{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 9 : Multicomponent mixtures"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.1  Page No : 313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "per_ethanol = 60.\t\t\t #mole percent of ethanol in a ethanol-water system\n",
      "per_water = 40. \t\t\t #mole percent of water in a ethanol-water system\n",
      "v1 = 57.5*10**-6\t\t\t #partial molar volume of ethanol in the ethanol-water system in m**3\n",
      "rho = 849.4;\t    \t\t #density of the mixture in kg/m**3\n",
      "M_ethanol = 46*10**-3\t\t\t #molar mass of ethanol in kg/mol\n",
      "M_water = 18*10**-3 \t\t\t #molar mass of ethanol in kg/mol\n",
      "\n",
      "# Calculations\n",
      "X1 = per_ethanol/100\n",
      "X2 = per_water/100\n",
      "M = (X1*M_ethanol)+(X2*M_water)\n",
      "v = M/rho\n",
      "v2 = (v-(X1*v1))/(X2);\t\t\t \n",
      "\n",
      "# Results\n",
      "print \" The partial molar volume of water  =  %f m**3/mol\"%(v2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The partial molar volume of water  =  0.000016 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.2  Page No : 313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "V = 3.\t\t\t            #volume of mixture to be prepared in m**3\n",
      "per_ethanol = 60.\t\t\t #mole percent of ethanol in a ethanol-water system\n",
      "per_water = 40.\t\t\t #mole percent of water in a ethanol-water system\n",
      "v1 = 57.5*10**-6;\t\t\t #partial molar volume of ethanol in the ethanol-water system in m**3/mol\n",
      "v2 = 16*10**-6\t\t\t #partial molar volume of water in the ethanol-water system in m**3/mol\n",
      "v1_pure = 57.9*10**-6\t\t\t #molar volume of pure ethanol in m**3/mol\n",
      "v2_pure = 18*10**-6\t\t\t #molar volume of pure water in m**3/mol\n",
      "\n",
      "# Calculations\n",
      "X1 = per_ethanol/100;\t\t\t # Calculations of the mole fraction of ethanol (no unit)\n",
      "X2 = per_water/100;\t\t\t    # Calculations of the mole fraction of water (no unit)\n",
      "v = (X1*v1)+(X2*v2);\t\t\t # Calculations of the molar volume of the solution using Eq.(9.10) in m**3/mol\n",
      "N = V/v\t            \t\t # Calculations of the mole number of solution required in mol\n",
      "N1 = N*X1\t\t\t         # Calculations of the mole number of ethanol in solution in mol\n",
      "N2 = N*X2;\t\t\t         # Calculations of the mole number of water in solution in mol\n",
      "V1 = N1*v1_pure;\t\t\t # Calculations of the volume of pure ethanol required in m**3\n",
      "V2 = N2*v2_pure;\t\t\t # Calculations of the volume of pure water required in m**3\n",
      "\n",
      "# Results\n",
      "print \" The volume of pure ethanol required  =  %0.3f m**3\"%(V1);\n",
      "print \" The volume of pure water required  =  %0.3f m**3\"%(V2);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The volume of pure ethanol required  =  2.548 m**3\n",
        " The volume of pure water required  =  0.528 m**3\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.3  Page No : 318"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "\n",
      "# Variables\n",
      "T = 427.85;\t\t\t #temperature of n-octane vapour in K\n",
      "P = 0.215;\t\t\t #pressure of n-octane vapour in MPa\n",
      "a = 3.789;\t\t\t #van der Waals constant in Pa(m**3/mol)**2\n",
      "b = 2.37*10**-4;\t\t\t #van der Waals constant in m**3/mol\n",
      "v = 15.675*10**-3;\t\t\t #molar volume of n-octane saturated vapour taken from Example 3.8 in m**3/mol\n",
      "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "Z = (P*10**6*v)/(R*T)\t\t\t # Calculations of the compressibility factor (no unit)\n",
      "# Calculations of the fugacity coefficient (f/P) using the expression derived in Example 9.3 (no unit)\n",
      "phi = math.exp(Z-1-math.log (((P*10**6)*(v-b))/(R*T))-a/(R*T*v));\n",
      "f = (P*10**6*phi)*10**-6\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of n-octane vapour  =  %0.2f \"%(phi);\n",
      "print \" The fugacity of n-octane vapour  =  %0.4f MPa\"%(f);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of n-octane vapour  =  0.95 \n",
        " The fugacity of n-octane vapour  =  0.2043 MPa\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.5  Page No : 322"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 427.85;\t\t\t #temperature of n-octane vapour in K\n",
      "P = 0.215;\t\t\t #pressure of n-octane vapour in MPa\n",
      "Tc = 569.4;\t\t\t #critical temperature of n-octane in K\n",
      "Pc = 24.97;\t\t\t #critical pressure of n-octane in bar\n",
      "w = 0.398;\t\t\t #acentric factor (no unit)\n",
      "\n",
      "# Calculations\n",
      "Tr = T/Tc\n",
      "Pr = (P*10**6)/(Pc*10**5)\n",
      "log_phi0 = -0.032;\t\n",
      "log_phi1 = -0.025;\n",
      "phi = round(log_phi0 + 0.398*log_phi1,3)\n",
      "phie = 1.1014\n",
      "f = P*phie\n",
      "\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of n-octane vapour  =  %.3f \"%(phi);\n",
      "print \" The fugacity of n-octane vapour  =  %.4f MPa\"%(f);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of n-octane vapour  =  -0.042 \n",
        " The fugacity of n-octane vapour  =  0.2368 MPa\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.6  Page No : 327"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 339.7\t\t\t #temperature of ethylene in K\n",
      "P = 1.\t    \t\t #pressure of ethylene in bar\n",
      "Tc = 283.1\t\t\t #critical temperature of ethylene in K\n",
      "Pc = 51.17\t\t\t #critical pressure of ethylene in bar\n",
      "w = 0.089\t\t\t #acentric factor (no unit)\n",
      "\n",
      "# Calculations\n",
      "Tr = T/Tc\n",
      "Pr = P/Pc\n",
      "B0 = 0.083-(0.422/(Tr**1.6))\n",
      "B1 = 0.139-(0.172/(Tr**4.2))\n",
      "phi = math.exp((B0+(w*B1))*(Pr/Tr))\n",
      "f = P*phi\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of ethylene  =  %0.4f \"%(phi);\n",
      "print \" The fugacity of ethylene  =  %0.4f bar\"%(f);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of ethylene  =  0.9963 \n",
        " The fugacity of ethylene  =  0.9963 bar\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.7  Page No : 330"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t        \t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "Tc = [425.2,569.4];\t\t\t #critical temperature of n-butane and n-octane in K\n",
      "Pc = [37.97,24.97];\t\t\t #critical pressure of n-butane and n-octane in bar\n",
      "vc = [255.0*10**-6,486.0*10**-6];\t\t\t #critical molar volume of n-butane and n-octane in m**3/mol\n",
      "Zc = [0.274,0.256];\t        \t\t #compressibility factor of n-butane and n-octane corresponding to Tc,Pc (no unit)\n",
      "w = [0.199,0.398];\t\t\t         #acentric factor of n-butane and n-octane (no unit)\n",
      "R = 8.314               \t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "K_12 = 1-((8*((vc[0]*vc[1])**(1./2)))/((((vc[0])**(1./3))+((vc[1])**(1./3)))**3))\n",
      "Tc_12 = (((Tc[0])*(Tc[1]))**(1./2))*(1-K_12);\t\t\t \n",
      "w_12 = (w[0]+w[1])/2\n",
      "Zc_12 = (Zc[0]+Zc[1])/2\n",
      "vc_12 = ((((vc[0])**(1./3))+((vc[1])**(1./3)))/2)**3\n",
      "Pc_12 = ((Zc_12*R*Tc_12)/vc_12)*10**-6;\t\t\t \n",
      "Tr_12 = T/Tc_12\n",
      "B_12_0 = 0.083-(0.422/(Tr_12**(1.6)));\t\t\t \n",
      "B_12_1 = 0.139-(0.172/(Tr_12**(4.2)));\t\t\t \n",
      "B_12 = ((R*Tc_12)/(Pc_12*10**6))*(B_12_0+(w_12*B_12_1))\n",
      "Tr1 = T/Tc[0]\n",
      "B_11_0 = 0.083-(0.422/(Tr1**(1.6)));\t\t\t \n",
      "B_11_1 = 0.139-(0.172/(Tr1**(4.2)));\t\t\t \n",
      "B_11 = ((R*Tc[0])/(Pc[0]*10**5))*(B_11_0+(w[0]*B_11_1))\n",
      "Tr2 = T/Tc[1]\n",
      "B_22_0 = 0.083-(0.422/(Tr2**(1.6)))\n",
      "B_22_1 = 0.139-(0.172/(Tr2**(4.2)))\n",
      "B_22 = ((R*Tc[1])/(Pc[1]*10**5))*(B_22_0+(w[1]*B_22_1))\n",
      "Bm = ((y1**2)*B_11)+((2*y1*y2)*B_12)+((y2**2)*B_22);\t\t\n",
      "\n",
      "# Results\n",
      "print \" The second virial coefficient for an equimolar mixture of n-butane and n-octane at\\\n",
      " 600K  =  %.2e m**3/mol\"%(Bm);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The second virial coefficient for an equimolar mixture of n-butane and n-octane at 600K  =  -3.09e-04 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.8  Page No : 331"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "a = [1.3874,3.7890];\t\t\t #van der Waals constant of n-butane and n-octane in Pa(m**3/mol)**2\n",
      "b = [0.1163*10**-3,0.237*10**-3];\t\t\t #van der Waals constant of n-butane and n-octane in m**3/mol\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "a_m = ((y1**2)*a[0])+((2*y1*y2)*math.sqrt(a[0]*a[1]))+((y2**2)*a[1])\n",
      "b_m = (y1*b[0])+(y2*b[1])\t\t\t\n",
      "\n",
      "# Results\n",
      "print \" The van der Waals constant for an equimolar mixture of n-butane and n-octane,\\\n",
      " a_m  =  %0.4f Pam**3/mol)**2\"%(a_m);\n",
      "print \" The van der Waals constant for an equimolar mixture of n-butane and n-octane,\\\n",
      " b_m  =  %f m**3/mol\"%(b_m);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The van der Waals constant for an equimolar mixture of n-butane and n-octane, a_m  =  2.4405 Pam**3/mol)**2\n",
        " The van der Waals constant for an equimolar mixture of n-butane and n-octane, b_m  =  0.000177 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.9  Page No : 333"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t    \t    \t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16.\t    \t    \t     #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tc = [425.2,569.4];\t\t\t #critical temperature of n-butane and n-octane in K\n",
      "Pc = [37.97,24.97];\t\t\t #critical pressure of n-butane and n-octane in bar\n",
      "R = 8.314;\t\t\t        #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "Tr1 = T/Tc[0]\n",
      "Pr1 = P/Pc[0]\n",
      "Z1_0 = 0.95\n",
      "Tr2 = T/Tc[1]\n",
      "Pr2 = P/Pc[1]\n",
      "Z2_0 = 0.785\n",
      "\n",
      "Zm = (y1*Z1_0)+(y2*Z2_0)\n",
      "vm = (Zm*R*T)/(P*10**5)\n",
      "\n",
      "P1 = y1*P\n",
      "P2 = y2*P\n",
      "Pr1 = P1/Pc[0]\n",
      "Pr2 = P2/Pc[1]\n",
      "Z1_0 = 0.97\n",
      "Z2_0 = 0.91\n",
      "Zm = (y1*Z1_0)+(y2*Z2_0)\n",
      "vm_dalton = (Zm*R*T)/(P*10**5)\n",
      "\n",
      "P1 = ((Z1_0*y1*R*T)/(vm_dalton))*10**-2\n",
      "P2 = ((Z2_0*y2*R*T)/(vm_dalton))*10**-2\n",
      "Pr1 = P1/Pc[0]\n",
      "Pr2 = P2/Pc[1]\n",
      "Z1_0_new = 0.97\n",
      "Z2_0_new = 0.91\n",
      "if Z1_0_new == Z1_0 and Z2_0_new == Z2_0:\n",
      "    vm_new = vm_dalton;\t\t\t \n",
      "else:\n",
      "    Zm = (y1*Z1_0_new)+(y2*Z2_0_new)\n",
      "    vm_new = (Zm*R*T)/(P*10**5);\t\n",
      "\n",
      "# Results\n",
      "print \" The molar volume of an equimolar mixture of n-butane and n-octane found using the\\\n",
      " Amagats law of additive volumes  =  %0.4e m**3/mol\"%(vm);\n",
      "print \" The molar volume of an equimolar mixture of n-butane and\\\n",
      " n-octane found using the Daltons law of additive pressures  =  %0.2e m**3/mol\"%(vm_new);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The molar volume of an equimolar mixture of n-butane and n-octane found using the Amagats law of additive volumes  =  2.7046e-03 m**3/mol\n",
        " The molar volume of an equimolar mixture of n-butane and n-octane found using the Daltons law of additive pressures  =  2.93e-03 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.10  Page No : 334"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16.\t\t\t     #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tc = [425.2,569.4];\t\t\t #critical temperature of n-butane and n-octane in K\n",
      "Pc = [37.97,24.97];\t\t\t #critical pressure of n-butane and n-octane in bar\n",
      "R = 8.314;\t    \t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "Tcm = (y1*Tc[0])+(y2*Tc[1]);\t\t\t \n",
      "Pcm = (y1*Pc[0])+(y2*Pc[1])\n",
      "Trm = T/Tcm;\t\t\t \n",
      "Prm = P/Pcm;\t\t\t \n",
      "Zm0 = 0.9;\t\t\t \n",
      "vm = (Zm0*R*T)/(P*10.**5)\n",
      "\n",
      "# Results\n",
      "print \" The molar volume of an equimolar mixture of n-butane and n-octane using the\\\n",
      " pseudocritical properties estimated through Kays rule  =  %0.2e m**3/mol\"%(vm);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The molar volume of an equimolar mixture of n-butane and n-octane using the pseudocritical properties estimated through Kays rule  =  2.81e-03 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.11  Page No : 335"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t\t\t         #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t         #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tc = [425.2,569.4];\t\t\t #critical temperature of n-butane and n-octane in K\n",
      "Pc = [37.97,24.97];\t\t\t #critical pressure of n-butane and n-octane in bar\n",
      "vc = [255.0*10**-6,486.0*10**-6];\t\t\t #critical molar volume of n-butane and n-octane in m**3/mol\n",
      "Zc = [0.274,0.256];\t\t\t #compressibility factor of n-butane and n-octane corresponding to Tc,Pc (no unit)\n",
      "R = 8.314;\t        \t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "Tcm = (y1*Tc[0])+(y2*Tc[1]);\t\t\t \n",
      "Pcm = ((R*((y1*Zc[0])+(y2*Zc[1]))*Tcm)/((y1*vc[0])+(y2*vc[1])))*10**-5\n",
      "Trm = T/Tcm\n",
      "Prm = P/Pcm\n",
      "Zm0 = 0.89\n",
      "vm = (Zm0*R*T)/(P*10**5)\n",
      "\n",
      "# Results\n",
      "print \" The molar volume of an equimolar mixture of n-butane and n-octane at 600K\\\n",
      " and 16bar estimated using the Prausnitz-Gunn rule  =  %0.2e m**3/mol\"%(vm);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The molar volume of an equimolar mixture of n-butane and n-octane at 600K and 16bar estimated using the Prausnitz-Gunn rule  =  2.77e-03 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.12  Page No : 335"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "a_m = 2.4405\t\t\t #van der Waals constant for the mixture as determined in Example 9.8 in Pa(m**3/mol)**2\n",
      "b_m = 0.1767*10**-3\t\t #van der Waals constant for the mixture as determined in Example 9.8 in m**3/mol\n",
      "R = 8.314;\t\t\t     #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "A = (a_m*P*10**5)/(R*T)**2\n",
      "B = (b_m*P*10**5)/(R*T)\n",
      "alpha = -1-B\n",
      "beeta = A\n",
      "gaamma = -(A*B)\n",
      "p = beeta-((alpha**2)/3)\n",
      "q = ((2*alpha**3)/27)-((alpha*beeta)/3)+gaamma\n",
      "D = (((q)**2)/4)+(((p)**3)/27)\n",
      "\n",
      "if D>0 :\n",
      "    Z = (((-(q)/2)+(math.sqrt(D)))**(1./3))+(((-(q)/2)-(math.sqrt(D)))**(1./3))-(alpha/3);\t\n",
      "elif D == 0:\n",
      "    Z1 = ((-2*(q/2))**(1./3))-(alpha/3)\n",
      "    Z2 = ((q/2)**(1./3))-(alpha/3)\n",
      "    Z3 = ((q/2)**(1./3))-(alpha/3)\n",
      "    Za = [Z1 ,Z2, Z3];\n",
      "    Z = max(Za);\n",
      "else:\n",
      "    r = math.sqrt((-(p**3)/27));\t\t\t \n",
      "    theta = amath.cos((-(q)/2)*(1./r));\t\t\n",
      "    Z1 = (2*(r**(1./3))*math.cos(theta/3))-(alpha/3);\n",
      "    Z2 = (2*(r**(1./3))*math.cos(((2*math.pi)+theta)/3))-(alpha/3)\n",
      "    Z3 = (2*(r**(1./3))*math.cos(((4*math.pi)+theta)/3))-(alpha/3)\n",
      "    Za = [Z1, Z2, Z3];\n",
      "    Z = max(Za);\n",
      "\n",
      "vm = (Z*R*T)/(P*10**5)\n",
      "\n",
      "# Results\n",
      "print \" The molar volume of an equimolar mixture of n-butane and n-octane at 600K and 16bar found \\\n",
      " using the van der Waals equation of state  =  %e m**3/mol\"%(vm);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The molar volume of an equimolar mixture of n-butane and n-octane at 600K and 16bar found  using the van der Waals equation of state  =  2.780786e-03 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.13  Page No : 336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t\t    \t     #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16.\t\t    \t         #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Bm = -309.*10**-6;\t\t\t #second virial coefficient for the mixture taken from Example(9.7) in m**3/mol\n",
      "R = 8.314;\t\t\t         #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "Zm = 1+((Bm*P*10**5)/(R*T))\n",
      "vm = (Zm*R*T)/(P*10**5)\t\n",
      "\n",
      "# Results\n",
      "print \" The molar volume of an equimolar mixture of n-butane and n-octane\\\n",
      " found using the generalized virial coefficient correlation  =  %0.4e m**3/mol\"%(vm);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The molar volume of an equimolar mixture of n-butane and n-octane found using the generalized virial coefficient correlation  =  2.8088e-03 m**3/mol\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.14  Page No : 337"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "am = 2.4405\t\t\t #van der Waals constant for the mixture taken from Example 9.8 in Pa(m**3/mol)**2\n",
      "bm = 0.1767*10**-3;\t\t\t #van der Waals constant for the mixture taken from Example 9.8 in m**3/mol\n",
      "vm = 2.8933*10**-3;\t\t\t #molar volume of the mixture taken from Example 9.12 in m**3/mol\n",
      "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "dep_h = ((P*10**5*vm)-(R*T)-(am/vm))*10**-3\n",
      "dep_s = R*(math.log ((P*10**5*(vm-bm))/(R*T)))\n",
      "\n",
      "# Results\n",
      "print \" The enthalpy departure of an equimolar mixture of n-butane and n-octane  =  %0.3f kJ/mol\"%(dep_h);\n",
      "print \" The entropy departure of an equimolar mixture of n-butane and n-octane  =  %0.3f J/mol K\"%(dep_s);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The enthalpy departure of an equimolar mixture of n-butane and n-octane  =  -1.203 kJ/mol\n",
        " The entropy departure of an equimolar mixture of n-butane and n-octane  =  -1.145 J/mol K\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.15  Page No : 338"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.    \t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t    \t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tcm = 497.3;\t\t\t #pseudocritical temperature of mixture taken from Example(9.10) in K\n",
      "Pcm = 31.47;\t\t\t #pseudocritical pressure of mixture taken from Example(9.10) in bar\n",
      "Trm = 1.21;\t\t    \t #pseudoreduced temperature of the mixture taken from Example(9.10) (no unit)\n",
      "Prm = 0.51;\t\t\t     #pseudoreduced pressure of the mixture taken from Example(9.10) (no unit)\n",
      "w_butane = 0.199;\t\t #acentric factor for n-butane (no unit)\n",
      "w_octane = 0.398;\t\t #acentric factor for n-octane (no unit)\n",
      "R = 8.314;\t\t    \t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "wm = (y1*w_butane)+(y2*w_octane)\n",
      "del_h0 = 0.380;\t\t\t \n",
      "del_h1 = 0.188;\t\t\t \n",
      "del_s0 = 0.22;\t\t\t \n",
      "del_s1 = 0.18;\t\t\t \n",
      "dep_h = ((R*Tcm)*(del_h0+(wm*del_h1)))*10**-3;\t\t\t \n",
      "dep_s = (R)*(del_s0+(wm*del_s1));\t\t\t \n",
      "\n",
      "# Results\n",
      "print \" The enthalpy departure of an equimolar mixture of n-butane and n-octane using\\\n",
      " the generalized compressibility factor correlation  =  %0.3f kJ/mol\"%(dep_h);\n",
      "print \" The entropy departure of an equimolar mixture of n-butane and n-octane using \\\n",
      "the generalized compressibility factor correlation  =  %f J/mol K\"%(dep_s);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The enthalpy departure of an equimolar mixture of n-butane and n-octane using the generalized compressibility factor correlation  =  1.803 kJ/mol\n",
        " The entropy departure of an equimolar mixture of n-butane and n-octane using the generalized compressibility factor correlation  =  2.275791 J/mol K\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.16  Page No : 339"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tc = [425.2,569.4];\t\t\t #critical temperature of n-butane and n-octane in K\n",
      "Pc = [37.97,24.97];\t\t\t #critical pressure of n-butane and n-octane in bar\n",
      "w = [0.199,0.398];\t\t\t #acentric factor of n-butane and n-octane (no unit)\n",
      "Tr1 = 1.411;\t\t\t #reduced temperature of n-butane (no unit) taken from Example (9.7)\n",
      "Tr2 = 1.054;\t\t\t #reduced temperature of n-octane (no unit) taken from Example (9.7)\n",
      "Tr_12 = 1.24;\t\t\t #reduced temperature for computing the mixture interaction virial coefficient (no unit) taken from Example(9.7)\n",
      "Pc_12 = 2.978;\t\t\t #Pc_ij in MPa taken from Example(9.7)\n",
      "Tc_12 = 483.9;\t\t\t #Tc_ij in K taken from Example(9.7)\n",
      "w_12 = 0.2985;\t\t\t # w_ij (no unit) taken from Example(9.7)\n",
      "Bm = -309*10**-6;\t\t\t #second virial coefficient in m**3/mol taken from Example (9.7)\n",
      "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "dB0_dTr1 = 0.675/(Tr1**2.6);\t\t\t \n",
      "dB0_dTr2 = 0.675/(Tr2**2.6);\t\t\t \n",
      "dB1_dTr1 = 0.722/(Tr1**5.2);\t\t\t \n",
      "dB1_dTr2 = 0.722/(Tr2**5.2);\t\t\t \n",
      "dB0_dTr12 = 0.675/(Tr_12**2.6);\t\t\t \n",
      "dB1_dTr12 = 0.722/(Tr_12**5.2);\t\t\t \n",
      "dB1_dT = (R/(Pc[0]*10**5))*((dB0_dTr1)+(w[0]*(dB1_dTr1)));\t\t\t\n",
      "dB2_dT = (R/(Pc[1]*10**5))*((dB0_dTr2)+(w[1]*(dB1_dTr2)));\t\t\t\n",
      "dB12_dT = (R/(Pc_12*10**6))*((dB0_dTr12)+(w_12*(dB1_dTr12)));\t\t\t\n",
      "dBm_dT = ((y1**2)*(dB1_dT))+((2*y1*y2)*(dB12_dT))+((y2**2)*(dB2_dT));\t\n",
      "dep_h = ((Bm-(T*dBm_dT))*P*10**5)*10**-3\n",
      "dep_s = -P*10**5*(dBm_dT);\t\t\t \n",
      "\n",
      "# Results\n",
      "print \" The enthalpy departure of an equimolar mixture of n-butane and n-octane\\\n",
      " using the virial coefficient correlation  =  %f kJ/mol\"%(dep_h);\n",
      "print \" The entropy departure of an equimolar mixture of n-butane and n-octane\\\n",
      " using the virial coefficient correlation  =  %0.3f J/mol K\"%(dep_s);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The enthalpy departure of an equimolar mixture of n-butane and n-octane using the virial coefficient correlation  =  -1.908476 kJ/mol\n",
        " The entropy departure of an equimolar mixture of n-butane and n-octane using the virial coefficient correlation  =  -2.357 J/mol K\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.17  Page No : 340"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "a_m = 2.4405\t\t\t #van der Waals constant (a_m) in Pa(m**3/mol)**2 taken from Example(9.8)\n",
      "b_m = 0.1767*10**-3\t\t #van der Waals constant (b_m) in m**3/mol taken from Example(9.8)\n",
      "Z = 0.928;\t\t\t     #compressibility factor taken from Example(9.12)\n",
      "vm = 2.8933*10**-3;\t\t #molar volume of the equimolar mixture in m**3/mol taken from Example(9.12)\n",
      "R = 8.314;\t\t\t     #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "phi = math.exp(Z-1-math.log ((P*10**5*(vm-b_m))/(R*T))-(a_m/(R*T*vm)));\t\t\t\n",
      "f = phi*P;\t\t\n",
      "\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of an equimolar mixture of n-butane and n-octane\\\n",
      " using the van der Waals equation of state  =  %0.4f \"%(phi);\n",
      "print \" The fugacity of an equimolar mixture of n-butane and n-octane using the van der Waals \\\n",
      "equation of state  =  %0.2f bar\"%(f);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of an equimolar mixture of n-butane and n-octane using the van der Waals equation of state  =  0.9018 \n",
        " The fugacity of an equimolar mixture of n-butane and n-octane using the van der Waals equation of state  =  14.43 bar\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.18  Page No : 341"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16.\t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tcm = 497.3;\t\t\t #pseudocritical temperature of mixture in K taken from Example(9.10)\n",
      "Pcm = 31.47;\t\t\t #pseudocritical pressure of mixture in bar taken from Example(9.10)\n",
      "Trm = 1.21;\t\t\t #pseudoreduced temperature of the mixture (no unit) taken from Example(9.10)\n",
      "Prm = 0.51;\t\t\t #pseudoreduced pressure of the mixture (no unit) taken from Example(9.10)\n",
      "w = [0.199,0.398];\t\t\t #acentric factor of n-butane and n-octane (no unit)\n",
      "\n",
      "# Calculations\n",
      "wm = (w[0]+w[1])/2\n",
      "log_phi0 = -0.042\n",
      "log_phi1 = 0.01\n",
      "phi = 10**(log_phi0+(wm*log_phi1));\t\t\n",
      "f = P*phi;\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of an equimolar mixture of n-butane and n-octane \\\n",
      "using the pseudocritical constants method  =  %0.3f \"%(phi);\n",
      "print \" The fugacity of an equimolar mixture of n-butane and n-octane using\\\n",
      " the pseudocritical constants method  =  %f bar\"%(f);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of an equimolar mixture of n-butane and n-octane using the pseudocritical constants method  =  0.914 \n",
        " The fugacity of an equimolar mixture of n-butane and n-octane using the pseudocritical constants method  =  14.625307 bar\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.19  Page No : 341"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Bm = -309.*10**-6;\t\t\t #second virial coefficient in m**3/mol taken from Example (9.7)\n",
      "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "phi = math.exp((Bm*P*10**5)/(R*T))\n",
      "f = phi*P;\t\t\t \n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of an equimolar mixture of n-butane and n-octane using\\\n",
      " the virial coefficient correlation  =  %.3f \"%(phi);\n",
      "print \" The fugacity of an equimolar mixture of n-butane and n-octane using\\\n",
      " the virial coefficient correlation  =  %f bar\"%(f);\n",
      "\n",
      "# Note : answers in book is wrong please check manually."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of an equimolar mixture of n-butane and n-octane using the virial coefficient correlation  =  0.906 \n",
        " The fugacity of an equimolar mixture of n-butane and n-octane using the virial coefficient correlation  =  14.490290 bar\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.20  Page No : 344"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "Tc = [425.2,569.4];\t\t\t #critical temperature of n-butane and n-octane in K\n",
      "Pc = [37.97,24.97];\t\t\t #critical pressure of n-butane and n-octane in bar\n",
      "R = 8.314;\t        \t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "a1 = (0.42748*R**2*Tc[0]**2.5)/(Pc[0]*10**5*math.sqrt(T))\n",
      "a2 = (0.42748*R**2*Tc[1]**2.5)/(Pc[1]*10**5*math.sqrt(T))\n",
      "b1 = (0.08664*R*Tc[0])/(Pc[0]*10**5);\t\t\t \n",
      "b2 = (0.08664*R*Tc[1])/(Pc[1]*10**5);\t\t\t \n",
      "\n",
      "a = ((y1**2)*a1)+(2*y1*y2*math.sqrt(a1*a2))+((y2**2)*a2)\n",
      "b = (y1*b1)+(y2*b2)\n",
      "\n",
      "A = (a*P*10**5)/(R*T)**2\n",
      "B = (b*P*10**5)/(R*T);\t\n",
      "alpha = -1.\t\t\t \n",
      "beeta = A-B-B**2\n",
      "gaamma = -(A*B)\n",
      "p = beeta-(alpha**2)/3\n",
      "q = ((2*alpha**3)/27)-((alpha*beeta)/3)+gaamma\n",
      "D = (((q)**2)/4)+(((p)**3)/27)\n",
      "\n",
      "if D>0:\n",
      "    Z = ((-q/2)+(math.sqrt(D)))**(1./3)+((-q/2)-(math.sqrt(D)))**(1./3)-(alpha/3);\t\t\t #One real root given by  Eq.(3.32)\n",
      "elif D == 0:\n",
      "    Z1 = ((-2*(q/2))**(1./3))-(alpha/3)\n",
      "    Z2 = ((q/2)**(1./3))-(alpha/3);\n",
      "    Z3 = ((q/2)**(1./3))-(alpha/3);\n",
      "    Za = [Z1, Z2, Z3];\n",
      "    Z = max(Za);\n",
      "else:\n",
      "    r = math.sqrt((-(p**3)/27));\t\t\n",
      "    theta = amath.cos((-(q)/2)*(1./r));\t\n",
      "    Z1 = (2*(r**(1./3))*math.cos(theta/3))-(alpha/3);\n",
      "    Z2 = (2*(r**(1./3))*math.cos(((2*math.pi)+theta)/3))-(alpha/3)\n",
      "    Z3 = (2*(r**(1./3))*math.cos(((4*math.pi)+theta)/3))-(alpha/3);\n",
      "    Za = [Z1, Z2, Z3];\n",
      "    Z = max(Za);\n",
      "\n",
      "phi1 = math.exp(((b1/b)*(Z-1))-math.log(Z-B)+((a/(b*R*T))*((b1/b)-(2*math.sqrt(a1/a)))*math.log((Z+B)/Z)));\n",
      "\n",
      "phi2 = math.exp(((b2/b)*(Z-1))-math.log(Z-B)+((a/(b*R*T))*((b2/b)-(2*math.sqrt(a2/a)))*math.log((Z+B)/Z)));\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of n-butane in the equimolar mixture using the\\\n",
      " Redlich-Kwong Equation of state  =  %0.4f \"%(phi1);\n",
      "print \" The fugacity coefficient of n-octane in the equimolar mixture using the\\\n",
      " Redlich-Kwong Equation of state  =  %0.4f \"%(phi2);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of n-butane in the equimolar mixture using the Redlich-Kwong Equation of state  =  0.9644 \n",
        " The fugacity coefficient of n-octane in the equimolar mixture using the Redlich-Kwong Equation of state  =  0.8326 \n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.21  Page No : 346"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 600.\t\t\t #temperature of the equimolar n-butane and n-octane mixture in K\n",
      "P = 16. \t\t\t #pressure of the equimolar n-butane and n-octane mixture in bar\n",
      "B_11 = -131*10**-6\t\t\t #pure component (n-butane) second virial coefficient in m**3/mol taken from Example(9.7)\n",
      "B_22 = -577*10**-6\t\t\t #pure component (n-octane) second virial coefficient in m**3/mol taken from Example(9.7)\n",
      "B_12 = -264*10**-6\t\t\t #mixture interaction virial coefficient in m**3/mol taken from Example(9.7)\n",
      "Bm = -309*10**-6\t\t\t #second virial coefficient in m**3/mol taken from Example(9.7)\n",
      "R = 8.314       \t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "y1 = 0.5\n",
      "y2 = 0.5\n",
      "Zm = (1./2)*(1+math.sqrt(1+((4*Bm*P*10**5)/(R*T))))\n",
      "phi1 = math.exp((((2*P*10**5)/(Zm*R*T))*((y1*B_11)+(y2*B_12)))-math.log(Zm))\n",
      "phi2 = math.exp((((2*P*10**5)/(Zm*R*T))*((y1*B_12)+(y2*B_22)))-math.log(Zm))\n",
      "\n",
      "# Results\n",
      "print \" The fugacity coefficient of n-butane in the equimolar mixture using the\\\n",
      " Virial Equation of state  =  %0.3f \"%(phi1);\n",
      "print \" The fugacity coefficient of n-octane in the equimolar mixture using the Virial\\\n",
      " Equation of state  =  %f \"%(phi2);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity coefficient of n-butane in the equimolar mixture using the Virial Equation of state  =  0.976 \n",
        " The fugacity coefficient of n-octane in the equimolar mixture using the Virial Equation of state  =  0.830827 \n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 9.22  Page No : 349"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Variables\n",
      "T = 427.85  \t\t\t #temperature of n-octane vapour in K\n",
      "Psat = 0.215;\t\t\t #saturation pressure of n-octane vapour at T in MPa\n",
      "P = 1.\t\t        \t #pressure at which the fugacity of liquid n-octane is to be determined in MPa\n",
      "f_sat = 0.2368;\t\t\t #fugacity of n-octane vapour at T and Psat taken from Example(9.5) in MPa\n",
      "vl = 0.2003*10**-3;\t\t\t #molar volume of n-octane liquid at T and Psat taken from Example(3.16) in m**3/mol\n",
      "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
      "\n",
      "# Calculations\n",
      "f_l = (0.2368*math.exp((vl*(P-Psat)*10**6)/(R*T)));\t\t\t \n",
      "\n",
      "# Results\n",
      "print \" The fugacity of liquid n-octane at 427.85K and 1MPa  =  %0.4f MPa\"%(f_l);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The fugacity of liquid n-octane at 427.85K and 1MPa  =  0.2475 MPa\n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}