{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5:Quantum Mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4,Page no:180" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "L= 1.0; #assuming Length L of box to be 1, this would not affect the probability\n", "x1=0.45; #lower bound\n", "x2=0.55; #upper bound\n", "\n", "from scipy.integrate import quad\n", "import math\n", "\n", "#Calculation \n", "def f(x):\n", " y=(math.sin(n*(math.pi)*x))**2\n", " return(y)\n", "n=1.0;\n", "I1=quad(f,x1,x2) #for ground state\n", "P1=(2/L*I1[0])\n", "n=2.0;\n", "I2=quad(f,x1,x2) #for ground state\n", "P2=(2/L*I2[0])\n", "\n", "\n", "\n", "#Result\n", "print\"The probability n ground state is: \",round(P1,3),\"=\",round(P1,3)*100,\"percent\"\n", "print\"The probability in first excited state is: \",round(P2,4),\"=\",round(P2,4)*100,\"percent\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The probability n ground state is: 0.198 = 19.8 percent\n", "The probability in first excited state is: 0.0065 = 0.65 percent\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6,Page no:186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "#Part (a)\n", "E1= 1.0 #energy of first electron, eV\n", "E2= 2.0 #energy of second electron, eV\n", "Eb= 10.0 #height of barrier, eV\n", "Wb= 0.50 #width of barrier, nm\n", "Wb= Wb* 10**(-9) #converting to m\n", "hbar= 1.054*10**(-34) #reduced Planck's conctaant, J.s\n", "Me= 9.1*10**(-31) #mass of electron, kg\n", "e= 1.6*10**(-19) #charge of an electron, J/eV\n", "import math\n", "#Calculation\n", "\n", "k2= (math.sqrt(2*(Me)*(Eb-E1)*(e)))/(hbar) #for 1.0 eV e-, m**(-1)\n", "k1= (math.sqrt(2*Me*(Eb-E2)*e))/hbar #for first electron, m**(-1)\n", "T1= math.exp((-2)*k2*Wb) #transmission probability for first electron\n", "T2= math.exp((-2)*k1*Wb) #for second electron\n", "print\"(A.)\\nTransmission probability for electrons with energy 1.0 eV is:%.2g\"%T1\n", "print\"Transmission probability for electrons with energy 2.0 eV is: %.2g\"%T2\n", "\n", "#Part (b)\n", "Wb= Wb*2; #Barrier width doubled\n", "T11= math.exp((-2)*k2*Wb) # changed transmission probability for first electron\n", "T22= math.exp((-2)*k1*Wb) #for second electron\n", "\n", "#Result\n", "print\"\\n\\n(B.):After the barrier width is doubled:\\n\"\n", "print\"Transmission probability for electrons with energy 1.0 eV is:%.2g\"%T11\n", "print\"Transmission probability for electrons with energy 2.0 eV is: %.2g\"%T22\n", "print\"\\n\\nNOTE:Calculation mistake in book in the calculation of k2,\\nit is wrongly written as 1.6e+10,\\nTHAT's Why a change in final answer\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(A.)\n", "Transmission probability for electrons with energy 1.0 eV is:2.1e-07\n", "Transmission probability for electrons with energy 2.0 eV is: 5.1e-07\n", "\n", "\n", "(B.):After the barrier width is doubled:\n", "\n", "Transmission probability for electrons with energy 1.0 eV is:4.6e-14\n", "Transmission probability for electrons with energy 2.0 eV is: 2.6e-13\n", "\n", "\n", "NOTE:Calculation mistake in book in the calculation of k2,\n", "it is wrongly written as 1.6e+10,\n", "THAT's Why a change in final answer\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }