{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7:Many electron Atoms" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1,Page no:230" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "r= 5*(10**(-17)) #radius of spherical electron, m\n", "Me= 9.1*(10**(-31)) #mass of electron, kg\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "\n", "#Calculation\n", "import math\n", "hbar= h/(2*(math.pi)) #reduced Planck's constant, J.s\n", "v= (5*math.sqrt(3)/4)*(hbar/(Me*r)) #using Eqn 7.1, Page 230\n", "c= 3*(10**8) #velocity of light, m/s\n", "v= v/c #converting in terms of c, m/s\n", "\n", "#Result\n", "print\"The velocity of electron in times of c is:%.3g\"%v,\"c\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of electron in times of c is:1.67e+04 c\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2,Page no:241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "n= 2 #outer (2s) orbit of lithium\n", "E2= -5.39 #Ionisation energy of lithium, for n=2 eV\n", "E1= -13.6 #for n=1, eV\n", "\n", "#Calculation\n", "Z= n*(math.sqrt(E2/E1)) #modification factor for effective charge\n", "e= 1.6*(10**(-19)) #charge of an electron, C\n", "Ceffective = Z*e \n", " \n", "#Result \n", "print\"The effective charge is: \",round(Ceffective/e,2),\"e or%.3g\"%Ceffective,\"C\"\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The effective charge is: 1.26 e or2.01e-19 C\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3,Page no:248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "n= 2 #for 2p state\n", "Ao= 5.29*(10**(-11)) #Bohr's orbit for n=1, m\n", "r= (n**2)*Ao #orbital radius, m\n", "f= 8.4*(10**14) #frequency of revolution, Hz ,using Eqn 4.4\n", "\n", "#Calculation\n", "Mo= 4*(math.pi)*(10**(-7)) #Magnetic constant, T.m/A\n", "e= 1.6*(10**(-19)) #charge of an electron, C\n", "B= (Mo*f*e)/(2*r) #Magnetic field, T\n", "Mb= 9.27*(10**(-24)) #Bohr Magneton, J/T\n", "Um= Mb*B #Magnetic energy, J\n", "Um= Um/e #converting to eV\n", "\n", "#Result\n", "print\"The magnetic energy for electron is:%.2g\"%Um,\"eV\"\n", "print\"\\nThe energy difference is twice this,which is:%.2g\"%(2*Um),\"eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnetic energy for electron is:2.3e-05 eV\n", "\n", "The energy difference is twice this,which is:4.6e-05 eV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.8,Page no:257" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "l= 0.180 #wavelength, nm\n", "l= l* 10**(-9) #converting to m\n", "c= 3*(10**8) #velocity of light, m/s\n", "\n", "#Calculation\n", "f= c/l #frequency, Hz\n", "R= 1.097*(10**7) #Rydberg's constant, per m\n", "Z= 1+(math.sqrt((4*f)/(3*c*R))) #using Eqn 7.21\n", "\n", "#Result\n", "print\"The element has atomic number: \",round(Z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The element has atomic number: 27.0\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }