{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9:Statistical Mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:9.1,Page no:299" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "k= 8.617*10**(-5) #Boltzmann constant, eV/K\n", "To=273.0 #initial temperature, K\n", "E1= -13.6 #energy of ground state, eV\n", "E2= -3.4 #energy of first excited state, eV\n", "dE= E2-E1 #difference in energy levels\n", "g1=2.0 #number of energy states for E1\n", "g2=8.0 #number of energy states for E2\n", "\n", "#Calculation\n", "J= dE/(k*To) \n", "Nratio1= (g2/g1)*math.exp(-J) #ratio of number of atoms in level 2 and level 1 at To\n", "T1=10273.0 #K\n", "J1= J*To/T1 \n", "Nratio2= (g2/g1)*math.exp(-J1) #at T1\n", "\n", "#Result\n", "print\"(a).The ratio at 273 K is:%.3g\"%Nratio1,\"(Approx)\"\n", "print\"(b).The ratio at 10273 k is:%.g \"%Nratio2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).The ratio at 273 K is:1.97e-188 (Approx)\n", "(b).The ratio at 10273 k is:4e-05 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:9.4,Page no:305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "Moxygen= 16.0 #atomic mass,u\n", "Mo2= 32.0 #Molecular mass, u\n", "u= 1.66*(10**(-27)) #atomic mass unit, kg\n", "Moxygen= Mo2*u #mass, kg\n", "t= 273 #temperature, K\n", "k= 1.38*10**(-23) #Boltzmann constant, J/K\n", "\n", "#Calculation\n", "Vrms= math.sqrt(3*k*t/Moxygen) # m/s\n", "\n", "#Result\n", "print\"The rms velocity of oxygen is: \",round(Vrms),\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rms velocity of oxygen is: 461.0 m/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:9.5,Page no:314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "V= 1.00 #volume, cm**3\n", "V= V*10**(-6) #converting to m**3\n", "dI= 2.404 #standard value of definite Integral used\n", "k= 8.617*10**(-5) #Boltzmann constant, eV/K\n", "h= 4.13*(10**(-15)) #Planck's constant, eV.s\n", "T= 1000 #temperature, K\n", "c= 3 *(10**8) #speed of light, m/s\n", "\n", "#Calculation\n", "#Part (a)\n", "N= 8*(math.pi)*V*dI*((k*T/(h*c))**3)\n", "#Part(b)\n", "Sig= 5.670*10**(-8) #Stefan's constant, W/m**2.K**4 , refer to Page 317\n", "Ephoton= Sig*(c**2)*(h**3)*T/(2.405*(2*(math.pi)*(k**3))) #J\n", "e_to_J=6.23*10**18*Ephoton #Converting to eV \n", "\n", "#Result\n", "print\"(a),The number of photons is:%.3g\"%N\n", "print\"(b)The average energy of the photons is:%.3g\"%Ephoton,\"J=\",round(e_to_J,3),\"eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a),The number of photons is:2.03e+10\n", "(b)The average energy of the photons is:3.72e-20 J= 0.232 eV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:9.6,Page no:317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "T= 2.7 #blackbody temperature, K\n", "Lambda= 2.898*10**(-3)/T #using wein's displacement law, Eqn 9.40, m\n", "\n", "#Calculation\n", "Lambda= Lambda*10**(3) #converting to mm\n", "\n", "#Result\n", "print\"The wavelength for maximum radiation is: \",Lambda,\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength for maximum radiation is: 1.07333333333 mm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:9.7,Page no:317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "Rearth= 1.5*10**(11) #radius of earth, m\n", "r= 1.4 #rate of arrival of sunlight, kW/m**2\n", "\n", "#Calculation\n", "P= (r*10**3)*4*(math.pi)*(Rearth**2) #total power reaching Earth\n", "Rsun= 7*10**(8) #radius of Sun, m\n", "r2= P/(4*(math.pi)*(Rsun**2)) #radiation rate of Sun, W/m**2\n", "emissivity=1 #for blackbody\n", "Sig= 5.670*10**(-8) #Stefan's constant, W/m**2.K**4\n", "T= (r2/(emissivity*Sig))**(1.0/4.0) \n", "\n", "#Result\n", "print\"The surface temperature of Sun is:%.2g\"%T,\"K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The surface temperature of Sun is:5.8e+03 K\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:9.8,Page no:325" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "u= 1.66*(10**(-27)) #atomic mass unit, kg\n", "density= 8.94*10**(3) # kg/m**3\n", "M= 63.5 #atomic mass of copper, u\n", "\n", "#Calculation\n", "Edensity= density/(M*u) #electron density, electrons/m**3\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "Me= 9.1*(10**(-31)) #mass of electron, kg\n", "Efermi= h**2/(2*Me)*((3*Edensity)/(8*(math.pi)))**(2.0/3.0) # J\n", "e_to_J=6.23*10**18*Efermi #Converting to eV \n", "\n", "#Result\n", "print\"The fermi energy is:%.3g\"%Efermi,\"J or\",round(e_to_J,2),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fermi energy is:1.13e-18 J or 7.04 eV\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }