{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10:The Solid state" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1,Page no:342" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "import math\n", "Ro= 0.281 #equilibrium distance between ions, nm\n", "alpha= 1.748 #Madelung constant\n", "n= 9 #exponent, from observed compressibilities of NaCl\n", "e= 1.6*(10**(-19)) #charge of an electron, C\n", "Po= 8.85*(10**(-12)) #Permittivity of free space, F/m\n", "\n", "#Calculation\n", "K=1.0/(4*(math.pi)*Po) #constant, N.m**2/C**2\n", "Uo= -(K*alpha*(e**2)*(1.0-(1.0/n)))/(Ro*(10**(-9))) #Potential energy per ion pair, J\n", "Uo= Uo/e #converting to eV\n", "E1= 5.14 #Ionisation energy for Na, eV\n", "E2= -3.61 #electron affinity of Cl, eV\n", "E= E1+E2 #Electron transfer energy, eV\n", "Ecohesive = (Uo +E) #per electron pair, eV\n", "Ecohesive= Ecohesive/2.0 #for each ion, eV\n", "\n", "#Result\n", "print\"The cohesive energy in NaCl is: \",round(Ecohesive,2),\"eV\"\n", "print\"\\nWhich is not far from experimental value of -3.28 eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The cohesive energy in NaCl is: -3.21 eV\n", "\n", "Which is not far from experimental value of -3.28 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 10.2,Page no:350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration \n", "A= 1.0 #cross-sectional area of wire, mm**2\n", "I= 1.0 #current in wire, A\n", "n= 8.5*(10**28) # electrons/m**3\n", "e= 1.6*(10**(-19)) #charge of an electron, C\n", "\n", "#Calculation\n", "Vdrift= I/(n*(A*(10**(-6)))*e) #m/s\n", "\n", "#Result\n", "print\"The drift velocity of electrons in the copper wire is:%.2g\"%Vdrift,\"m/s\"\n", "print\"\\nNOTE:Calculation mistake in book.Wrongly written as 7.4*10^-4\"\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drift velocity of electrons in the copper wire is:7.4e-05 m/s\n", "\n", "NOTE:Calculation mistake in book.Wrongly written as 7.4*10^-4\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 10.3,Page no:353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "n= 8.48*(10**28) #free electron density, m**(-3)\n", "Vfermi= 1.57*(10**6) #Fermi Velocity, m/s\n", "rho= 1.72*(10**(-8)) #resistivity, ohm\n", "e= 1.6*(10**(-19)) #charge of an electron, C\n", "Me= 9.1*(10**(-31)) #mass of electron, kg\n", "\n", "#Calculation\n", "lamda= Me*Vfermi/(n*(e**2)*rho) #m\n", "lamda= lamda*(10**9) #converting to nm\n", "\n", "#Result\n", "print\"The mean free path is:\",round(lamda,1),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean free path is: 38.3 nm\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }