{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2:Particle properties of waves" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1,Page no:61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "Ft= 660 #frequency of tuning fork, Hz\n", "Fo= 5.00*(10**14) #frquency of atomic oscillator, Hz\n", "Ef= 0.04 #vibrational energy of tuning fork, J\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "\n", "#Calculation\n", "E1= h*Ft #Total energy of tuning fork, J\n", "E2= h*Fo #Total energy of atomic oscillator, J\n", "E2= E2/(1.60*(10**(-19))) #converting to eV\n", "\n", "#Result\n", "print\"(a).Energy of tuning fork is:%.3g\"%E1,\"J\"\n", "print\"(b).Energy of atomic oscillator is:\",round(E2,2),\"eV(approx)\"\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).Energy of tuning fork is:4.38e-31 J\n", "(b).Energy of atomic oscillator is: 2.07 eV(approx)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2,Page no:66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "l= 350 #Wavelength of UV light, nm\n", "i= 1.00 #intensity of UV light, W/m**2\n", "\n", "#Part (a)\n", "l= l*10**(-9) #converting to m\n", "Ep= (1.24*(10**(-6)))/l #energy of photon, using Eqn (2.11) on Page 66, e.V\n", "t= 2.2 #work function of Potassium surface, eV\n", " \n", "#Calculation\n", "KEmax= Ep-t #Max KE of the phototelectrons, eV\n", "\n", "#Part (b) \n", "A= 1.00 #Surface area, cm**2\n", "A= A* 10**(-4) #converting to m**2\n", "E= 5.68*(10**(-19)) #Photon energy, J\n", "Np= i*A/E #number of incident photon, per second\n", "Ne= (0.0050)*Np #number of photoeectrons emitted, per second\n", "\n", "#Result\n", "print\"(a).Maximum KE of photoelectrin is: \",round(KEmax,1),\"eV\"\n", "print\"(b).Rate of emission of photoelectrons is:%.2g\"%Ne,\"photoelectrons/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).Maximum KE of photoelectrin is: 1.3 eV\n", "(b).Rate of emission of photoelectrons is:8.8e+11 photoelectrons/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3,Page no:72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "AP= 50000 #Accelerating potential of the x-ray machine, V\n", "l= (1.24*(10**(-6)))/AP*(10**(9)) #Minimum wavelength, nm\n", "\n", "#Calculation\n", "Fmax= 3*(10**8)/(l*(10**(-9))) #Maximum frequency, Hz\n", "\n", "#Result\n", "print\"Minimum wavelength possible is: \",l,\"nm\"\n", "print\"Maximum frequency possible is: %.3g\"%Fmax,\"Hz\"\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum wavelength possible is: 0.0248 nm\n", "Maximum frequency possible is: 1.21e+19 Hz\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4,Page no:78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "#part (a)\n", "l= 10.0 #wavelength of x-ray, pm\n", "r= 45.0 #angle of scattered articles, degree\n", "lc= 2.426*(10**(-12)) #Compton wavelength for electron, m\n", "\n", "#Calculation\n", "import math\n", "k= math.cos(math.radians(45)) \n", "lc= lc* 10.0**12 # converting to pm\n", "print \n", "l2= l+ lc*(1.0-k) #using Eqn 2.23\n", "#Part (b)\n", "lmax= l+(lc*2) #for (1-k)=2\n", "#Part (c)\n", "h= 6.63*(10**(-34)) #Planck's constant, J.s\n", "c= 3*10**8 #velocity of light, m/s\n", "c=c*10**12 #converting to pm/s\n", "KEmax= (h*c)*((1/l)-(1/lmax)) #J\n", "\n", "#Result\n", "print\"(a):The wavelength of scattered x-ray is: \",round(l2,1),\"pm\"\n", "print\"(b):Maximum wavelength is: \",round(lmax,1),\"pm\"\n", "print\"(c):The maximum KE of recoil electrons is:%.3g\"%KEmax,\"J\"\n", "print\"which is equal to \",round(KEmax/1.6021773e-16,1),\"keV(approx)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "(a):The wavelength of scattered x-ray is: 10.7 pm\n", "(b):Maximum wavelength is: 14.9 pm\n", "(c):The maximum KE of recoil electrons is:6.5e-15 J\n", "which is equal to 40.6 keV(approx)\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6,Page no:82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "c=3.0*10**8 #velocity of light, m/s\n", "v= 0.5*c #velocity of electron and positron, m/s\n", "y= 1.0/math.sqrt(1.0-(v/c**2)) #gamma, for relativistic momentum\n", "m=0.511/c**2 #MeV/c**2\n", "\n", "#Calculation\n", "p1_p2=((2*m*c*c**2)*(v/c**2))/(math.sqrt(1-(v/c)**2))\n", "p1_plus_p2=(2.0*m*(c**2))/math.sqrt(1.0-(v/c)**2.0)\n", "p1=(p1_p2+p1_plus_p2)/2.0\n", "p2=p1_plus_p2-p1\n", "E1=p1 #MeV\n", "E2=p2 #MeV\n", "\n", "#Result\n", "print\"The Energy of first photon is,E1=\",round(E1,3),\"MeV\"\n", "print\"The Energyof second photon is:,E2=\",round(E2,3),\"MeV\"\n", "\n", "print\"NOTE:There is a mistake in the formula given in the book for p1_p2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Energy of first photon is,E1= 0.885 MeV\n", "The Energyof second photon is:,E2= 0.295 MeV\n", "NOTE:There is a mistake in the formula given in the book for p1_p2\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7,Page no:85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "M= 4.9 #Linear attenuation coefficient for gamma ray in water, m**(-1)\n", "I= 2.0 #Original intensity of gamma ray, MeV\n", "\n", "#Calculation\n", "#Part (a)\n", "x= 10.0 #distance travelled under water, cm\n", "x= x/100.0 #converting to m\n", "Irel= math.exp(-(M*x)) #Relative intensity\n", "#Part(b)\n", "Ip= I/100 #Present intensity, 1 percent of Original, MeV\n", "x2= math.log(I/Ip)/M #distance travelled, m\n", "\n", "#Result\n", "print\"(a)Relative intensity of the beam is: \",round(Irel,2)\n", "print\"(b)The distance travelled by the beam is:\",round(x2,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Relative intensity of the beam is: 0.61\n", "(b)The distance travelled by the beam is: 0.94 m\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8,Page no:86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration \n", "H= 22.5 #Height of fall, m\n", "F= 7.3*(10**14) #Original frequency, Hz\n", "c= 3*(10**8) #velocity of light, m/s\n", "g= 9.8 #Acceleration due to gravity, m/s**2\n", "\n", "#Calculation\n", "Frel= g*H*F/(c**2) #Change in frequency, Hz\n", "\n", "#Result\n", "print\"The change in frquency of a photon fallin through 22.5 m is: \",round(Frel,1), \"Hz\"\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in frquency of a photon fallin through 22.5 m is: 1.8 Hz\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }