{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Thermodynamic properties of real gases" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.2 Page No : 275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Variables\n", "T = 427.85;\t\t\t #temperature of n-octane vapour in K\n", "P = 0.215;\t\t\t #pressure of n-octane vapour in MPa\n", "a = 3.789;\t\t\t #van der Waals constant in Pa (m**3/mol)**2\n", "b = 2.37*10**-4;\t\t\t #van der Waals constant in m**3/mol\n", "v = 15.675*10**-3;\t\t\t #volume occupied by n-octane vapour taken from Example (3.8) in m**3/mol\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "\n", "# Calculations\n", "dep_h = (P*10**6*v)-(R*T)-(a/v)\n", "dep_s = R*math.log ((P*10**6*(v-b))/(R*T));\t\n", "\n", "# Results\n", "print \" The enthalpy departure for n-octane vapour = %0.2f J/mol\"%(dep_h);\n", "print \" The entropy departure for n-octane vapour = %0.4f J/mol K\"%(dep_s);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for n-octane vapour = -428.74 J/mol\n", " The entropy departure for n-octane vapour = -0.5757 J/mol K\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3 Page No : 276" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from scipy.optimize import fsolve \n", "import math \n", "\n", "\n", "# Variables\n", "T = 100. \t\t\t #temperature of carbon dioxide in degree celsius\n", "P = 10. \t \t\t #pressure of carbon dioxide in MPa\n", "A0 = 0.5073;\t\t\t #Beattie-Bridgman constant for carbon dioxide in (Pa m**3)/mol**2\n", "B0 = 104.76*10**-6;\t\t\t #Beattie-Bridgman constant for carbon dioxide in m**3/mol\n", "a = 71.32*10**-6;\t\t\t #Beattie-Bridgman constant for carbon dioxide in m**3/mol\n", "b = 72.35*10**-6;\t\t\t #Beattie-Bridgman constant for carbon dioxide in m**3/mol\n", "C = 660.0;\t\t \t #Beattie-Bridgman constant for carbon dioxide in (m**3 K**3)/mol\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "\n", "# Calculations\n", "\n", "T = T+273.15\n", "A1 = (R*T) \n", "A2 = (B0*R*T)-A0-((C*R)/T**2);\t\t\t \n", "A3 = (a*A0)-(b*B0*R*T)-((B0*C*R)/T**2);\t\n", "A4 = ((b*C*B0*R)/T**2);\t\t\t \n", "vguess = 0.01\n", "tolerance = 1e-6\n", "\n", "def solver_func(vi):\n", " return (P*10**6)-((A1/vi)+(A2/vi**2)+(A3/vi**3)+(A4/vi**4))\n", "\n", "v = fsolve(solver_func,vguess)\n", "\n", "Z = (P*10**6*v)/(R*T)\n", "\n", "dep_h = (((B0*R*T)-(2*A0)-((4*C*R)/(T**2)))*(1./v))+((((3./2)*a*A0)-(b*B0*R*T)-((5*B0*C*R)/(2*(T**2))))*(1./(v**2)))+((2*b*C*B0*R)/((T**2)*(v**3)));\n", "\n", "# Results\n", "print \" Molar volume of CO2 at %0.f MPa and %0.2f K = %.2e m**3/mol \"%(P,T,v);\n", "print \" The compressibility factor = %.4f \"%(Z);\n", "print \" The enthalpy departure for carbon dioxide using the Beattie-Bridgman equation of state = %.f J/mol\"%(dep_h);\n", "\n", "# Note: Answer is different because of rounding off error. Please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Molar volume of CO2 at 10 MPa and 373.15 K = 2.33e-04 m**3/mol \n", " The compressibility factor = 0.7518 \n", " The enthalpy departure for carbon dioxide using the Beattie-Bridgman equation of state = -3210 J/mol\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.4 Page No : 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variables\n", "T = 353.15 \t \t\t #temperature of carbon dioxide in degree celsius\n", "P = 10. \t \t \t #pressure of carbon dioxide in MPa\n", "B0 = 104.76*10**-6;\t\t\t #Beattie-Bridgman constant for carbon dioxide in m**3/mol\n", "b = 72.35*10**-6;\t\t\t #Beattie-Bridgman constant for carbon dioxide in m**3/mol\n", "C = 660.0;\t\t\t #Beattie-Bridgman constant for carbon dioxide in (m**3 K**3)/mol\n", "R = 8.314 \t\t\t #universal gas constant in J/molK\n", "v = 0.233*10**-3 \t\t #volume calculated in Example (8.3) in m**3/mol\n", "Z = 0.751;\t\t\t #compressibility factor as calculated in Example (8.3) (no unit)\n", "\n", "# Calculations\n", "A1 = ((B0*R)+((2*C*R)/(T**3)))\n", "dep_s = (R*math.log (Z))-(A1*(1./v))+(((b*B0*R)-((2*C*B0*R)/(T**3)))*(1./(2*(v**2))))+((2*b*C*B0*R)/(3*(T**3)*(v**3)));\n", "\n", "# Results\n", "print \" The entropy departure for carbon dioxide using the Beattie-\\\n", "Bridgman equation of state = %.f J/mol K\"%(dep_s);\n", "\n", "# Note: Answer is varies because of rounding off error. Please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The entropy departure for carbon dioxide using the Beattie-Bridgman equation of state = -7 J/mol K\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.5 Page No : 281" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variables\n", "T = 427.85;\t\t\t #temperature of n-octane vapour in K\n", "P = 0.215;\t\t\t #pressure of n-octane vapour in MPa\n", "a = 4.426;\t\t\t #Redlich-Kwong constant taken from Example(3.9) in (m**6 Pa mol**-2)\n", "b = 164.3*10**-6;\t\t\t #Redlich-Kwong constant taken from Example(3.9) in m**3/mol\n", "Z = 0.9308;\t\t\t #compressibility factor taken from Example(3.9) (no unit)\n", "B = 9.9306*10**-3;\t\t\t #value of B, used in the Cardan's method in Example (3.9)\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "\n", "# Calculations\n", "dep_h = (R*T*(Z-1))-(((3*a)/(2*b))*math.log ((Z+B)/Z))\n", "dep_s = (R*math.log(Z-B))-((a/(2*b*T))*math.log((Z+B)/Z))\n", "\n", "# Results\n", "print \" The enthalpy departure for n-octane vapour using the generalized Redlich\\\n", "-Kwong equation of state = %0.2f J/mol\"%(dep_h);\n", "print \" The entropy departure for n-octane vapour using the generalized Redlich\\\n", "-Kwong equation of state = %0.4f J/mol K\"%(dep_s);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for n-octane vapour using the generalized Redlich-Kwong equation of state = -674.98 J/mol\n", " The entropy departure for n-octane vapour using the generalized Redlich-Kwong equation of state = -1.0195 J/mol K\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.6 Page No : 281" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variables\n", "T = 427.85\t\t\t #temperature of n-octane vapour in K\n", "P = 0.215\t\t\t #pressure of n-octane vapour in MPa\n", "S = 1.0786\t\t\t #constant used in the SRK equation of state,from Example(3.15)\n", "alpha = 1.3079\t\t #constant used in the SRK equation of state,from Example(3.15)\n", "a = 5.0180\t\t\t #constant used in the SRK equation of state,from Example(3.15) in (m**6 Pa mol**-2)\n", "b = 1.6426*10**-4\t\t\t #constant used in the SRK equation of state,from Example(3.15) in m**3/mol\n", "B = 9.9282*10**-3\t\t\t #factor used in the Cardan's method for solving the SRK equation of state,from Example(3.15) (no unit)\n", "Z = 0.9191;\t\t\t #compressibility factor taken from Example (3.15) (no unit)\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "Tc = 569.4;\t\t\t #critical temperature of n-octane in K\n", "\n", "# Calculations\n", "da_dT = (-a*S)/(math.sqrt (alpha*T*Tc))\n", "dep_h = (R*T*(Z-1))+((((T*da_dT)-a)/b)*math.log ((Z+B)/Z));\t\t\t \n", "dep_s = (R*math.log (Z-B))+((1./b)*(da_dT)*math.log ((Z+B)/Z));\t\t\n", "\n", "# Results\n", "print \" The enthalpy departure for n-octane vapour using the SRK equation of state = %f J/mol\"%(dep_h);\n", "print \" The entropy departure for n-octane vapour using the SRK equation of state = %0.4f J/mol K\"%(dep_s);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for n-octane vapour using the SRK equation of state = -884.335509 J/mol\n", " The entropy departure for n-octane vapour using the SRK equation of state = -1.4188 J/mol K\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.7 Page No : 282" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variables\n", "T = 427.85\t\t\t #temperature of n-octane vapour in K\n", "P = 0.215\t\t\t #pressure of n-octane vapour in MPa\n", "S = 0.9457\t\t\t #constant used in the Peng-Robinson equation of state,from Example(3.16)\n", "alpha = 1.2677\t\t #constant used in the Peng-Robinson equation of state,from Example(3.16)\n", "a = 5.2024\t\t\t #constant used in the Peng-Robinson equation of state,from Example(3.16) in (m**6 Pa mol**-2)\n", "b = 1.4750*10**-4\t #constant used in the Peng-Robinson equation of state,from Example(3.16) in m**3/mol\n", "B = 8.9151*10**-3\t #factor used in the Cardan's method for solving the Peng-Robinson equation of state,from Example(3.16) (no unit)\n", "Z = 0.9151\t\t\t #compressibility factor taken from Example (3.16) (no unit)\n", "R = 8.314\t\t\t #universal gas constant in J/molK\n", "Tc = 569.4\t\t\t #critical temperature of n-octane in K\n", "\n", "# Calculations\n", "da_dT = (-a*S)/(math.sqrt (alpha*T*Tc))\n", "\n", "dep_h = (R*T*(Z-1))+(((((T*da_dT)-a)/(2*math.sqrt(2)*b)))*(math.log ((Z+(B*(1+math.sqrt (2))))/(Z+(B*(1-math.sqrt (2)))))));\n", "dep_s = (R*math.log (Z-B))+((1./(2*math.sqrt (2)*b))*(da_dT)*(math.log ((Z+(B*(1+math.sqrt (2))))/(Z+(B*(1-math.sqrt (2)))))));\t\t\n", "\n", "# Results\n", "print \" The enthalpy departure for n-octane vapour using the Peng-Robinson \\\n", " equation of state = %0.1f J/mol\"%(dep_h);\n", "print \" The entropy departure for n-octane vapour using the Peng-Robinson\\\n", " equation of state = %0.3f J/mol K\"%(dep_s);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for n-octane vapour using the Peng-Robinson equation of state = -890.1 J/mol\n", " The entropy departure for n-octane vapour using the Peng-Robinson equation of state = -1.398 J/mol K\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.8 Page No : 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = 339.7\t\t\t #temperature of ethylene in K\n", "P = 30.7\t\t\t #pressure of ethylene in bar\n", "Tc = 283.1\t\t\t #critical temperature of ethylene in K\n", "Pc = 51.17\t\t\t #critical pressure of ethylene in bar\n", "w = 0.089\t\t\t #acentric factor (no unit)\n", "R = 8.314\t\t\t #universal gas constant in J/molK\n", "\n", "# Calculations\n", "Pr = P/Pc\n", "Tr = T/Tc\n", "del_h0 = 0.45\n", "del_h1 = 0.18\n", "del_s0 = 0.26\n", "del_s1 = 0.20\n", "dep_h = ((del_h0)+(w*del_h1))*R*Tc\n", "dep_s = ((del_s0)+(w*del_s1))*R;\t\n", "\n", "# Results\n", "print \" The enthalpy departure for ethylene using the Edmister charts = %0.3f J/mol\"%(dep_h);\n", "print \" The entropy departure for ethylene using the Edmister charts = %0.4f J/mol K\"%(dep_s);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for ethylene using the Edmister charts = 1096.868 J/mol\n", " The entropy departure for ethylene using the Edmister charts = 2.3096 J/mol K\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.9 Page No : 297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = 339.7;\t\t\t #temperature of ethylene in K\n", "P = 30.7;\t\t\t #pressure of ethylene in bar\n", "Tc = 283.1;\t\t\t #critical temperature of ethylene in K\n", "Pc = 51.17;\t\t\t #critical pressure of ethylene in bar\n", "w = 0.089;\t\t\t #acentric factor (no unit)\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "\n", "# Calculations\n", "Pr = P/Pc\n", "Tr = T/Tc\n", "del_h0 = 0.474\n", "del_h1 = 0.232\n", "del_s0 = 0.277\n", "del_s1 = 0.220\n", "dep_h = ((del_h0)+(w*del_h1))*R*Tc\n", "dep_s = ((del_s0)+(w*del_s1))*R\n", "\n", "# Results\n", "print \" The enthalpy departure for ethylene using the Lee-Kesler data = %f J/mol\"%(dep_h);\n", "print \" The entropy departure for ethylene using the Lee-Kesler data = %f J/mol K\"%(dep_s);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for ethylene using the Lee-Kesler data = 1164.249733 J/mol\n", " The entropy departure for ethylene using the Lee-Kesler data = 2.465766 J/mol K\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.10 Page No : 299" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = 339.7;\t\t\t #temperature of ethylene in K\n", "P = 1. \t\t\t #pressure of ethylene in bar\n", "Tc = 283.1;\t\t\t #critical temperature of ethylene in K\n", "Pc = 51.17;\t\t\t #critical pressure of ethylene in bar\n", "w = 0.089;\t\t\t #acentric factor (no unit)\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "\n", "# Calculations\n", "Pr = P/Pc\n", "Tr = T/Tc\n", "dep_h = R*Tc*Pr*((0.083-(1.097/(Tr**1.6)))+(w*(0.139-(0.894/(Tr**4.2)))))\n", "dep_s = -Pr*R*((0.675/(Tr**2.6))+(w*(0.722/(Tr**5.2))));\t\t\t \n", "\n", "# Results\n", "print \" The enthalpy departure for ethylene using the generalized virial coefficient \\\n", "correlation = %f J/mol\"%(dep_h);\n", "print \" The entropy departure for ethylene using the generalized virial coefficient \\\n", "correlation = %e J/mol K\"%(dep_s);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy departure for ethylene using the generalized virial coefficient correlation = -35.011078 J/mol\n", " The entropy departure for ethylene using the generalized virial coefficient correlation = -7.232682e-02 J/mol K\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.11 Page No : 299" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "import cmath\n", "\n", "# Variables\n", "T = 427.85\t\t\t #temperature of n-octane vapour in K\n", "P = 0.215\t\t\t #pressure of n-octane vapour in MPa\n", "T_ref = 0.\t\t\t #reference state saturated liquid temperature in degree celsius\n", "h0 = 0. \t\t\t #enthalpy of saturated liquid in J/mol (reference state)\n", "s0 = 0. \t\t\t #entropy of saturated liquid in J/molK (reference state)\n", "Tc = 569.4;\t\t\t #critical temperature of n-octane in K\n", "Pc = 24.97;\t\t\t #critical pressure of n-octane in bar\n", "w = 0.398;\t\t\t #acentric factor (no unit)\n", "NBP = 398.8;\t\t\t #normal boiling point of n-octane (saturated liquid)\n", "Cp = [6.907,741.770*10**-3,-397.204*10**-6,82.629*10**-9,0]\t\t\t #coefficients to compute the isobaric molar heat capacity, where Cp = a+bT+cT**2+dT**3+eT**-2,in J/molK\n", "S = 0.9457;\t\t\t #value of S taken from Example (3.16)\n", "b = 1.4750*10**-4;\t\t\t #value of the Peng-Robinson constant in m**3/mol from Example (3.16)\n", "v = 15.14*10**-3;\t\t\t #volume of saturated vapour in m**3/mol from Example (3.16)\n", "R = 8.314;\t\t\t #universal gas constant in J/molK\n", "P_amb = 101.325;\t\t\t #pressure at which the normal boiling point is computed in kPa\n", "\n", "# Calculations\n", "\n", "#Step a: Vaporization of n-octane at T_ref\n", "T_ref = T_ref+273.15\n", "\n", "del_hv = ((R*math.log ((Pc*10**5)/(P_amb*10**3)))/((1./NBP)-(1./Tc)))*10**-3;\n", "P2 = P_amb* math.exp (((del_hv*10**3)/(R))*((1./NBP)-(1./T_ref)))\n", "Tbr = NBP/Tc\n", "\t\t\t\n", "del_hvn = (1.093*R*Tc*(Tbr*(((math.log (Pc))-1.013)/(0.930-Tbr))))*10**-3;\n", "Tr2 = T_ref/Tc\n", "\n", "del_ha = ((del_hvn*10**3)*(((1-Tr2)/(1-Tbr))**(0.38)))*10**-3;\n", "del_sa = (del_ha*10**3)/T_ref\n", "\n", "alpha = (1+(S*(1-math.sqrt (Tr2))))**2\n", "a = (0.45724*(R**2)*(Tc**2)*alpha)/(Pc*10**5)\n", "\n", "A = (a*P2*10**3)/(R*T_ref)**2\n", "B = (b*P2*10**3)/(R*T_ref);\t\n", "alpha = -1+B;\t\t\t \n", "beeta = A-(2*B)-(3*B**2);\n", "gaamma = -(A*B)+(B**2)+(B**3);\t\t\t \n", "p = beeta-(alpha**2)/3;\t\t\t \n", "q = ((2*alpha**3)/27)-((alpha*beeta)/3)+gaamma\n", "D = (((q)**2)/4)+(((p)**3)/27);\t\t\t\n", "\n", "if D>0:\n", " Z = ((-q/2)+(math.sqrt(D)))**(1./3)+((-q/2)-(math.sqrt(D)))**(1./3)-(alpha/3)\n", "elif D == 0:\n", " Z1 = ((-2*(q/2))**(1./3))-(alpha/3)\n", " Z2 = ((q/2)**(1./3))-(alpha/3);\n", " Z3 = ((q/2)**(1./3))-(alpha/3);\n", " Za = [Z1 ,Z2, Z3];\n", " Z = max(Za);\n", "else:\n", " theta = math.cos((-(q)/2)*(math.sqrt((-27)/(((p)**3)))))\n", " r = math.sqrt((-(p**3)/27));\t\t\t \n", " Z1 = (2*(r**(1./3))*math.cos(theta/3))-(alpha/3);\n", " Z2 = (2*(r**(1./3))*math.cos(((2*math.pi)+theta)/3))-(alpha/3)\n", " Z3 = (2*(r**(1./3))*math.cos(((4*math.pi)+theta)/3))-(alpha/3)\n", " Za = [Z1, Z2, Z3];\n", " Z = max(Za);\n", "da_dT = (-a*S)/(cmath.sqrt(alpha*T_ref*Tc));\t\t\t \n", "\n", "dep_h = (R*T_ref*(Z-1))+(((((T_ref*da_dT)-a)/(2*math.sqrt(2)*b)))*(math.log ((Z+(B*(1+math.sqrt (2))))/(Z+(B*(1-math.sqrt (2)))))));\n", "dep_s = (R*math.log (Z-B))+((1./(2*math.sqrt (2)*b))*(da_dT)*(math.log ((Z+(B*(1+math.sqrt (2))))/(Z+(B*(1-math.sqrt (2)))))));\n", "del_hb = -dep_h\n", "del_sb = -dep_s\n", "\n", "del_hc = ((Cp[0]*(T-T_ref))+(((Cp[1])/2)*((T**2)-(T_ref**2)))+(((Cp[2])/3)*((T**3)-(T_ref**3)))+(((Cp[3])/4)*((T**4)-(T_ref**4)))-((Cp[4])*((1./T)-(1./T_ref))))*10**-3;\n", "del_sc = ((Cp[0])*math.log (T/T_ref))+((Cp[1])*(T-T_ref))+(((Cp[2])/2)*((T**2)-(T_ref**2)))+(((Cp[3])/3)*((T**3)-(T_ref**3)))-(((Cp[4])/2)*((1./(T**2))-(1./(T_ref**2))))-(R*math.log((P*10**6)/(P2*10**3)))\t\t\t \n", "\n", "Z = 0.9151\n", "da_dT = (-a*S)/(cmath.sqrt (alpha*T*Tc));\t\t\t \n", "\n", "del_hd = (R*T*(Z-1))+((((T*da_dT)-a)/(2*math.sqrt(2)*b))*math.log ((Z+(B*(1+math.sqrt (2))))/(Z+(B*(1-math.sqrt (2))))));\n", "\n", "del_sd = (R*math.log (Z-B))+((1./(2*math.sqrt(2)*b))*(da_dT)*(math.log ((Z+(B*(1+math.sqrt (2))))/(Z+(B*(1-math.sqrt (2)))))));\n", "\n", "h = h0+del_ha+(del_hb*10**-3)+del_hc+(del_hd*10**-3)\n", "s = s0+del_sa+del_sb+del_sc+del_sd;\t\t\t \n", "\n", "# Results\n", "print \" The enthalpy of n-octane vapour at 427.85K and 0.215MPa using the Peng-Robinson equation\\\n", " of state =\",h, \"kJ/mol\"\n", "print \" The entropy of n-octane vapour at 427.85K and 0.215MPa using the Peng-Robinson\\\n", " equation of state = \",s,\" J/mol K\"\n", "print \" The volume of n-octane vapour at 427.85K and 0.215MPa using the Peng-Robinson\\\n", " equation of state =\",v,\" m**3/mol\"\n", "\n", "\n", "#THE VOLUME OF n-OCTANE VAPOUR AS COMPUTED IN EXAMPLE 3.16 IS 15.14*10**-3 m**3/mol AND NOT \n", "#15.41*10**-3 m**3/mol AS PRINTED IN THIS EXAMPLE IN THE TEXTBOOK.\n", "# So ANSWER WOULD BE DIFFERENT\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The enthalpy of n-octane vapour at 427.85K and 0.215MPa using the Peng-Robinson equation of state = (76.8343786515+0.000518888144511j) kJ/mol\n", " The entropy of n-octane vapour at 427.85K and 0.215MPa using the Peng-Robinson equation of state = (207.222784016-0.000740500199878j) J/mol K\n", " The volume of n-octane vapour at 427.85K and 0.215MPa using the Peng-Robinson equation of state = 0.01514 m**3/mol\n" ] } ], "prompt_number": 20 } ], "metadata": {} } ] }