percent\n", "\n", " From ultimate analysis, co2 = 4.79 percent , o2 = 17.02 percent and n2 = 78.19 percent\n", "\n", " Sum in case 1 = 100.0 percent\n", "\n", " Sum in case 2 = 100.0 percent\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 318" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the entropy of the mixture\n", "#Initialization of variables\n", "import math\n", "x1=1./3.\n", "n1=1\n", "n2=2\n", "x2=2./3.\n", "p=12.7 #psia\n", "cp1=7.01 #Btu/mole R\n", "cp2=6.94 #Btu/mole R\n", "R0=1.986\n", "T2=460+86.6 #R\n", "T1=460 #R\n", "p0=14.7 #psia\n", "#calculations\n", "p1=x1*p\n", "p2=x2*p\n", "ds1= cp1*math.log(T2/T1) - R0*math.log(p1/p0)\n", "ds2= cp2*math.log(T2/T1) - R0*math.log(p2/p0)\n", "S=n1*ds1+n2*ds2\n", "#results\n", "print '%s %.2f %s' %(\"Entropy of mixture =\",S,\"Btu/R\")\n", "print '%s' %(\"\\n the answer given in textbook is wrong. please check using a calculator\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Entropy of mixture = 8.27 Btu/R\n", "\n", " the answer given in textbook is wrong. please check using a calculator\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 319" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the change in internal energy and entropy of the gas\n", "#Initialization of variables\n", "import math\n", "c1=4.97 #Btu/mol R\n", "c2=5.02 #Btu/mol R\n", "n1=2\n", "n2=1\n", "T1=86.6+460 #R\n", "T2=50.+460 #R\n", "#calculations\n", "du=(n1*c1+n2*c2)*(T2-T1)\n", "ds=(n1*c1+n2*c2)*math.log(T2/T1)\n", "#results\n", "print '%s %d %s' %(\"Change in internal energy =\",du,\"Btu\")\n", "print '%s %.3f %s' %(\"\\n Change in entropy =\",ds,\"Btu/R\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in internal energy = -547 Btu\n", "\n", " Change in entropy = -1.037 Btu/R\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure and mixing temperature of the mixture\n", "#Initialization of variables\n", "n1=1.\n", "n2=2.\n", "c1=5.02\n", "c2=4.97\n", "t1=60. #F\n", "t2=100. #F\n", "R0=10.73\n", "p1=30. #psia\n", "p2=10. #psia\n", "#calcualtions\n", "t=(n1*c1*t1+n2*c2*t2)/(n1*c1+n2*c2)\n", "V1= n1*R0*(t1+460)/p1\n", "V2=n2*R0*(t2+460)/p2\n", "V=V1+V2\n", "pm=(n1+n2)*R0*(t+460)/V\n", "#results\n", "print '%s %.1f %s' %(\"Pressure of mixture =\",pm,\"psia\")\n", "print '%s %.1f %s' %(\"\\n Mixing temperature =\",t,\"F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure of mixture = 12.7 psia\n", "\n", " Mixing temperature = 86.6 F\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - Pg 320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the change in entropy in all cases\n", "#Initialization of variables\n", "import math\n", "T2=546.6 #R\n", "T1=520. #R\n", "T3=560. #R\n", "v2=1389.2\n", "v1=186.2\n", "R0=1.986\n", "c1=5.02\n", "c2=4.97\n", "n1=1\n", "n2=2\n", "v3=1203.\n", "#calculations\n", "ds1=n1*c1*math.log(T2/T1) + n1*R0*math.log(v2/v1)\n", "ds2=n2*c2*math.log(T2/T3)+n2*R0*math.log(v2/v3)\n", "ds=ds1+ds2\n", "ds3=n1*c1*math.log(T2/T1)+n2*c2*math.log(T2/T3)\n", "ds4=n2*R0*math.log(v2/v3)+ n1*R0*math.log(v2/v1)\n", "dss=ds3+ds4\n", "#results\n", "print '%s %.3f %s' %(\"Change in entropy for gas 1 =\",ds1,\"Btu/R\")\n", "print '%s %.3f %s' %(\"\\n Change in entropy for gas 1 =\",ds2,\"Btu/R\")\n", "print '%s %.3f %s' %(\"\\n Net change in entropy =\",ds,\" Btu/R\")\n", "print '%s %.3f %s' %(\"\\n In case 2, change in entropy =\",dss,\" Btu/R\")\n", "print '%s' %(\"The answer is a bit different due to rounding off error in the textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in entropy for gas 1 = 4.242 Btu/R\n", "\n", " Change in entropy for gas 1 = 0.331 Btu/R\n", "\n", " Net change in entropy = 4.572 Btu/R\n", "\n", " In case 2, change in entropy = 4.572 Btu/R\n", "The answer is a bit different due to rounding off error in the textbook\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - Pg 322" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the final temperature and changes in entropy of air and water\n", "#Initialization of variables\n", "import math\n", "m1=1 #lbm\n", "m2=0.94 #lbm\n", "M1=29.\n", "M2=18.\n", "p1=50. #psia\n", "p2=100. #psia\n", "t1=250. +460 #R\n", "R0=1.986\n", "cpa=6.96\n", "cpb=8.01\n", "#calculations\n", "xa = (m1/M1)/((m1/M1)+ m2/M2)\n", "xb=1-xa\n", "t2=t1*math.pow((p2/p1),(R0/(xa*cpa+xb*cpb)))\n", "d=R0/(xa*cpa+xb*cpb)\n", "k=1/(1-d)\n", "dsa=cpa*math.log(t2/t1) -R0*math.log(p2/p1)\n", "dSa=(m1/M1)*dsa\n", "dSw=-dSa\n", "dsw=dSw*M2/m2\n", "#results\n", "print '%s %d %s' %(\"Final remperature =\",t2,\"R\")\n", "print '%s %.3f %s %.5f %s' %(\"\\n Change in entropy of air =\",dsa,\" btu/mole R and\",dSa, \"Btu/R\")\n", "print '%s %.4f %s %.5f %s' %(\"\\n Change in entropy of water =\",dsw,\" btu/mole R and\",dSw, \"Btu/R\")\n", "print '%s' %(\"The answers are a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Final remperature = 851 R\n", "\n", " Change in entropy of air = -0.115 btu/mole R and -0.00395 Btu/R\n", "\n", " Change in entropy of water = 0.0757 btu/mole R and 0.00395 Btu/R\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - Pg 323" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the volume occupied and mass of steam\n", "#Initialization of variables\n", "T=250. + 460 #R\n", "p=29.825 #psia\n", "pt=50. #psia\n", "vg=13.821 #ft^3/lbm\n", "M=29.\n", "R=10.73\n", "#calculations\n", "pa=pt-p\n", "V=1/M *R*T/pa\n", "ma=V/vg\n", "xa=p/pt\n", "mb=xa/M *18/(1-xa)\n", "#results\n", "print '%s %.2f %s' %(\"In case 1, volume occupied =\",V,\"ft^3\")\n", "print '%s %.2f %s' %(\"\\n In case 1, mass of steam =\",ma,\" lbm steam\")\n", "print '%s %.3f %s' %(\"\\n In case 2, mass of steam =\",mb,\" lbm steam\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "In case 1, volume occupied = 13.02 ft^3\n", "\n", " In case 1, mass of steam = 0.94 lbm steam\n", "\n", " In case 2, mass of steam = 0.918 lbm steam\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 324" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the percentage of alcohol evaporated\n", "#Initialization of variables\n", "ps=0.64 #psia\n", "p=14.7 #psia\n", "M=29\n", "M2=46\n", "#calculations\n", "xa=ps/p\n", "mb=xa*9/M *M2/(1-xa)*100\n", "#results\n", "print '%s %.1f %s' %(\"percentage of alcohol evaporated =\",mb,\"percent\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "percentage of alcohol evaporated = 65.0 percent\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 324" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the partial pressure of water vapor\n", "#Initialization of variables\n", "ps=0.5069 #psia\n", "p=20 #psia\n", "m1=0.01\n", "m2=1\n", "M1=18.\n", "M2=29.\n", "#calculations\n", "xw= (m1/M1)/(m1/M1+m2/M2)\n", "pw=xw*p\n", "#results\n", "print '%s %.3f %s' %(\"partial pressure of water vapor =\",pw,\"psia\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "partial pressure of water vapor = 0.317 psia\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - Pg 327" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure, dew temperature of water. Calculate the density of water, air,specific humidity and the degree of saturation\n", "#Initialization of variables\n", "t1=80+460. #R\n", "ps=0.5069 #psia\n", "print '%s' %(\"from steam tables,\")\n", "vs=633.1 #ft^3/lbm\n", "phi=0.3\n", "R=85.6\n", "Ra=53.3\n", "p=14.696\n", "#calculations\n", "tdew=46 #F\n", "pw=phi*ps\n", "rhos=1/vs\n", "rhow=phi*rhos\n", "rhow2= pw*144/(R*t1)\n", "pa=p-pw\n", "rhoa= pa*144/(Ra*t1)\n", "w=rhow/rhoa\n", "mu=phi*(p-ps)/(p-pw)\n", "Ws=0.622*(ps/(p-ps))\n", "mu2=w/Ws\n", "#results\n", "print '%s' %(\"part a\")\n", "print '%s %.5f %s' %(\"partial pressure of water =\",pw,\"psia\")\n", "print '%s %d %s' %(\"\\n dew temperature =\",tdew,\"F\")\n", "print '%s' %(\"part b\")\n", "print '%s %.6f %s' %(\"density of water =\",rhow,\"lbm/ft^3\")\n", "print '%s %.6f %s' %(\"\\n in case 2, density of water =\",rhow2,\"lbm/ft^3\")\n", "print '%s %.6f %s' %(\"\\n density of air =\",rhoa,\"lbm/ft^3\")\n", "print '%s' %(\"part c\")\n", "print '%s %.4f %s' %(\"specific humidity =\",w,\"lbm steam/lbm air\")\n", "print '%s' %(\"part d\")\n", "print '%s %.3f' %(\"In method 1, Degree of saturation = \",mu)\n", "print '%s %.3f' %(\"\\n In method 2, Degree of saturation = \",mu2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from steam tables,\n", "part a\n", "partial pressure of water = 0.15207 psia\n", "\n", " dew temperature = 46 F\n", "part b\n", "density of water = 0.000474 lbm/ft^3\n", "\n", " in case 2, density of water = 0.000474 lbm/ft^3\n", "\n", " density of air = 0.072765 lbm/ft^3\n", "part c\n", "specific humidity = 0.0065 lbm steam/lbm air\n", "part d\n", "In method 1, Degree of saturation = 0.293\n", "\n", " In method 2, Degree of saturation = 0.293\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - Pg 328" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the change in moisture content \n", "#Initialization of variables\n", "p=14.696 #psia\n", "ps=0.0808 #psia\n", "ps2=0.5069 #psia\n", "phi2=0.5\n", "phi=0.6\n", "grain=7000\n", "#calculations\n", "pw=phi*ps\n", "w1=0.622*pw/(p-pw)\n", "pw2=phi2*ps2\n", "w2=0.622*pw2/(p-pw2)\n", "dw=w2-w1\n", "dwg=dw*grain\n", "#results\n", "print '%s %.6f %s' %(\"change in moisture content =\",dw,\"lbm water/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n in grains, change =\",dwg,\"grains water/lbm dry air\")\n", "print '%s' %(\"The answers are a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "change in moisture content = 0.008857 lbm water/lbm dry air\n", "\n", " in grains, change = 62.00 grains water/lbm dry air\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - Pg 335" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the humidity ratio, relative humidity and dew point of the gas\n", "#Initialization of variables\n", "t1=80. #F\n", "t2=60. #F\n", "p=14.696 #psia\n", "ps=0.507 #psia\n", "pss=0.256 #psia\n", "cp=0.24\n", "#calculations\n", "ws=0.622*pss/(p-pss)\n", "w=(cp*(t2-t1) + ws*1060)/(1060+ 0.45*(t1-t2))\n", "pw=w*p/(0.622+w)\n", "phi=pw/ps*100\n", "td=46. #F\n", "#results\n", "print '%s %.4f %s' %(\"\\n humidity ratio =\",w,\"lbm/lbm dry air\")\n", "print '%s %.1f %s' %(\"\\n relative humidity =\",phi,\" percent\")\n", "print '%s %d %s' %(\"\\n Dew point =\",td,\"F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " humidity ratio = 0.0064 lbm/lbm dry air\n", "\n", " relative humidity = 29.7 percent\n", "\n", " Dew point = 46 F\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - Pg 335" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the enthalpy and sigma function of the mixture\n", "#Initialization of variables\n", "W=0.0065 #lbm/lbm of dry air\n", "t=80. #F\n", "td=60. #F\n", "#calculations\n", "H=0.24*t+W*(1060+0.45*t)\n", "sig=H-W*(td-32)\n", "Ws=0.0111\n", "H2=0.24*td+Ws*(1060+0.45*td)\n", "sig2=H2-Ws*(td-32)\n", "#results\n", "print '%s %.2f %s' %(\"In case 1, enthalpy =\",H,\"Btu/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n In case 1, sigma function =\",sig,\"Btu/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n In case 2, enthalpy =\",H2,\"Btu/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n In case 2, sigma function =\",sig2,\"Btu/lbm dry air\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "In case 1, enthalpy = 26.32 Btu/lbm dry air\n", "\n", " In case 1, sigma function = 26.14 Btu/lbm dry air\n", "\n", " In case 2, enthalpy = 26.47 Btu/lbm dry air\n", "\n", " In case 2, sigma function = 26.15 Btu/lbm dry air\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15 - Pg 336" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the enthalpy and heat added\n", "#Initialization of variables\n", "t1=30. #F\n", "t2=60. #F\n", "t3=80. #F\n", "W1=0.00206\n", "W2=0.01090\n", "#calculations\n", "cm1=0.24+0.45*W1\n", "H1=cm1*t1+W1*1060\n", "cm2=0.24+0.45*W2\n", "H2=cm2*t3+W2*1060\n", "hf=t2-32\n", "dq=H2-H1-(W2-W1)*hf\n", "#results\n", "print '%s %.2f %s' %(\"In case 1, Enthalpy =\",H1,\"Btu/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n In case 2, Enthalpy =\",H2,\"Btu/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n Heat added =\",dq,\"Btu/lbm dry air\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "In case 1, Enthalpy = 9.41 Btu/lbm dry air\n", "\n", " In case 2, Enthalpy = 31.15 Btu/lbm dry air\n", "\n", " Heat added = 21.49 Btu/lbm dry air\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16 - Pg 337" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the partial pressure and dew temperature of water. Calculate the density of water and air and also the specific humidity\n", "#Initialization of variables\n", "pw=0.15#psia\n", "print '%s' %(\"using psychrometric charts,\")\n", "tdew=46. #F\n", "#calculations\n", "va=13.74 #ft^3/lbm dry air\n", "rhoa=1/va\n", "V=13.74\n", "mw=46./7000.\n", "rhow=mw/V\n", "w=0.00657\n", "#results\n", "print '%s' %(\"part a\")\n", "print '%s %.2f %s' %(\"partial pressure of water =\",pw,\"psia\")\n", "print '%s %d %s' %(\"\\n dew temperature =\",tdew,\"F\")\n", "print '%s' %(\"part b\")\n", "print '%s %.6f %s' %(\"density of water =\",rhow,\"lbm/ft^3\")\n", "print '%s %.4f %s' %(\"\\n density of air =\",rhoa,\"lbm/ft^3\")\n", "print '%s' %(\"part c\")\n", "print '%s %.5f %s' %(\"specific humidity =\",w,\"lbm steam/lbm air\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "using psychrometric charts,\n", "part a\n", "partial pressure of water = 0.15 psia\n", "\n", " dew temperature = 46 F\n", "part b\n", "density of water = 0.000478 lbm/ft^3\n", "\n", " density of air = 0.0728 lbm/ft^3\n", "part c\n", "specific humidity = 0.00657 lbm steam/lbm air\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17 - Pg 337" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the change in enthalpy\n", "#Initialization of variables\n", "W1=0.00206 #lbm/lbm dry air\n", "W2=0.01090 #lbm/lbm dry air\n", "t=60 #F\n", "#calculations\n", "dw=W1-W2\n", "hs=144.4\n", "hs2=66.8-32\n", "w1=14.4 #Btu/lbm\n", "ws1=20 #Btu/lbm\n", "w2=76.3 #Btu/lbm\n", "ws2=98.5 #Btu/lbm\n", "dwh1=-(w1-ws1)/7000. *hs\n", "H1=9.3+dwh1\n", "dwh2=(w2-ws2)/7000. *hs2\n", "H2=31.3+dwh2\n", "dwc=dw*(t-32)\n", "dq=H2-H1+dwc\n", "#results\n", "print '%s %.2f %s' %(\"Enthalpy change =\",dq,\"Btu/lbm dry air\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Enthalpy change = 21.53 Btu/lbm dry air\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18 - Pg 339" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the humidity and temperature of the gas\n", "#Initialization of variables\n", "print '%s' %(\"From psychrometric charts,\")\n", "va1=13. #ft^3/lbm dry air\n", "va2=13.88 #ft^3/lbm dry air\n", "flow=2000. #cfm\n", "#calculations\n", "ma1= flow/va1\n", "ma2=flow/va2\n", "t=62.5 # F\n", "phi=0.83 #percent\n", "#results\n", "print '%s %.2f' %(\"humidity = \",phi)\n", "print '%s %.1f %s' %(\"\\n Temperature =\",t,\"F\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From psychrometric charts,\n", "humidity = 0.83\n", "\n", " Temperature = 62.5 F\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19 - Pg 341" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the dry bulb temperature and percentage humidity\n", "#Initialization of variables\n", "t=90 #F\n", "ts=67.2 #F\n", "phi=0.3\n", "per=0.8\n", "#calculations\n", "dep=t-ts\n", "dt=dep*per\n", "tf=t-dt\n", "print '%s' %(\"from psychrometric charts,\")\n", "phi2=0.8\n", "#results\n", "print '%s %.2f %s' %(\"Dry bulb temperature =\",tf,\"F\")\n", "print '%s %.2f' %(\"\\n percent humidity =\",phi2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from psychrometric charts,\n", "Dry bulb temperature = 71.76 F\n", "\n", " percent humidity = 0.80\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20 - Pg 342" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the cooling range, approach and amount of water cooled and percentage of water lost by evaporation\n", "#Initialization of variables\n", "m=1 #lbm\n", "t1=100. #F\n", "t2=75. #F\n", "db=65. #F\n", "print '%s' %(\"From psychrometric charts,\")\n", "t11=82 #F\n", "phi1=0.4\n", "H1=30 #Btu/lbm dry air\n", "w1=65 #grains/lbm dry air\n", "w2=250 #grains/lbm dry air\n", "#calculations\n", "cr=t1-t2\n", "appr=t2-db\n", "dmf3=(w2-w1)*0.0001427\n", "hf3=68\n", "hf4=43\n", "H2=62.2\n", "H1=30\n", "mf4= (H1-H2+ dmf3*hf3)/(hf4-hf3)\n", "per=dmf3/(dmf3+mf4)*100\n", "#results\n", "print '%s %d %s' %(\"cooling range =\",cr,\"F\")\n", "print '%s %d %s' %(\"\\n Approach =\",appr,\"F\")\n", "print '%s %.3f %s' %(\"\\n amount of water cooled per pound of dry air =\",mf4,\"lbm dry air/lbm dry air\")\n", "print '%s %.2f %s' %(\"\\n percentage of water lost by evaporation =\",per,\"percent\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From psychrometric charts,\n", "cooling range = 25 F\n", "\n", " Approach = 10 F\n", "\n", " amount of water cooled per pound of dry air = 1.216 lbm dry air/lbm dry air\n", "\n", " percentage of water lost by evaporation = 2.12 percent\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21 - Pg 348" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure and error in both cases\n", "#Initialization of variables\n", "R0=0.73 #atm ft^3/mol R\n", "a1=578.9\n", "a2=3675\n", "b1=0.684\n", "b2=1.944\n", "n1=0.396 #mol\n", "n2=0.604 #mol\n", "V=8.518 #ft^3\n", "T=460+460. #R\n", "#calculations\n", "p1=R0*n1*T/(V-n1*b1) - a1*n1*n1 /V/V\n", "p2= R0*n2*T/(V-n2*b2) -a2*n2*n2 /V/V\n", "p=p1+p2\n", "pa=(n1+n2)*R0*T/V\n", "err=(pa-p)/p*100\n", "pb=58.7 #atm\n", "err2= (p-pb)/p*100\n", "#results\n", "print '%s %.1f %s' %(\"Pressure =\",p,\" atm\")\n", "print '%s %.1f %s' %(\"\\n Pressure in case 2 =\",pb,\"atm\")\n", "print '%s %.1f %s' %(\"\\n error in ideal case =\",err,\" percent\")\n", "print '%s %.1f %s' %(\"\\n error in case 2 =\",err2,\" percent\")\n", "print '%s' %('The answer is a bit different due to rounding off error in textbook')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure = 67.8 atm\n", "\n", " Pressure in case 2 = 58.7 atm\n", "\n", " error in ideal case = 16.4 percent\n", "\n", " error in case 2 = 13.4 percent\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22 - Pg 350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure using both cases\n", "#Initialization of variables\n", "p1=45.8 #atm\n", "p2=36 #atm\n", "t1=343.3 #R\n", "t2=766.8 #R\n", "n1=0.396 #mol\n", "n2=0.604 #mol\n", "V=8.518 #ft^3\n", "R0=0.73\n", "T=920 #R\n", "#calcualtions\n", "vr1=p1*(V/n1)/(R0*t1)\n", "vr2=p2*(V/n2)/(R0*t2)\n", "tr1=T/t1\n", "tr2=T/t2\n", "print '%s' %(\"From compressibility charts,\")\n", "z1=1\n", "z2=0.79\n", "Z=n1*z1+n2*z2\n", "p=Z*R0*T/V\n", "p2=62. #atm\n", "err=(p-p2)/p*100\n", "#results\n", "print '%s %.1f %s' %(\"In case 1, pressure =\",p,\"atm\")\n", "print '%s %d %s' %(\"\\n In case 2, pressure using trail and error method =\",p2,\"atm\")\n", "print '%s %d %s' %(\"\\n Error =\",err,\"percent\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "From compressibility charts,\n", "In case 1, pressure = 68.8 atm\n", "\n", " In case 2, pressure using trail and error method = 62 atm\n", "\n", " Error = 9 percent\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 23 - Pg 351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure required\n", "#Initialization of variables\n", "t1=343.3 #R\n", "t2=766.8 #R\n", "n1=0.396 #mol\n", "n2=0.604 #mol\n", "V=8.518 #ft^3\n", "p1=45.8 #atm\n", "p2=36 #atm\n", "R0=0.73\n", "T=920 #R\n", "#calculations\n", "tcd=n1*t1+n2*t2\n", "pcd=n1*p1+n2*p2\n", "Tr=T/tcd\n", "Vr=pcd*V/(R0*tcd)\n", "Z=0.87\n", "p=Z*R0*T/V\n", "#results\n", "print '%s %.1f %s' %(\"Pressure =\",p,\"atm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure = 68.6 atm\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }