{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6:Thermochemistry" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.1,Page no:237" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P1=0 #external pressure, atm\n", "Vf1=6 #final volume, L\n", "Vi1=2 #initial volume, L\n", "P2=1.2 #external pressure, atm\n", "Vf2=6 #final volume, L\n", "Vi2=2 #initial volume, L\n", "\n", "\n", "#Calculation\n", "#(a)\n", "W1=-P1*(Vf1-Vi1) #work in atm.L\n", "#(b)\n", "W2=-P2*(Vf2-Vi2) #work in atm.L\n", "W2=W2*101.3 #work in J\n", "\n", "#Result\n", "print\"(a).The work done in expansion against vacuum is :\",W1,\"J\\n\"\n", "print\"(b).The work done in expansion against 1.2 atm pressure is :%.1e\"%W2,\"J\\n\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a).The work done in expansion against vacuum is : 0 J\n", "\n", "(b).The work done in expansion against 1.2 atm pressure is :-4.9e+02 J\n", "\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.2,Page no:238" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "q=-128 #heat transfer from the gas, J\n", "w=462 #work done in compressing the gas, J\n", "\n", "#Calculation\n", "deltaE=q+w #change in energy of the gas, J\n", "\n", "#Result\n", "print\"The change in energy for the process is :\",deltaE,\"J\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in energy for the process is : 334 J\n", "\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.3,Page no:243" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "mSO2=87.9 #mass in g\n", "SO2=64.07 #molar mass in g\n", "\n", "#Calculation\n", "nSO2=mSO2/SO2 #moles of SO2\n", "deltaH=-198.2 #heat produced for 2 mol, in kJ/mol\n", "deltaH=deltaH/2 #for one mole SO2,in kJ/mol\n", "Hprod=deltaH*nSO2 #heat produced in this case, in kJ/mol\n", "\n", "#Result\n", "print\"The heat produced in a reaction is :\",round(Hprod),\"kJ\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat produced in a reaction is : -136.0 kJ\n", "\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.4,Page no:245" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "R=8.314 #gas constant, J/K. mol\n", "T=298 #temp in K\n", "deltaH=-566 #enthalpy change, kJ/mol\n", "deltan=2-3 #change in gas moles\n", "\n", "#Calculation\n", "deltaE=deltaH-R*T*deltan/1000.0 #change in internal energy, kJ/mol\n", "\n", "#Result\n", "print\"The change in internal energy in the reaction is :\",round(deltaE,1),\"kJ/mol\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in internal energy in the reaction is : -563.5 kJ/mol\n", "\n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.5,Page no:246" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m=466 #mass in g\n", "s=4.184 #specific heat in J/g C\n", "\n", "#Calculation\n", "deltaT=74.6-8.5 #change in temp, C/K\n", "q=m*s*deltaT/1000 #amount of heat absorbed, kJ\n", "\n", "#Result\n", "print\"\\t the amount of heat absorbed is :\",round(q),\"kJ\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\t the amount of heat absorbed is : 129.0 kJ\n", "\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.6,Page no:248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Ccal=10.17 #heat capacity, kJ/C\n", "deltaT=25.95-20.28 #change in temp, C\n", "m=1.435 #mass of naphthalene, g\n", "molm=128.2 #mol mass of naphthalene, g\n", "\n", "#Calculation\n", "qcal=Ccal*deltaT \n", "q=-qcal*molm/m #molar heat of combustion of naphthalene, kJ\n", "\n", "#Result\n", "print\"The molar heat of combustion of naphthalene is :%.3g\"%q,\"kJ/mol\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The molar heat of combustion of naphthalene is :-5.15e+03 kJ/mol\n", "\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.7,Page no:249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "#for water\n", "m=100 #mass, g\n", "s=4.184 #specific heat, J/g C\n", "deltaT=23.17-22.5 #change in temp., C\n", "qH2O=m*s*deltaT #heat gained by water, J\n", "\n", "#for lead\n", "qPb=-qH2O #heat lost by lead, J\n", "m=26.47 #mass, g\n", "\n", "#Calculation\n", "deltaT=23.17-89.98 #change in temp., C\n", "s=qPb/(m*deltaT) #specific heat, J/g C\n", "\n", "#Result\n", "print\"The specific heat of lead is :\",round(s,3),\"J/g C\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The specific heat of lead is : 0.159 J/g C\n", "\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.8,Page no:249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "#for water\n", "m=100+100 #mass, g\n", "s=4.184 #specific heat, J/g C\n", "deltaT=25.86-22.5 #change in temp., C\n", "\n", "#Calculation\n", "qsoln=m*s*deltaT/1000 #heat gained by water, kJ\n", "qrxn=-qsoln \n", "Hneut=qrxn/(0.5*0.1) \n", "\n", "#Result\n", "print\"The heat of neutralization is :\",round(Hneut,1),\"kJ/mol\\n\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat of neutralization is : -56.2 kJ/mol\n", "\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.9,Page no:256" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "deltaH1=-393.5 #kJ/mol\n", "deltaH2=-285.8 #kJ/mol\n", "deltaH3=-2598.8 #kJ/mol\n", "\n", "#Calculation\n", "deltaH4=2*(deltaH1)\n", "deltaH5=(-1.0/2.0)*deltaH3\n", "std_H=deltaH4+deltaH2+deltaH5\n", "#Result\n", "print\"Standard enthalpy of formation of acetylene is:\",std_H,\"kJ/mol\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1299.4\n", "Standard enthalpy of formation of acetylene is: 226.6 kJ/mol\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:6.10,Page no:258" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "deltaH_Fel=12.4 #Heat of frmtn of Fe(l) in kJ/mol\n", "deltaH_Al2O3=-1669.8 #Heat of formation of Al2O3 in kJ/mol\n", "deltaH_Al=0 #Heat of formation of Al\n", "deltaH_Fe2O3=-822.2 #Heat of formtion of Fe2O3 kJ/mol\n", "M_Al=26.98 #Molar mass of Al\n", "\n", "#Calculation\n", "deltaH_rxn=(deltaH_Al2O3+2*deltaH_Fel)-(2*deltaH_Al+deltaH_Fe2O3)\n", "ratio=deltaH_rxn/2.0\n", "heat_released=ratio/M_Al\n", "\n", "#Result\n", "print\"Heat released per gram of Al is\",round(heat_released,2),\"kJ/g\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat released per gram of Al is -15.25 kJ/g\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }