{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3:Wave propoerties of particles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.1,Page no:94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m= 46.0 #mass, gms\n", "v=30.0 #velocity, m/s\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "m=m/1000.0 #convert to kgs\n", "\n", "#Calculation\n", "a=h/(m*v) #de Broglie wavelength, m\n", "print\"The de Broglie wavelength of the golf ball (in m) is:%.2g\"%a,\"m\"\n", "#Part(b)\n", "m= 9.1*(10**(-31)) #mass, kg\n", "v=10**7 #velocity, m/s\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "a=h/(m*v) #de Broglie wavelength, mts\n", "\n", "#Result\n", "print\"de Broglie wavelength for the electron (in m) is:%.2g\"%a,\"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de Broglie wavelength of the golf ball (in m) is:4.8e-34 m\n", "de Broglie wavelength for the electron (in m) is:7.3e-11 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.2,Page no:94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "a=10**(-15) #de Broglie wavelength, mts\n", "Eo= 0.938 #proton rest energy, GeV\n", "h= 4.136*(10**(-15)) #Planck's constant, eV.s\n", "c= 2.998*(10**8) #velocity of light, m/s\n", "\n", "#Calculation\n", "import math\n", "p= h/a # p is momentum, kg.m/s \n", "pc= (h*c)/a #Photon's energy, ev\n", "pc=pc*(10**(-9)) #convert to GeV\n", "\t\t\t\t#pc>E0, relativistic calculation\n", "E= math.sqrt((Eo**2) + (pc**2)) #total energy, GeV\n", "KE = E-Eo #Kinetic energy, GeV\n", "KE= KE*1000 # convert to MeV\n", "\n", "#Result\n", "print\"Kinetic Energy of the proton (in MeV) is: \",round(KE),\"MeV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic Energy of the proton (in MeV) is: 617.0 MeV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.3,Page no:103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "a= 2*(10**(-12)) #de Broglie wavelength, mts\n", "h= 4.136*(10**(-15)) #Planck's constant, eV.s\n", "c= 3*(10**8) #velocity of light, m/s\n", "\n", "#Calculation\n", "pc= (h*c)/a #p is momentum, pc is electron's energy, eV\n", "pc= pc/1000 #convert to keV\n", "Eo= 511 #rest energy, keV\n", "E= math.sqrt((Eo**2)+(pc**2)) #Total Energy, keV\n", "KE= E-Eo #Kinetic energy, keV\n", "\n", "#Result\n", "print\"kinetic energy of the electron (in keV) is,KE: \",round(KE,1),\"keV\"\n", "vg= c*(math.sqrt(1-(Eo**2/E**2))) #group velocity, m/s\n", "vp= c**2/vg #phase velocity, m/s\n", "print\"group velocity of the electron (in m/s) is,vg: \",round(vg/c,3),\"c\"\n", "print\"phase velocity of the electron (in m/s) is,vp:\",round(vp/c,1),\"c\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "kinetic energy of the electron (in keV) is,KE: 292.8 keV\n", "group velocity of the electron (in m/s) is,vg: 0.772 c\n", "phase velocity of the electron (in m/s) is,vp: 1.3 c\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.4,Page no:107" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline\n", "#Variable declaration\n", "m= 9.1*(10**(-31)) #mass, kg\n", "L= 0.10 #length of box, nm\n", "L= L*(10**(-9)) #convert to m\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "\n", "#Calculation\n", "En=range(4)\n", "p=range(5)\n", "import matplotlib.pyplot as plt\n", "#from numpy import random\n", "import numpy as np\n", "for n in range(1,5):\n", " En[n-1]=(n**2)*(h**2)/(8*m*(L**2)) #Permitted energies, J\n", " print\"For level:\",n\n", " print\"Permitted ernergis :%.2g\"%En[n-1],\"J\"\n", " En[n-1]=38*(n**2) \n", " plt.plot([En[n-1]])\n", " print\"Permitted energies (in eV) :\",En[n-1], \"eV\"\n", " p[n]=plt.hlines(En[n-1],0,5, colors=np.random.rand(3,1), linestyles='solid', label='d', hold=None,)\n", " p[n].axes.get_xaxis().set_visible(False)\n", "plt.legend([p[1],p[2],p[3],p[4]],[\"n=1\",\"n=2\",\"n=3\",\"n=4\"])\n", "plt.ylabel(\"Energy,eV\")\n", "plt.title(\"Energy levels of an e- confined to a box 1nm wide\")\n", "\n", "plt.show()\n", "\n", "#Result\n", "print\"\\nANS::The minimum energy the electron can have is:\",min(En),\"n**2 eV\\n\\n\"\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "For level: 1\n", "Permitted ernergis :6e-18 J\n", "Permitted energies (in eV) : 38 eV\n", "For level:" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " 2\n", "Permitted ernergis :2.4e-17 J\n", "Permitted energies (in eV) : 152 eV\n", "For level: 3\n", "Permitted ernergis :5.4e-17 J\n", "Permitted energies (in eV) : 342 eV\n", "For level: 4\n", "Permitted ernergis :9.7e-17 J\n", "Permitted energies (in eV) : 608 eV\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEBCAYAAAB13qL/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8jPeeB/DPJJlGQiITSSYyE5kSJBOKg0ipCppodUVc\nGolLw1JFtRzH4bSlQrdJOKsllF7cUpZgd18SSpqi4Ui3Tde1K0hKRO4uERWJXH/7h+OpyGUyzCR4\nPu/XK6/XzHP9Tmbm+cxz+/0UQggBIiKSLYuWLoCIiFoWg4CISOYYBEREMscgICKSOQYBEZHMMQiI\niGSOQfCUsbCwwKVLl8y6Dn9/f2zcuNGky7xw4QJ69uwJe3t7rF271qTLfhoUFhbi5Zdfhr29PebP\nn4+oqCi89dZbZlmXTqfDoUOHzLJsY2zZsgUDBw5s6TJa3JUrV2BnZ4eGrtSPiIjApEmTmrmq2qxa\ndO0tSKfT4erVq7C0tJSGTZkyBTExMS1Y1ZNBoVBAoVCYdJkrVqzA0KFDcerUKZMu92nx1VdfwcXF\nBb///rvZ19XY+zd58mS4u7vj448/NnsdzWXt2rXYsmUL/u///g9hYWHYvHlzS5dUS4cOHXD79u0G\nx5v6u/YoZBsECoUC+/btw5AhQ8y6nurq6lphI1dZWVno379/S5fRYrKysuDt7d3SZTyTNBoNFi9e\njO+++w5lZWUtXc5TiYeG6rFlyxa89NJL+Otf/wpHR0d07NgRiYmJ0vhbt25h6tSpcHNzg1arxeLF\ni1FTUyPNO2DAAMybNw9OTk5YunQpioqKMGLECLRt2xa+vr5YtGiRtMv8zjvvYP78+bXWHxQUhFWr\nVhmss7y8HPPnz4eHhwdcXV0xc+ZM3L17FwDg7e2Nb7/9Vpq2qqoKzs7O0i/yn376Cf3794dKpULP\nnj1x5MiRetfx22+/YdCgQXBwcICzszNCQ0MbrCchIQE+Pj5QqVQYPHgwzp8/DwAYMmQIkpOTMXv2\nbNjb2+O3336rM+/mzZuh1+thb2+PTp064auvvpLGJScnQ6vV4tNPP4VarYabmxu2bNnSYB2NvT9N\ncezYMel/06FDB8TGxkrLffPNN+Hi4gKdTodPPvlE2t1v7DMzefJkfPPNN1ixYgXs7e1x6NChWocD\nLl++DAsLC3zzzTfw8PCAs7MzIiMjpXqEEIiOjoanpyecnJwwbtw43Lx5Uxq/detWeHh4wMnJqdZ8\nD/vqq6+wfft2rFixAnZ2dhg5ciQA4Ny5c/D394dKpUK3bt2wd+/eBpfR2PtUHyEE3n33XTg4OMDb\n2xuHDx+WxuXl5SEoKAjt2rVD586dsWHDBgDAxYsX0a5dO5w8eVKaztnZGUePHq13HaNGjcLIkSPR\nrl27OuMMfXYmT56MWbNmYfjw4bCzs8PAgQNRUFCAOXPmQKVSwdvbu8G92CVLluC9994DAFRWVqJ1\n69ZYsGABAKCsrAytWrVCcXGx9P7e/wxmZmZi0KBBsLe3R2BgIK5fv15ruU39bpqUkCmdTicOHjxY\n77jNmzcLpVIpNmzYIGpqasT69euFm5ubND44OFjMmDFDlJaWiqtXrwpfX1/x5ZdfSvNaWVmJtWvX\niurqalFWVibGjRsnwsLCRFlZmUhLSxPu7u5i4MCBQgghUlNThZubm6ipqRFCCHHt2jVha2srrl69\nWm9tCoVCXLx4UQghxNy5c8XIkSPFzZs3xe3bt8WIESPE+++/L4QQYtmyZWLChAnSfPv27RN6vV4I\nIUROTo5o166dOHDggBBCiO+//160a9dOXL9+XQghhL+/v9i4caMQQojQ0FARGRkphBCivLxcpKSk\n1FvXhQsXROvWrcXBgwdFVVWVWLFihfD09BSVlZV1llmfb7/9Vly6dEkIIcSRI0eEra2tOHHihBBC\niB9++EFYWVmJJUuWiKqqKrF//35ha2sriouL611WY++PIZcvXxZ2dnYiLi5OVFVViRs3bohTp04J\nIYSYNGmSCA4OFiUlJeLy5cuiS5cu0msy9JmZPHmyWLx4sfQ8IiJCTJw4UQghRGZmplAoFGL69Oni\n7t274vTp08La2lqcP39eCCHEqlWrxIsvvihyc3NFRUWFePvtt0VYWJgQQoizZ8+KNm3aiH/84x+i\nvLxczJs3T1hZWYlDhw7V+/oerqOiokJ06tRJREVFicrKSnH48GFhZ2cnLly4UO/8jb1PD7v/XVi1\napWoqqoSO3fuFG3bthU3b94UQggxcOBA8c4774jy8nJx6tQp4ezsLA4fPiyEEOLrr78Wer1elJaW\nisDAQPHXv/61sbdNCCHEhx9+KCZPnlxrmKHPTnh4uHBychInTpwQd+/eFUOGDBEeHh5i69atoqam\nRixatEgMHjy43vUdPnxYdO/eXQghREpKiujUqZPo16+fEEKIQ4cOiZ49ewoh/nh/q6urhRBC+Pn5\nib/85S+ioqJCHD16VNjZ2YlJkyYJIRr+bl67ds3g638csg0CDw8P0aZNG+Hg4CD9bdiwQQhx7wPs\n6ekpTXvnzh2hUChEYWGhKCgoENbW1qKsrEwav337dunDsnnzZtGhQwdpXFVVlVAqlSI9PV0atmjR\nIvHSSy9Jz729vcX3338vhBBizZo14vXXX2+w7vtBUFNTI1q3bi2FghBC/Pjjj+L5558XQgiRkZEh\n7OzspDrHjx8vPv74YyGEENHR0dIH775hw4aJ2NhYIUTtjfabb74ppk+fLnJychr9fy5btkyMGzdO\nel5TUyM0Go04cuSItMz7/9+mCA4OFqtXrxZC3Psy29jYSF8kIYRwcXERP//8c535DL0/hkRGRorR\no0fXGV5VVSWee+45ce7cOWnYl19+Kfz9/YUQjX9mhLi3AV60aJE0fsmSJXWCIDc3Vxrv6+srdu7c\nKYQQwsvLq9aGPS8vTyiVSlFVVSWWLl0qhcL99T733HONBsGDdRw9elS4urrWmiYsLExEREQ09C+q\n5cH36WGbN2+uFYb3X9fWrVvFlStXhKWlpSgpKZHGvf/++7U25EFBQaJbt26iR48eoqKiwmAtixYt\nqjcIGvvsTJ48WUyfPl0at2bNGukHkxBCnDlzRjg4ONS7vtLSUtGqVStx48YNER0dLSIjI4VWqxUl\nJSXio48+EnPmzBFC1A6CrKwsYWVlJUpLS6XljB8/Xvo+GvpumotsDw0pFArEx8fj5s2b0t/UqVOl\n8a6urtJjW1tbAEBJSQmysrJQWVmJ9u3bQ6VSQaVSYcaMGbh27Zo0vbu7u/T42rVrqKqqqjVMq9XW\nquXNN9/Etm3bAADbtm1r0hUE165dQ2lpKXr37i3V8dprr0m7mZ6envD29kZCQgJKS0uxd+9ejB8/\nHsC949W7d++W5lOpVEhJSUFBQUGd9axYsQJCCPj6+qJbt24NnojLz89Hhw4dpOcKhQLu7u7Izc2t\nNawhBw4cgJ+fH9q1aweVSoX9+/fjxo0b0vh27drBwuKPj6utrS1KSkrqLMfQ++Pj4wM7OzvY2dkh\nJSWlzvw5OTno2LFjneHXr19HZWUlPDw8pGEdOnSo9foa+sw01cPz3583KysLo0aNkl6PXq+HlZUV\nCgsLkZ+fX+vzZGtrW+8hkobk5eXV+mwCgIeHR63X9SBD79PDNBpNnWXn5+cjPz8fjo6OaN26tTTu\n4f/ntGnTcPbsWbz77rtQKpUGX4to4KocQ58dFxcX6XGrVq1qPbexsWnwPbSxsUGfPn1w5MgRHD16\nFIMGDUL//v2RkpIiPX9YXl4eVCoVbGxspGEeHh5S7cZ8N01JtieLH5W7uzusra1x48aNWh+uBz24\nwXN2doaVlRWys7PRuXNnAEB2dnat6SdOnIju3bvj9OnTOH/+PIKDgw3W4eTkBBsbG6SlpaF9+/b1\nThMWFoYdO3aguroaer1e2sB16NABkyZNMnh8FwDUarU0XUpKCl555RUMGjSozsbSzc0Nv/76q/Rc\nCIHs7Ow6G4L6lJeXY8yYMdi2bRtGjhwJS0tLjBo1qsEvdmMMvT9nz541OH9qamqd4U5OTlAqlbh8\n+bJ00vfKlSt1Qr2pjLlSpEOHDti8eTNefPHFOuPat2+Pc+fOSc9LS0sb3TA/vF43NzdkZ2dDCCGN\ny8rKgpeXV515H+V9ejhQsrKyMHLkSLi5uaGoqAglJSVo06YNgNr/z5KSEsydOxfTpk3DkiVLMHr0\naKhUqgbXU99raw6DBg3CoUOHcPLkSfTt2xeDBg1CYmIiUlNT8fLLL9eZvn379rh58yZKS0ulHwtZ\nWVnSBSXGfDdNSbZ7BEDDvyAa0759ewQGBmLevHm4ffs2ampqcPHixQZPZFlaWmL06NGIiIhAWVkZ\nzp8/j61bt9b60Gq1WvTp0wdvvvkmxo4dC2tra4N1WFhY4K233sLcuXOlX7u5ublISkqSpgkNDcV3\n332HL774AhMmTJCGT5w4EXv37kVSUhKqq6tx9+5dJCcn1/srcPfu3cjJyQEAODg4QKFQ1LuBDQkJ\nwbfffovDhw+jsrISK1euRKtWrWpdKdTQ/7uiogIVFRVwcnKChYUFDhw4UOt1GMPY9+dhEyZMwMGD\nB7F7925UVVXhxo0bOH36NCwtLRESEoIPP/xQ2jP87LPPMHHixCYt9+HXbsxnb8aMGfjggw9w5coV\nAPf2BhMSEgAAY8eOxb59+5CSkoKKigp89NFHjZ4YV6vVte5D8fPzg62tLVasWIHKykokJydj3759\n9V4U8Cjv09WrVxETE4PKykrs3r0b58+fx/Dhw6HVatG/f3+8//77KC8vx5kzZ7Bp0ybp/zlnzhz4\n+vriq6++wuuvv44ZM2Y0uI77n+GqqipUV1ejvLwc1dXVjdZ136NsAx40aNAgfPPNN/Dx8YFSqYS/\nvz82bNiAjh071rtn5uHhgT59+mDJkiWorKzEsWPHsG/fPmm8Md9NU5J1EIwYMUI6TGBnZ4cxY8YA\nqP867Aeff/PNN6ioqIBer4ejoyPeeOMNadetvnnXrl2LW7duwdXVFeHh4QgLC8Nzzz1Xa5rw8HD8\n+uuvBg8LPbjs5cuXw9PTE35+fmjbti0CAgKQnp4ujXd1dUX//v3xP//zPxg3bpw0XKvVIj4+HpGR\nkXBxcUGHDh2wcuXKer8U//u//ws/Pz/pKpOYmBjodLo603Xp0gXbtm3Du+++C2dnZ3z77bfYu3cv\nrKz+2Ols6BebnZ0dYmJiEBISAkdHR+zYsUO6osXQvPVp7P0xxN3dHfv378fKlSvRrl079OrVC2fO\nnAEArFmzBq1bt0bHjh0xcOBATJgwAVOmTJHqa+wz8/D4+p43ZM6cOQgKCkJgYCDs7e3x4osvSnst\ner0en3/+OcaPHw83Nzc4OjrWOdTzoKlTpyItLQ0qlQqjR4+GUqnE3r17ceDAATg7O2P27NnYunUr\nunTpUmfeprxPD79+Pz8/ZGRkwNnZGYsXL8Z//dd/Sb/sd+zYgcuXL8PNzQ2jR4/GsmXLMGTIEMTH\nxyMpKQnr168HAHz66ac4ceIEduzYUe96Pv74Y9ja2mL58uXYtm0bbGxs8MknnzTpf2vofTE0/4sv\nvoi7d+9Kv/69vb1hY2NTZ2/gwWVs374dP//8MxwdHbFs2TKEh4dL4xr6bhpz1dujUIjHjcRGXLhw\nodYvi0uXLuHjjz/GxIkTMW7cOGRlZUGn02HXrl1wcHAAAERFRWHTpk2wtLRETEwMAgMDzVVei1m4\ncCGuXr1a63j7P/7xD0ycOBFZWVktWBkRyZFZg+BBNTU10Gg0SE1NxZo1a+Dk5IQFCxZg+fLluHnz\nJqKjo5GWlobx48fjl19+QW5uLl555RWkp6c3eCz+aXHhwgWUl5eje/fu+OWXX/D6669j48aNCAoK\nAnDvGuTQ0FD06tULixYtauFqiUhumm0Le/DgQXh6esLd3R0JCQnS7lB4eDj27NkDAIiPj0dYWBiU\nSiV0Oh08PT3rPXH3tLl9+zbGjBmDNm3aIDQ0FPPnz5dC4Ny5c1CpVCgsLMTcuXNbuFIikqNmu2oo\nLi4OYWFhAO41wKVWqwHcO3lVWFgI4N6lVX5+ftI8Wq3W7CdJmkOfPn2QkZFR7zhvb2+jLjEkIjK1\nZtkjqKiowN69e/HGG2/UGWeogbMnoUEmIqJnWbPsERw4cAC9e/eGs7MzgHt7AQUFBXB1dUV+fr50\nA4dGo6l1jX1OTk6d69B79uyJ06dPN0fZRETPjB49ejTYblKznCwODQ3Fa6+9Jp0XWLBgAdq1a4eF\nCxciOjoaxcXFtU4Wp6amSieLf/vttzqXdzXT+W0iomdGY9tOswfBnTt34OHhgczMTNjZ2QEAioqK\nEBISgitXrtS5fDQyMhKbNm2ClZUVVq9ejWHDhjX5xRARUf1aNAhMjUFARGS8xradT/cF+kRE9NgY\nBEREMsfWR4noqefo6Fir1zY5U6lUKCoqMmoeniMgoqcetwt/aOh/wXMERETUIAYBEZHMMQiIiGSO\nQUBEJHMMAiKiJ1hlZSXGjh2L559/HhYWFjhy5IjJ18EgICJ6wr388svYtm0bXF1dzdIiM4OAiMiM\ndDodVq5ciR49esDBwQGhoaEoLy9v8vxKpRLvvfceBgwYAEtLS7PUyCAgIjIjhUKB3bt347vvvkNm\nZibOnDmDLVu2IDs7Gw4ODlCpVPX+xcXFNVuNvLOYiGThRK+VJlnOn07+xeh53nvvPbi6ugIARowY\ngVOnTuHtt99GcXGxSWp6XAwCIpKFR9mAm8r9EAAAGxsb5OXltVgt9eGhISKiFpCdnY02bdrAzs6u\n3r8dO3Y0Wy3cIyAiagHu7u4oKSlp0rTl5eVSO0Hl5eW4e/cuWrVqZbJauEdARNSMFAqF0ZeAdu3a\nFba2tsjLy8OwYcPQunVrXLlyxXQ1sfVRInracbvwB7Y+SkRERmMQEBHJHIOAiEjmGARERDLHICAi\nkjmzB0FxcTHGjh0Lb29v6PV6/PzzzygqKkJAQAC6dOmCwMDAWrdZR0VFoXPnzvDy8kJSUpK5yyMi\nkj2zB8GcOXMwfPhwnDt3DmfOnIGXlxeio6MREBCA9PR0DB06FNHR0QCAtLQ07Ny5E2lpaUhMTMSs\nWbNQU1Nj7hKJiGTNrPcR3Lp1C7169cKlS5dqDffy8sKRI0egVqtRUFAAf39/nD9/HlFRUbCwsMDC\nhQsBAK+++ioiIiLg5+f3R8EKBY6+HWaukonoKfTylzt4H8E/Pcp9BGZtYiIzMxPOzs6YMmUKTp8+\njd69e2PVqlUoLCyEWq0GAKjVahQWFgIA8vLyam30tVotcnNz6yx34BfbzVk2ET1tvmy+dnmeRWYN\ngqqqKpw4cQJr165F3759MXfuXOkw0H2Gbreub1xERIT02N/fH/7+/qYqmYjoifLTTz9h8eLFOHHi\nBCwtLeHv74+YmJhaLZrWJzk5GcnJyU1ah1mDQKvVQqvVom/fvgCAsWPHIioqCq6urigoKICrqyvy\n8/Ph4uICANBoNMjOzpbmz8nJgUajqbPcB4OAiOhZVlxcjBkzZmDYsGGwtLTE7NmzMWXKFBw4cKDR\n+R7+kbx06dIGpzXryWJXV1e4u7sjPT0dAHDw4EH4+PhgxIgRiI2NBQDExsYiODgYABAUFIS4uDhU\nVFQgMzMTGRkZ8PX1NWeJRERm9bhdVb766qsYM2YM2rRpAxsbG7zzzjtISUkxaY1mb4Z6zZo1mDBh\nAioqKtCpUyds3rwZ1dXVCAkJwcaNG6HT6bBr1y4AgF6vR0hICPR6PaysrLBu3TqzdNRMRNRcHuyq\n0traGgMGDMCWLVswfPhwdO/evcFt3Pr16xEaGlpn+NGjR9GtWzfT1sjWR4noadeU7YLm1TsmWVdu\nYmujpn/++efxySefYPz48QCAhQsX4vfff8f69euNXveZM2cwePBgJCQkYMCAAfVO88RdNURE9KQw\ndgNuSqboqvK3337D8OHDERMT02AIPCo2MUFE1AKM6aoyKysLAQEB+OijjzBhwgST18I9AiKiFtDU\nripzc3MxZMgQzJ49G9OnTzdLLdwjICJqRsZ2VblhwwZkZmYiIiJC2luwt7c3bU08WUxETztuF/7A\nriqJiMhoDAIiIpljEBARyRyDgIhI5hgEREQyxyAgIpI5BgERkcwxCIiIZI5BQEQkcwwCIqInWFpa\nGvr06QNHR0c4ODhgwIABOHbsmEnXwSAgInqCaTQa7N69Gzdu3MDNmzcRGhqKsWPHmnQdDAIiIjN6\n3K4q27Zti+effx4KhQLV1dWwsLBA+/btTVojm6EmIjIjU3VV6eDggDt37sDNzQ2HDx82aY0MAiKS\nhc/1pmmd9J004/tRf++996ReykaMGIFTp07h7bffRnFxcZOXUVxcjNLSUixduhRvvPEGjh8/brI+\n3RkERCQLj7IBNxVTdFUJALa2toiOjsbnn3+OX3/9FS+88IJJ6uM5AiKiFmBMV5UPqq6uRk1NDWxt\nbU1WC/cIiIhaQFO7qjx48CCcnJzQvXt33LlzB4sWLULXrl3h6elpslq4R0BE1IyM7aqyuLgYYWFh\ncHBwQNeuXXHt2jUkJCSYtiZzd1Wp0+lgb28PS0tLKJVKpKamoqioCOPGjUNWVhZ0Oh127doFBwcH\nAEBUVBQ2bdoES0tLxMTEIDAwsHbB7JKOiB7C7cIfnsiuKhUKBZKTk3Hy5EmkpqYCAKKjoxEQEID0\n9HQMHToU0dHRAO7dQbdz506kpaUhMTERs2bNQk1NjblLJCKStWY5NPRwCiUkJCA8PBwAEB4ejj17\n9gAA4uPjERYWBqVSCZ1OB09PTyk8iIjIPJplj+CVV15Bnz598PXXXwMACgsLoVarAQBqtRqFhYUA\ngLy8PGi1WmlerVaL3Nxcc5dIRCRrZr9qKCUlBe3bt8e1a9cQEBAALy+vWuMNnTipb1xERIT02N/f\nH/7+/qYql4jomZCcnIzk5OQmTWv2ILjfJoazszNGjRqF1NRUqNVqFBQUwNXVFfn5+XBxcQFwr3Gl\n7Oxsad6cnBxoNJo6y3wwCIiIqK6HfyQvXbq0wWnNemiotLQUt2/fBgDcuXMHSUlJ6N69O4KCghAb\nGwsAiI2NRXBwMAAgKCgIcXFxqKioQGZmJjIyMuDr62vOEomIZM+sewSFhYUYNWoUAKCqqgoTJkxA\nYGAg+vTpg5CQEGzcuFG6fBQA9Ho9QkJCoNfrYWVlhXXr1pmsLQ0iIqqf2e8jMDVeL0xED+N24Q9P\n5H0ERET0ZGMQEBE9JZYtWwYLCwuT90fAICAiegpcvHgR//mf/wk3NzeTL5tBQERkRo/bVeV9s2fP\nxvLly6FUKk1eI4OAiMiMHuyqMjMzE2fOnMGWLVuQnZ0NBwcHqFSqev/i4uKkZezevRutWrXCa6+9\nZpYa2R8BEcnCP2aMN8lyBn6x3eh5Hqerytu3b+PDDz/EwYMHjV5vUzEIiEgWHmUDbiqP01VlREQE\nJk2ahA4dOkjDTH2pLA8NERG1gKZ2VXn48GHExMSgffv2aN++PbKzsxESEoK///3vJquFewRERC2g\nqV1VHjp0CFVVVQDu7Qn07dsXn332GV599VWT1cIgICJqRsZ2Veno6FjruaWlJVQqFVq3bm26mtjE\nBBE97bhd+AObmCAiIqMxCIiIZI5BQEQkcwwCIiKZYxAQEckcg4CISOZ4HwERPfVUKhW7tf0nlUpl\n9Dy8j4CISAZ4HwERETWowSDQ6/X4t3/7N1y8eLE56yEiombWYBBs374dJSUlCAwMlBo5MqbpVCIi\nejo06RzBTz/9hLi4OPz3f/83OnXqhLCwMEyfPr056quD5wiIiIz32OcI/Pz88NlnnyE2NhY3b97E\n7Nmzm7zy6upq9OrVCyNGjAAAFBUVISAgAF26dEFgYGCtHnqioqLQuXNneHl5ISkpqcnrICKiR2cw\nCFJTUzFv3jx4eHggIiICM2bMMOoQ0erVq6HX66VLu6KjoxEQEID09HQMHToU0dHRAIC0tDTs3LkT\naWlpSExMxKxZs1BTU/OIL4uIiJqqwSD44IMP0KlTJ8yaNQsajQYpKSk4cuQIZsyYAScnpyYtPCcn\nB/v378e0adOkXZKEhASEh4cDAMLDw7Fnzx4AQHx8PMLCwqBUKqHT6eDp6YnU1NTHfX1ERGRAgzeU\nWVtbIzExEZ07d37khf/5z3/G3//+d/z+++/SsMLCQqjVagCAWq1GYWEhACAvLw9+fn7SdFqtFrm5\nuY+8biIiapoGg2DJkiUAgDt37uDTTz/FlStX8PXXXyMjIwMXLlzAv/zLvzS64H379sHFxQW9evVC\ncnJyvdMY6qmnoXERERHSY39/f/j7+zdaCxGR3CQnJze47X2YwSYmpkyZgt69e+PHH38EALi5uWHs\n2LEGg+DHH39EQkIC9u/fj7t37+L333/HpEmToFarUVBQAFdXV+Tn58PFxQUAoNFokJ2dLc2fk5MD\njUZT77IfDAIiIqrr4R/JS5cubXBagyeLL168iIULF+K5554DgCb3kxkZGYns7GxkZmYiLi4OQ4YM\nwdatWxEUFITY2FgAQGxsLIKDgwEAQUFBiIuLQ0VFBTIzM5GRkQFfX98mrYuIiB6dwT0Ca2trlJWV\nSc8vXrwIa2tro1d0/zDP3/72N4SEhGDjxo3Q6XTYtWsXgHt3MoeEhECv18PKygrr1q1jI1JERM3A\n4A1lSUlJ+OSTT5CWloaAgACkpKRgy5YtGDx4cHPVWAtvKCMiMl5j284m3Vl8/fp1/PTTTwCAfv36\nwdnZ2bQVGoFBQERkvMcOggfl5+fD0dHxkQ4PmQKDgIjIeCZthnrixIno2rUr5s+f/9iFERFRy3uk\njmlqampw7tw5+Pj4mKOmRnGPgIjIeI+1RzBv3jycPXu29kwWFi0SAkREZHoGg8Db2xvTp0+Hr68v\nvvjiC9y6das56iIiombS5END58+fx5YtW7B9+3a89NJLeOutt1rkElIeGiIiMt5jnyyurq7G+fPn\nce7cOTg7O6NHjx749NNPMW7cOJMWSkREzc/gHsGf//xn7N27F0OGDMG0adNqNfvQtWtXXLhwwexF\nPoh7BETgviCZAAALDUlEQVRExnus+wg2b96MkJCQetsYKi4uhoODg2mqbCIGARGR8R4rCI4fP16n\nzZ+2bdvCw8MDVlYGmyoyOQYBEZHxHisI/Pz8cPz4cbzwwgsAgF9//RU+Pj64desW1q9fj2HDhpm+\n4kYwCIiIjPdYJ4vd3Nxw6tQpHD9+HMePH8epU6fQsWNHfP/991iwYIHJiyUiouZlMAguXLhQ6+Yx\nvV6P8+fPo1OnTmwmmojoGWDwIL+Pjw9mzpyJ0NBQCCGwa9cu6PV6lJeXQ6lUNkeNdXyu56EhIjKt\nvrMA39ny/HFr8BxBWVkZPv/8c6SkpAAABgwYgFmzZqFVq1a4c+cO7OzsmqXQ+3iOgIjIeI98sriq\nqgoBAQH44YcfzFacsRgERETGe+STxVZWVrCwsEBxcbFZCiMiopZn8BxB69at0b17dwQEBEg3lSkU\nCsTExJi9OCIiMj+DQTB69GiMHj1aukJICMGrhYiIniFNan20tLQUV65cgZeXV3PU1CieIyAiMt5j\n3VCWkJCAXr164dVXXwUAnDx5EkFBQaatkIiIWozBIIiIiMDPP/8MlUoFAOjVqxcuXbpk9sKIiKh5\nGAwCpVJZp4VRCwvD3RjcvXsX/fr1Q8+ePaHX6/H+++8DAIqKihAQEIAuXbogMDCw1hVJUVFR6Ny5\nM7y8vJCUlGTsayEiokdgcIvu4+OD//iP/0BVVRUyMjLw7rvvon///gYX3KpVK/zwww84deoUzpw5\ngx9++AHHjh1DdHQ0AgICkJ6ejqFDhyI6OhoAkJaWhp07dyItLQ2JiYmYNWsWampqHv8VEhFRowwG\nwZo1a3D27FlYW1sjLCwM9vb2WLVqVZMWbmtrCwCoqKhAdXU1VCoVEhISEB4eDgAIDw/Hnj17AADx\n8fEICwuDUqmETqeDp6cnUlNTH/V1ERFREzXpPoLIyEhERkYavfCamhr86U9/wsWLFzFz5kz4+Pig\nsLAQarUaAKBWq1FYWAgAyMvLg5+fnzSvVqtFbm6u0eskIiLjGAyCCxcu4N///d9x+fJlVFVVAbh3\nGdLhw4cNLtzCwgKnTp3CrVu3MGzYsDpNVSgUikbvSWhoXEREhPTY398f/v7+BmshIpKT5ORkJCcn\nN2lag0HwxhtvYObMmZg2bRosLS0BNLyBbkjbtm3x+uuv4/jx41Cr1SgoKICrqyvy8/Ph4uICANBo\nNMjOzpbmycnJgUajqXd5DwYBERHV9fCP5KVLlzY4bZOuGpo5cyb69euHPn36oE+fPujdu7fBIq5f\nvy5dEVRWVobvv/8evXr1QlBQEGJjYwEAsbGxCA4OBgAEBQUhLi4OFRUVyMzMREZGBnx9fQ2uh4iI\nHo/BPYIRI0bg888/x+jRo2FtbS0Nd3R0bHS+/Px8hIeHo6amBjU1NZg0aRKGDh2KXr16ISQkBBs3\nboROp8OuXbsA3OvwJiQkBHq9HlZWVli3bh2bsiAiagYGm5jQ6XT1bpAzMzPNVlRj2MQEEZHxHqvz\n+icNg4CIyHiP1NbQihUrpMe7d++uNe6DDz4wUWlERNTSGgyCHTt2SI8fvofgwIED5quIiIialeFG\ng4iI6JnGICAikrkGTxZbWlpKbQWVlZXBxsZGGldWVibdZdzceLKYiMh4jW07G7yPoLq62mwFERHR\nk4OHhoiIZI5BQEQkcwwCIiKZYxAQEckcg4CISOYYBEREMscgICKSOQYBEZHMMQiIiGSOQUBEJHMM\nAiIimWMQEBHJHIOAiEjmGARERDLHICAikjkGARGRzJk1CLKzszF48GD4+PigW7duiImJAQAUFRUh\nICAAXbp0QWBgIIqLi6V5oqKi0LlzZ3h5eSEpKcmc5RERERrpqtIUCgoKUFBQgJ49e6KkpAS9e/fG\nnj17sHnzZjg5OWHBggVYvnw5bt68iejoaKSlpWH8+PH45ZdfkJubi1deeQXp6emwsPgjr9hVJRGR\n8Rrbdpp1j8DV1RU9e/YEALRp0wbe3t7Izc1FQkICwsPDAQDh4eHYs2cPACA+Ph5hYWFQKpXQ6XTw\n9PREamqqOUskIpK9ZjtHcPnyZZw8eRL9+vVDYWEh1Go1AECtVqOwsBAAkJeXB61WK82j1WqRm5vb\nXCUSEclSg53Xm1JJSQnGjBmD1atXw87OrtY4hUIBhULR4Lz1jYuIiJAe+/v7w9/f31SlEhE9E5KT\nk5GcnNykac0eBJWVlRgzZgwmTZqE4OBgAPf2AgoKCuDq6or8/Hy4uLgAADQaDbKzs6V5c3JyoNFo\n6izzwSAgIqK6Hv6RvHTp0ganNeuhISEEpk6dCr1ej7lz50rDg4KCEBsbCwCIjY2VAiIoKAhxcXGo\nqKhAZmYmMjIy4Ovra84SiYhkz6xXDR07dgwvv/wyXnjhBekQT1RUFHx9fRESEoIrV65Ap9Nh165d\ncHBwAABERkZi06ZNsLKywurVqzFs2LDaBfOqISIiozW27TRrEJgDg4CIyHgtdvkoERE9+RgEREQy\nxyAgIpI5BgERkcwxCIiIZI5BQEQkcwwCIiKZYxAQEckcg4CISOYYBEREMtcszVCbmubVOy1dAhE9\nY+ZNUOIvk55r6TJaBNsaIiKSAbY1REREDWIQEBHJHIOAiEjmGARERDLHICAikjkGARGRzDEIiIhk\njkFARCRzDAIiIpljEBARyRyDgIhI5swaBP/6r/8KtVqN7t27S8OKiooQEBCALl26IDAwEMXFxdK4\nqKgodO7cGV5eXkhKSjJnaURE9E9mDYIpU6YgMTGx1rDo6GgEBAQgPT0dQ4cORXR0NAAgLS0NO3fu\nRFpaGhITEzFr1izU1NSYszwiIoKZg2DgwIFQqVS1hiUkJCA8PBwAEB4ejj179gAA4uPjERYWBqVS\nCZ1OB09PT6SmppqzPCIiQgucIygsLIRarQYAqNVqFBYWAgDy8vKg1Wql6bRaLXJzc5u7PCIi2WnR\njmkUCgUUCkWj4+sTEREhPfb394e/v7+JKyMierolJycjOTm5SdM2exCo1WoUFBTA1dUV+fn5cHFx\nAQBoNBpkZ2dL0+Xk5ECj0dS7jAeDgIiI6nr4R/LSpUsbnLbZDw0FBQUhNjYWABAbG4vg4GBpeFxc\nHCoqKpCZmYmMjAz4+vo2d3lERLJj1j2CsLAwHDlyBNevX4e7uzuWLVuGv/3tbwgJCcHGjRuh0+mw\na9cuAIBer0dISAj0ej2srKywbt26Rg8bERGRabDPYiIiGWCfxURE1CAGARGRzDEIiIhkjkFARCRz\nDAIiIpljEBARyRyDgIhI5hgEREQyxyAgIpI5BgERkcwxCIiIZI5BQEQkcwwCIiKZYxAQEckcg4CI\nSOZatM/iR3Wi18qWLoGInjGub78Itxn9W7qMFsGOaYiIZIAd0xARUYMYBEREMscgICKSOQYBEZHM\nMQiIiGTuiQuCxMREeHl5oXPnzli+fHlLl0NE9Mx7oi4fra6uRteuXXHw4EFoNBr07dsXO3bsgLe3\ntzQNLx8lIjLeU3P5aGpqKjw9PaHT6aBUKhEaGor4+PiWLouI6Jn2RAVBbm4u3N3dpedarRa5ubkt\nWBER0bPviQoChULR0iUQEcnOE9XWkEajQXZ2tvQ8OzsbWq221jQ9evRgYBARGalHjx4NjnuiThZX\nVVWha9euOHToENzc3ODr61vnZDEREZnWE7VHYGVlhbVr12LYsGGorq7G1KlTGQJERGb2RO0REBFR\n83uiThYTEVHzYxAQEckcg4CISOYYBEREMscgICKSOQYBEZHMMQiIiGSOQUBEJHP/DwMjmdymoydL\nAAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "ANS::The minimum energy the electron can have is: 38 n**2 eV\n", "\n", "\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.5,Page no:107" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m= 10.0 #mass, gms\n", "m= m/1000.0 #convert to kgs\n", "L= 10.0 #Length of box, cms\n", "L= L/100.0 #convert to mts\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "\n", "#Calculation\n", "En=range(5)\n", "for n in range(1,5):\n", " En[n-1]=(n**2)*(h**2)/(8*m*(L**2)) #Permitted energies, J\n", " print\"for level:\",n\n", " print\"Permitted ernergis :%.2g\"%En[n-1],\"J\"\n", " \n", "#Result\n", "print \"Minimum energy is :En=%.2g\"%min(En),\"n**2 J,corresponding to n=1\"\n", "\n", " \n", "#corresponding kinetic energy is very low, hence Quantum effects are imperceptible, and Newtonian mechanics is dominant" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for level: 1\n", "Permitted ernergis :5.5e-64 J\n", "for level: 2\n", "Permitted ernergis :2.2e-63 J\n", "for level: 3\n", "Permitted ernergis :4.9e-63 J\n", "for level: 4\n", "Permitted ernergis :8.8e-63 J\n", "Minimum energy is :En=5.5e-64 n**2 J,corresponding to n=1\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.6,Page no:112" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Xo= 10**(-11) #uncertainty at time t=o, mts\n", "hb= 1.054*(10**(-34)) #h-bar, reduced Planck's constant, J.s\n", "t= 1 #time, s\n", "m= 1.672*(10**(-27)) #mass, kg\n", "\n", "#Calculation\n", "x1= hb*t/(2*m*Xo) #uncertainty at time t=1, mts\n", "\n", "#Result\n", "print\"accuracy in position of proton after 1.00 seconds is ,delta_x>=:%.3g\"%x1,\"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "accuracy in position of proton after 1.00 seconds is ,delta_x>=:3.15e+03 m\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.7,Page no:114" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "r= 5*(10**(-15)) #radius of nucleus, mts\n", "Xo= 5*(10**(-15)) #assumed initial uncertainty, mts\n", "hb= 1.054*(10**(-34)) #reduced Planck's constant, J.s\n", "\n", "#Calculation\n", "p= hb/(2*Xo) #uncertainty in momentum, kg.m/s\n", "c= 3*(10**8) #velocity of light, m/s\n", "KE= p*c #minimum kinetic energy required, J\n", "\n", "#Result\n", "print\"Uncertainty in momentum of the electron is :%.2g\"%p,\"kg.m/s\"\n", "print\"The minimum energy required is :%.2g\"%KE,\"J \\n or\"\n", "KE= KE/(1.6*(10**(-19))) #convert to eV\n", "KE= KE/(10**6) #convert to MeV\n", "print\"The minimum energy required is : \",round(KE),\"MeV\"\n", " \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainty in momentum of the electron is :1.1e-20 kg.m/s\n", "The minimum energy required is :3.2e-12 J \n", " or\n", "The minimum energy required is : 20.0 MeV\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.8,Page no:115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "r= 5.3*(10**(-11)) #radius of atom, mts\n", "Xo= 5.3*(10**(-11)) #uncertainty in position, mts\n", "hb= 1.054*(10**(-34)) #Reduced planck Constant, J.s\n", "\n", "#Calculation\n", "p= hb/(2*Xo) #uncertainty in momentum, kg.m/s\n", "m= 9.1*(10**(-31)) #mass, kg\n", "KE= p**2/(2*m) # minimum kinetic energy, J\n", "\n", "#Result\n", "print\"The minimum possible kinetic energy for an electron in the atom is :%.2g\"%KE,\"J\"\n", "KE= KE/(1.6*(10**(-19))) #convert to eV\n", "print\"OR,in eV:KE=\",round(KE,1),\"eV\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum possible kinetic energy for an electron in the atom is :5.4e-19 J\n", "OR,in eV:KE= 3.4 eV\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:3.9,Page no:116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "t= 10**(-8) #time period between excitation and radiation, s\n", "hb= 1.054*(10**(-34)) #Reduced Planck's constant, J.s\n", "\n", "#Calculation\n", "Eo= hb/(2*t) #uncertainty in photon energy, J\n", "h=hb*(2*(math.pi)) #Planck's constant\n", "Fo= Eo/h #uncertainty in frequency of light, Hz\n", "\n", "#Result\n", "print\"Photon energy is uncertain by (in J) :%.2g\"%Eo,\"J\"\n", "print\"Frquency of photon is uncertain by (in Hz) :%.2g\"%Fo,\"Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Photon energy is uncertain by (in J) :5.3e-27 J\n", "Frquency of photon is uncertain by (in Hz) :8e+06 Hz\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }