{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1:Relativity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1,Page no:9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Varible declaration\n", "t0= 3600 # time interval on Earth, seconds\n", "t= 3601.0 #time interval for spacecraft as measured from Earth, seconds\n", "\n", "#Calculation\n", "c= 2.998 *(10**8) #speed of light, m/s\n", "v=c*math.sqrt((1-((t0/t)**2))) #relative velocity of spacecraft, m/s\n", "\n", "#Result\n", "print\"The speed of the Spacecraft relative to Earth is:%.2g \"%v,\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of the Spacecraft relative to Earth is:7.1e+06 m/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2,Page no:13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varible declaration\t\n", "fg= 5.6*(10**14) #frequency of green color, Hz\n", "fr= 4.8*(10**14) #frequency of red color, Hz\n", "c= 3.0*(10**8) #velocity of light, m/s\n", "\n", "#Calculation\n", "v= c*((fg**2 - fr**2)/(fg**2 + fr**2)) #longitudinal speed of observer, m/s\n", "v= v*3.6 #convert to km/h\n", "R= 1.0 #rate at which fine is to be imposed per km/h, $\n", "l= 80.0 #speed limit upto which no fine is to be imposed, km/h\n", "fine= v-l # fine to be imposed, $\n", "\n", "#Result\n", "print\"The fine imposed is:\",fine,\"$\\n\"\n", "\n", "print\"NOTE:Approx value of v is taken in book as 1.65*10^8,which is very less precise.\\nTherefore,chnge in final answer\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fine imposed is: 165176390.588 $\n", "\n", "NOTE:Approx value of v is taken in book as 1.65*10^8,which is very less precise.\n", "Therefore,chnge in final answer\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3,Page no:14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Varible declaration\n", "v= 6.12*(10**7) #receding velocity with respect to Earth, m/s\n", "c= 3.0*(10**8) #velocity of light, m/s\n", "L0= 500.0 #initial wavelength of spectral line, nm\n", "\n", "#Calculation\n", "L= L0*math.sqrt(((1+(v/c))/(1-(v/c)))) #final wavelength of spectral light, nm\n", "Ls= L-L0 #shift in wavelength, nm\n", "\n", "#Varible declaration\n", "print\"Shift in Green spectral line is: \",round(Ls),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shift in Green spectral line is: 115.0 nm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4,Page no:19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Varible declaration\n", "StartingAge= 20 #starting age for both Dick and Jane\n", "c= 3*(10**8) #velocity of light, m/s\n", "v= 0.8*c #rate of separation of Dick and Jane, m/s\n", "t0= 1 #interval for emission of signals, yr\n", "\n", "#Calculation\n", "t1= t0*((1+v/c)/(1-v/c)) #interval for reception of signals on outward journey, yr\n", "t1= t0*(math.sqrt((1+v/c)/(1-v/c))) #interval for reception of signals on outward journey, yr\n", "t2= t0*(math.sqrt((1-v/c)/(1+v/c))) #interval for reception of signals on return trip, yr\n", "#Dick's frame of reference\n", "Tout1= 15 #duration of outward trip, yr\n", "Tin1= 15 #duration of return trip, yr\n", "JaneAge= StartingAge+(Tout1/t1)+(Tin1/t2) #Jane's age according to Dick\n", "#Jane's frame of reference\n", "Tout2= 25 #duration of outward trip, yr\n", "d= 20 #delay in transmission of signal to Jane, caused by distance of the star, yr\n", "Tin2= 5 #duration of return trip\n", "DickAge= StartingAge+((Tout2+d)/t1)+(Tin2/t2) #Dick's age according to JAne\n", "\n", "#Result\n", "print\"According to Dick, age of Jane is:\",JaneAge,\"years\"\n", "print\"According to Jane, age of Dick is:\",DickAge,\"years\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "According to Dick, age of Jane is: 70.0 years\n", "According to Jane, age of Dick is: 50.0 years\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6,Page no:27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Varible declaration\n", "mf= 1 #mass of each entity, kg\n", "c= 3*(10**8) #velocity of light, m/s\n", "v= 0.6*c #velocity of fragments relative to original body, m/s\n", "\n", "#Calculation\n", "E0= 2*((mf*(c**2))/math.sqrt(1-((v/c)**2))) #Total energy of fragments\n", "m= E0/(c**2) #mass of original body, kg\n", "\n", "#Result\n", "print\"The total mass of the stationary body is: \",m,\"kg\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total mass of the stationary body is: 2.5 kg\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7,Page no:28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Varible declaration\n", "r=1.4 # Rate of arrival of Solar Energy at erath, kW per square meter\n", "R=1.5*(10**11) #Radius of Earth, m\n", "\n", "#Calculation\n", "P=r*(4*math.pi*(R**2)) #Total power recieved by Earth, kW\n", "P= P*(10**3) #W\n", "C= 3*(10**8) #Velocity of light, m/s\n", "E=P #Energy lost by Sun, J\n", "m= E/(C**2) #Mass of Sun lost per second as energy, kg\n", "\n", "#Result\n", "print\"Mass lost by sun per second, is:%.2g\"%m,\"kg\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass lost by sun per second, is:4.4e+09 kg\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8,Page no:32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Varible declaration\n", "c= 3*(10**8) #Velocity of light, m/s\n", "me= 0.511/(c**2) #mass of electron, MeV\n", "mp=0 #mass of proton, MeV\n", "p= 2.000/c #momenta for both particles, MeV\n", " \n", "#Calculation \n", "##Using Eq. 1.24 and 1.25, Page 31 \n", "Ee=math.sqrt(((me**2)*(c**4))+((p**2)*(c**2))) #Total energy of electron, MeV\n", "Ep= p*c #Total energy of proton, MeV\n", "\n", "#Result\n", "print\"Total energy of Electron is: \",round(Ee,3),\"MeV\"\n", "print\"Total energy of Photon is: \",Ep,\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total energy of Electron is: 2.064 MeV\n", "Total energy of Photon is: 2.0 MeV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11,Page no:44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varible declaration \n", "c=3*(10**8) #velocity of light, m/s\n", "VaE= 0.90*c #velocity of spacecraft alpha w.r.t Earth, m/s\n", "VbA= 0.50*c #velocity of spacecraft beta w.r.t. Alpha, m/s\n", "\n", "#Calculation\n", "VbE= (VaE+VbA)/(1+((VaE*VbA)/(c**2))) #velocity of beta w.r.t Earth, m/s\n", "VbE=VbE/c #Converting to percent of c\n", "\n", "#Result\n", "print\"The required velocity of spacecraft Beta w.r.t. Earth is:\",round(VbE,2),\"c\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required velocity of spacecraft Beta w.r.t. Earth is: 0.97 c\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }