{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15:Acids and Bases" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.2,Page no:662" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "OH=0.0025 # [OH-] ion concentration, M\n", "Kw=1*10**-14 # ionic product of water, M**2\n", "#Calculation\n", "H=Kw/OH # From the formula (ionic product)Kw=[H+]*[OH-]\n", "#Result\n", "print\"The [H+] ion concentration of the solution is :\",H,\"M\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The [H+] ion concentration of the solution is : 4e-12 M\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.3,Page no:665" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "H1=3.2*10**-4 #Concentration of [H+] ion on first occasion,\n", "H2=1*10**-3 #Concentration of [H+] ion on second occasion, M\n", "\n", "#Calculation\n", "pH1=-math.log10(H1) #from the definition of pH\n", "pH2=-math.log10(H2) #from the definition of pH\n", "\n", "#Result\n", "print\"pH of the solution on first occasion is:\",round(pH1,2)\n", "print\"pH of the solution on second occasion is :\",pH2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "pH of the solution on first occasion is: 3.49\n", "pH of the solution on second occasion is : 3.0\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.4,Page no:665" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "pH=4.82 #Given\n", "\n", "#Calculation\n", "H=10**(-pH) #Concentration of [H+] ion, M, formula from the definition of pH\n", "\n", "#Result\n", "print\"The [H+] ion concentration of the solution is :%.1e\"%H,\"M\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The [H+] ion concentration of the solution is :1.5e-05 M\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.5,Page no:666" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Variable declaration\n", "OH=2.9*10**-4 #Concentration of [OH-] ion, M\n", "#Calculation\n", "pOH=-math.log10(OH) #by definition of p(OH)\n", "pH=14-pOH \n", "#Result\n", "print\"\\t the pH of the solution is :\",round(pH,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\t the pH of the solution is : 10.46\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.6,Page no:669" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "ConcHCl=1*10**-3 #Concentration of HCl solution, M\n", "ConcBaOH2=0.02 #Concentration of Ba(OH)2 solution, M\n", "\n", "#Calculation\n", "#for HCL solution\n", "H=ConcHCl #Concentration of [H+] ion after ionisation of HCl\n", "pH=-math.log10(H) \n", "#for Ba(OH)2 solution\n", "OH=ConcBaOH2*2 #Concentration of [OH-] ion after ionisation of Ba(OH)2 as two ions are generated per one molecule of Ba(OH)2\n", "pOH=-math.log10(OH) \n", "pH2=14-pOH \n", "\n", "#Result\n", "print\"(a). The pH of the HCl solution is :\",pH\n", "print\"(b). The pH of the Ba(OH)2 solution is :\",round(pH2,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a). The pH of the HCl solution is : 3.0\n", "(b). The pH of the Ba(OH)2 solution is : 12.6\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.8,Page no:675" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Variable declaration\n", "InitHNO2=0.036 #Initial concentration of HNO2 solution, M\n", "#Let 'x' be the equilibrium concentration of the [H+] and [NO2-] ions, M\n", "Ka=4.5*10**-4 #ionisation constant of HNO2, M\n", "\n", "#Calculation\n", "x=math.sqrt(Ka*InitHNO2) #from the definition of ionisation constant Ka=[H+]*[NO2-]/[HNO2]=x*x/(0.036-x), which reduces to x*x/0.036, as x<<InitHNO2 (approximation)\n", "approx=x/InitHNO2*100 #this is the percentage of approximation taken. if it is more than 5%, we will be having higher deviation from correct value\n", "if(approx>5):\n", " x1=(-Ka+math.sqrt((Ka**2)-(-4*1*Ka*InitHNO2)))/(2*1) \n", " x2=(-Ka-math.sqrt((Ka**2)-(-4*1*Ka*InitHNO2)))/(2*1) \n", " if(x1>0):\n", " x=x1 \n", " else :\n", " x=x2 \n", "pH=-math.log10(x) #since x is the conc. of [H+] ions\n", "\n", "#Result\n", "print\"The pH of the HNO2 solution is :\",round(pH,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pH of the HNO2 solution is : 2.42\n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.9,Page no:676" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "pH=2.39 # pH of the HCOOH acid solution\n", "InitHCOOH=0.1 #initial concentration of the solution\n", "\n", "#Calculation\n", "H=10**(-pH) #[H+] ion concentration from the definition of pH, M\n", "HCOO_=H #[HCOO-] ion concentration,M\n", "HCOOH=InitHCOOH-H #HCOOH concentration in M\n", "Ka=(H*HCOO_)/(HCOOH) #ionisation constant of the acid, M, Ka=[H+]*[HCOO-]/[HCOOH]\n", "\n", "#Result\n", "print\"The ionisation constant of the given solution is :%.2e\"%Ka,\"M(approx)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ionisation constant of the given solution is :1.73e-04 M(approx)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.10,Page no:678" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "InitNH3=0.4 #Initial concentration of NH3 solution, M\n", "#Let 'x' be the equilibrium concentration of the [OH-] and [NH4+] ions, M\n", "Kb=1.8*10**-5 #ionisation constant of NH3, M\n", "\n", "#Calculation\n", "x=math.sqrt(Kb*InitNH3) #from the definition of ionisation constant Kb=[OH-]*[NH4+]/[NH3]=x*x/(InitNH3-x), which reduces to x*x/InitNH3, as x<<InitNH3 (approximation)\n", "approx=x/InitNH3*100 #this is the percentage of approximation taken. if it is more than 5%, we will be having higher deviation from correct value\n", "if(approx>5):\n", " x1=(-Kb+math.sqrt((Kb**2)-(-4*1*Kb*InitNH3)))/(2*1) \n", " x2=(-Kb-math.sqrt((Kb**2)-(-4*1*Kb*InitNH3)))/(2*1) \n", " if(x1>0):#as only one root is positive\n", " x=x1 \n", " else:\n", " x=x2 \n", "pOH=-math.log10(x) #since x is the conc. of [H+] ions\n", "pH=14-pOH \n", "\n", "#Result\n", "print\"The pH of the NH3 solution is :\",round(pH,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pH of the NH3 solution is : 11.43\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.11,Page no:682" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "InitC2H2O4=0.1 #Initial concentration of C2H2O4 solution, M\n", "#Let 'x1' be the equilibrium concentration of the [H+] and [C2HO4-] ions, M\n", "#First stage of ionisation\n", "import math\n", "Kw=10**-14 #ionic product of water, M**2\n", "Ka1=6.5*10**-2 #ionisation constant of C2H2O4, M\n", "\n", "#Calculation\n", "x=math.sqrt(Ka1*InitC2H2O4) #from the definition of ionisation constant Ka1=[H+]*[C2HO4-]/[C2H2O4]=x*x/(InitC2H2O4-x), which reduces to x*x/InitC2H2O4, as x<<InitC2H2O4 (approximation)\n", "approx=x/InitC2H2O4*100 #this is the percentage of approximation taken. if it is more than 5%, we will be having higher deviation from correct value\n", "if(approx>5):\n", " x1=(-Ka1+math.sqrt((Ka1**2)-(-4*1*Ka1*InitC2H2O4)))/(2*1) \n", " x2=(-Ka1-math.sqrt((Ka1**2)-(-4*1*Ka1*InitC2H2O4)))/(2*1) \n", " if(x1>0):#as only one root is positive\n", " x=x1 \n", " else: \n", " x=x2 \n", "C2H2O4=InitC2H2O4-x #equilibrium value\n", "\n", "#Result\n", "print\"The concentration of the [H2C2O4] in the solution is :\",round(C2H2O4,3),\"M\"\n", "\n", "\n", "#Second stage of ionisation\n", "\n", "#Variable declaration\n", "InitC2HO4=x #concentration of C2HO4 from first stage of ionisation\n", "Ka2=6.1*10**-5 #ionisation constant of C2HO4-, M\n", "\n", "#Calculation\n", "#Let 'y' be the concentration of the [C2HO4-] dissociated to form [H+] and [C2HO4-] ions, M\n", "y=Ka2 #from the definition of ionisation constant Ka2=[H+]*[C2O4-2]/[C2HO4-]=(0.054+y)*y/(0.054-y), which reduces to y, as y<<InitC2HO4 (approximation)\n", "approx=y/InitC2HO4*100 #this is the percentage of approximation taken. if it is more than 5%, we will be having higher deviation from correct value\n", "if(approx>5):\n", " x1=(-Ka2+math.sqrt((Ka2**2)-(-4*1*Ka2*InitC2HO4)))/(2*1) \n", " x2=(-Ka2-math.sqrt((Ka2**2)-(-4*1*Ka2*InitC2HO4)))/(2*1) \n", " if(x1>0):#as only one root is positive\n", " y=x1 \n", " else: \n", " y=x2 \n", "C2HO4=InitC2HO4-y #from first and second stages of ionisation\n", "H=x+y #from first and second stages of ionisation\n", "C2O4=y #from the assumption\n", "OH=Kw/H # From the formula (ionic product)Kw=[H+]*[OH-]\n", "\n", "#Result\n", "print\"The concentration of the [HC2O4-] ion in the solution is :\",round(C2HO4,3),\"M\"\n", "print\"The concentration of the [H+] ion in the solution is :\",round(H,3),\"M\" \n", "print\"The concentration of the [C2O4^2-] ion in the solution is :\",C2O4,\"M\"\n", "print\"The concentration of the [OH-] ion in the solution is :%.1e\"%OH,\"M\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The concentration of the [H2C2O4] in the solution is : 0.046 M\n", "The concentration of the [HC2O4-] ion in the solution is : 0.054 M\n", "The concentration of the [H+] ion in the solution is : 0.054 M\n", "The concentration of the [C2O4^2-] ion in the solution is : 6.1e-05 M\n", "The concentration of the [OH-] ion in the solution is :1.8e-13 M\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example no:15.13,Page no:690" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "InitCH3COONa=0.15 #Initial concentration of CH3COONa solution, M\n", "InitCH3COO=InitCH3COONa #concentration of [CH3COO-] ion after dissociation of CH3COONa solution, M\n", "#Let 'x' be the equilibrium concentration of the [OH-] and [CH3COOH] ions after hydrolysis of [CH3COO-], M\n", "Kb=5.6*10**-10 #equilibrium constant of hydrolysis, M\n", "import math\n", "\n", "#Calculation\n", "x=math.sqrt(Kb*InitCH3COO) #from the definition of ionisation constant Kb=[OH-]*[CH3COOH]/[CH3COO-]=x*x/(0.15-x), which reduces to x*x/0.15, as x<<0.15 (approximation)\n", "approx=x/InitCH3COO*100 #this is the percentage of approximation taken. if it is more than 5%, we will be having higher deviation from correct value\n", "if(approx>5):\n", " x1=(-Kb+math.sqrt((Kb**2)-(-4*1*Kb*InitCH3COO)))/(2*1) \n", " x2=(-Kb-math.sqrt((Kb**2)-(-4*1*Kb*InitCH3COO)))/(2*1) \n", " if(x1>0):#as only one root is positive\n", " x=x1 \n", " else: \n", " x=x2 \n", "pOH=-math.log10(x) #since x is the conc. of [OH-] ions\n", "pH=14-pOH \n", "\n", "#Result\n", "print\"The pH of the salt solution is :\",round(pH,2)\n", "percenthydrolysis=x/InitCH3COO*100 \n", "print\"The percentage of hydrolysis of the salt solution is :\",round(percenthydrolysis,4),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pH of the salt solution is : 8.96\n", "The percentage of hydrolysis of the salt solution is : 0.0061 %\n" ] } ], "prompt_number": 51 } ], "metadata": {} } ] }