{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8:Molecules" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exampnle no:8.1,Page no:283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "r= 0.113 #bond length, nm\n", "Mc= 1.99*(10**(-26)) #mass of C12, kg\n", "Mo= 2.66*(10**(-26)) #mass of O16, kg\n", "\n", "#Calculation\n", "#Part (a)\n", "import math\n", "Mco= (Mc*Mo)/(Mc+Mo) #mass of CO, kg\n", "I= Mco*((r*(10.0**(-9.0)))**2.0) #moment of inertia, kg.m**2\n", "J=1.0 #lowest rotational state\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "hbar= h/(2.0*(math.pi)) #reduced Planck's constant, J.s\n", "E1= (J*(J+1)*(hbar**2))/(2.0*I) #energy corresponding to state J=1, J\n", "e= 1.6*(10**(-19)) #charge of an electron, C\n", "E1= E1/e #converting to eV\n", "#Part(b)\n", "w= math.sqrt((2.0*7.61*10**-23)/(1.46*10**-46)) #angular velocity, rad/s\n", "\n", "#Result\n", "print\"(a).The energy of CO molecule is:%.2e\"%E1,\"eV(approx)\"\n", "print\"(b).The angular velocity is:%.3g\"%w,\"rad/sec\\n\"\n", "\n", "print\"NOTE:(Calculation mistake):Incorrect answer in book for (b) part\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).The energy of CO molecule is:4.79e-04 eV(approx)\n", "(b).The angular velocity is:1.02e+12 rad/sec\n", "\n", "NOTE:(Calculation mistake):Incorrect answer in book for (b) part\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exampnle no:8.2,Page no:285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Ji=0 #initial state\n", "Jf=1 #final state\n", "f= 1.15*(10**11) #frequency for the absorption, Hz\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "\n", "#Calculation\n", "hbar= h/(2*(math.pi)) #reduced Planck's constant, J.s\n", "Ico= hbar*Jf/(2*(math.pi)*f) #moment of inertia, kg.m**2\n", "Mco= 1.14*(10**(-26)) #Mass of CO, refer Exa 8.1\n", "r= math.sqrt(Ico/Mco) #bond length, m\n", "r= r*(10**9) #converting to nm\n", "\n", "#Result\n", "print\"The bond length of CO molecule is: \",round(r,3),\"nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The bond length of CO molecule is: 0.113 nm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exampnle no:8.3,Page no:288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "f= 6.42*(10**13) #frequency of absorbed radiation, Hz\n", "Mco= 1.14*(10**(-26)) #mass of CO, kg\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "\n", "#Calculation\n", "#Part (a)\n", "k= 4*((math.pi)**2)*(f**2)*Mco #using Eqn 8.15, Page 287\n", "#Part (b)\n", "dE= h*f #separation, J\n", "etoJ=dE*6.24*10**18 \n", "\n", "#Result\n", "print\"(a).The force constant for the bond in CO molecule is: %.3g\"%k,\"N/m\"\n", "print\"\\nNOTE:Slight error in calculation of book,'k' is written as 1.86*10**3\\n\\n\"\n", "print\"(b).The separation in its vibrational eergy levels is:%.3g\"%dE,\"J=\",round(etoJ,3),\"eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).The force constant for the bond in CO molecule is: 1.85e+03 N/m\n", "\n", "NOTE:Slight error in calculation of book,'k' is written as 1.86*10**3\n", "\n", "\n", "(b).The separation in its vibrational eergy levels is:4.26e-20 J= 0.266 eV\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }