{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7:Quantum theorem and electronic structure of Atoms" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:7.1,Page no:27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda=522*10**-9 #wavelength, m\n", "c=3*10**8 #speed of light in vacuum, m/s\n", "\n", "#Calculation\n", "v=c/lamda #frequency, Hz\n", "\n", "#Result\n", "print\"The frequency of the wave is :%.2e\"%v,\"Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of the wave is :5.75e+14 Hz\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:7.2,Page no:280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "c=3*10**8 #speed of light in vacuum, m/s\n", "h=6.63*10**-34 #planck's constant, J s\n", "lamda1=5*10**-5 #wavelength, m\n", "lamda2=5*10**-11 #wavelength, m\n", "\n", "#Calculation\n", "#(a)\n", "E1=h*c/lamda1 #energy, J\n", "#(b)\n", "E2=h*c/lamda2 #energy, J\n", "\n", "#Result\n", "print\"(a) the energy of the photon is :%.2e\"%E1,\"J\"\n", "print\"(b) the energy of the photon is :%.2e\"%E2,\"J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) the energy of the photon is :3.98e-21 J\n", "(b) the energy of the photon is :3.98e-15 J\n" ] } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:7.3,Page no:281" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "W=3.42*10**-19 #Work function of cesium in J\n", "h=6.63*10**-34 #planck's constant in J.s\n", "v2=10**15 #Freq for irridation in s-1\n", "\n", "#Calculation\n", "#part a\n", "KE=0\n", "#hv=KE+w\n", "v=W/h\n", "#part b\n", "KE=h*v2-W\n", "\n", "#Result\n", "print\"(a)Minimum frequency of light is %.2e\"%v,\"s**-1\"\n", "print\"(b).Kinetic energy of ejected electron is\",KE,\"J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Minimum frequency of light is 5.16e+14 s**-1\n", "(b).Kinetic energy of ejected electron is 3.21e-19 J\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:7.4,Page no:287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "c=3*10**8 #speed of light in vacuum, m/s\n", "h=6.63*10**-34 #planck's constant, J s\n", "Rh=2.18*10**-18 #rydberg's constant, J\n", "ni=5.0 #initial orbit\n", "nf=2.0 #final orbit\n", "\n", "#Calculation\n", "deltaE=Rh*(1/ni**2-1/nf**2) \n", "lamda=c*h/-deltaE \n", "\n", "#Result\n", "print\"The wavelength of the photon is :\",round(lamda*10**9),\"nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the photon is : 434.0 nm\n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:7.5,Page no:291" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "h=6.63*10**-34 #planck's constant, J s\n", "m1=0.06 #mass, kg\n", "u1=68.0 #speed, m/s\n", "m2=9.1094*10**-31 #mass, kg\n", "u2=68 #speed, m/s\n", "\n", "#Calculation\n", "# (a)\n", "lamda1=h/(m1*u1) #wavelength, m\n", "#(b)\n", "lamda2=h/(m2*u2) #wavelength, m\n", "\n", "#Result\n", "print\"The wavelength of the tennis ball is :\",lamda1,\"m\"\n", "print\"The wavelength of the electron is :%.1e\"%lamda2,\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the tennis ball is : 1.625e-34 m\n", "The wavelength of the electron is :1.1e-05 m\n" ] } ], "prompt_number": 62 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:,7.7,Page no:299" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n=3 #Principal quantum no\n", "\n", "#Calculation\n", "#The possible values of l are 0,1,2\n", "s=1 #One 3s orbital,n=3,l=0,ml=0\n", "p=3 #Three p obitals\n", "d=5 #five 'd' orbital\n", "total=s+p+d\n", "\n", "#Result\n", "print\"The total no of orbitals is:\",total" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total no of orbitals is: 9\n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:7.9,Page no:306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n=3 #Principal quantum number\n", "l=[0,1,2]\n", "n=[0,0,0]\n", "\n", "#Calculation\n", "print\"Value of l \\t\\t No of orbitals(2l+1)\"\n", "print\"--------------------------------------------\"\n", "total=0\n", "for i in range(0,3):\n", " n[i]=2*l[i]+1\n", " print l[i],\"\\t\\t\\t\\t\",n[i]\n", " total=n[i]+total\n", "max=2*total\n", "\n", "#Result\n", "print\"The maximum number of electrons that can reside is\",max\n", " \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of l \t\t No of orbitals(2l+1)\n", "--------------------------------------------\n", "0 \t\t\t\t1\n", "1 \t\t\t\t3\n", "2 \t\t\t\t5\n", "The maximum number of electrons that can reside is 18\n" ] } ], "prompt_number": 64 } ], "metadata": {} } ] }