{ "metadata": { "name": "", "signature": "sha256:ef87408e4a8aa5645fed756dcb555fc2d4a33d3c6244d485bc79468e75ba8f65" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 : Conservation of energy - First law of Thermodynamics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1 page : 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "# Variables\n", "mass = 4000. \t\t\t#kg/m**2\n", "Patm = 1.013*10**5 \t\t\t#pa\n", "g = 9.807\n", "M = 28.\n", "R = 8.3143*10**3\n", "T = 303. \t\t\t#K\n", "P1 = 800.*10**3 \t\t\t#pa\n", "\t\t\t\n", "# Calculations\n", "Ps = Patm+mass*g\n", "n = 1/M\n", "V1 = n*R*T/P1\n", "W = Ps*(2*V1)\n", "\t\t\t\n", "# Results\n", "print \"Work done on the surroundings = %d J\"%(W)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done on the surroundings = 31609 J\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2a page : 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "# Variables\n", "t1 = 1000. \t\t\t#K\n", "p1 = 20. \t\t\t#Mpa\n", "p2 = 10. \t\t\t#Mpa\n", "ti = 600. \t\t\t#K\n", "t2 = 700. \t\t\t#K\n", "v1 = 0.02188\n", "vi = 0.02008\n", "v2 = 0.02825\n", "Ei = 2617.5\n", "E2 = 2893.1\n", "E1 = 3441.8\n", "x = 0.22\n", "m = 1. \t\t\t#kg\n", "cp = 4.186\n", "t3 = 639. \t\t\t#K\n", "H3 = 2409.5\n", "H1 = 3879.3\n", "\t\t\t\n", "# Calculations\n", "Tf = ti+ (v1-vi)/(v2-vi) *(t2-ti)\n", "Ef = Ei+ x*(E2-Ei)\n", "Q1 = Ef-E1\n", "\t\t\t\n", "# Results\n", "print (\"part a\")\n", "print \"Heat transfer = %.1f kJ/kg\"%(Q1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part a\n", "Heat transfer = -763.7 kJ/kg\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2b page : 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "# Variables\n", "t1 = 1000. \t\t\t#K\n", "p1 = 20. \t\t\t#Mpa\n", "p2 = 10. \t\t\t#Mpa\n", "ti = 600. \t\t\t#K\n", "t2 = 700. \t\t\t#K\n", "v1 = 0.02188\n", "vi = 0.02008\n", "v2 = 0.02825\n", "Ei = 2617.5\n", "E2 = 2893.1\n", "E1 = 3441.8\n", "x = 0.22\n", "m = 1. \t\t\t#kg\n", "cp = 4.186\n", "t3 = 639. \t\t\t#K\n", "H3 = 2409.5\n", "H1 = 3879.3\n", "\t\t\t\n", "# Calculations\n", "Tf = ti+ (v1-vi)/(v2-vi) *(t2-ti)\n", "Hf = H3 - m*cp*(t3-Tf)\n", "Q2 = Hf-H1\n", "\t\t\t\n", "# Results\n", "print (\"part b\")\n", "print \"Heat transfer = %.f kJ/kg\"%(Q2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part b\n", "Heat transfer = -1541 kJ/kg\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 page : 63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "# Variables\n", "p1 = 2.181\n", "p2 = 2.637\n", "p3 = 3.163\n", "vg1 = 0.09150\n", "vg2 = 0.07585\n", "vg3 = 0.06323\n", "vl1 = 0.00118\n", "vl2 = 0.00120\n", "vl3 = 0.00122\n", "M = 18.\n", "t1 = 490. \t\t\t#K\n", "t2 = 500. \t\t\t#K\n", "t3 = 510. \t\t\t#K\n", "R = 8.3143\n", "\t\t\t\n", "# Calculations\n", "lam1 = (p2-p1)*10**3 *M*(vg2-vl2) *2.154/ math.log(t3/t1)\n", "lam2 = math.log(p3/p1) *R/(1/t1 -1/t3)\n", "err = (lam2-lam1)/lam1\n", "\t\t\t\n", "# Results\n", "print \"latent heat umath.sing calyperon equation = %d kJ/kmol\"%(lam1)\n", "print \" latent heat umath.sing the clasius calyperon equation = %d kJ/kmol\"%(lam2)\n", "print \" Error = %d percent\"%(err*100)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "latent heat umath.sing calyperon equation = 32990 kJ/kmol\n", " latent heat umath.sing the clasius calyperon equation = 38618 kJ/kmol\n", " Error = 17 percent\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 page : 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "# Variables\n", "h1 = 147360 \n", "h2 = 29790\n", "\t\t\t\n", "# Calculations\n", "Hr = h1-h2\n", "\t\t\t\n", "# Results\n", "print \"heat of reaction = %d kJ/kmol\"%(Hr)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "heat of reaction = 117570 kJ/kmol\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 page : 73" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "# Variables\n", "R = 8314.3\n", "T = 700. \t\t\t#K\n", "T2 = 437.5 \t\t\t#K\n", "T3 = 350. \t\t\t#K\n", "T4 = T3\n", "p2 = 0.552 \t\t\t#Mpa\n", "p1 = 2.758 \t\t\t#Mpa\n", "cp = 29.3\n", "R0 = 8.3\n", "k = 1.4\n", "\t\t\t\n", "# Calculations\n", "cv = cp-R0\n", "Q1 = -R*T*math.log(p2/p1)\n", "Q2 = cv*(T2-T)\n", "dH2 = cp*(T2-T)\n", "p3 = p2*T3/T2\n", "p3 = 0.345\n", "Q3 = cp*(T3-T2)\n", "dE3 = cv*(T3-T2)\n", "W3 = Q3-dE3\n", "T5 = T4*(p1/p3)**((k-1)/k)\n", "dH4 = cp*(T5-T4)\n", "W4 = -cv*(T5-T4)\n", "Q5 = cp*(T-T5)\n", "dE5 = cv*(T-T5)\n", "W5 = Q5-dE5\n", "\t\t\t\n", "# Results\n", "print (\"part a isothermal\")\n", "print \"dH = 0, dE = 0, Q = W = %.f kJ/kmol\"%(Q1/10**3)\n", "print (\"part 2 isometric\")\n", "print \"dH = %d kJ/kmol, W = 0, Q = dE = %.f kJ/kmol\"%(dH2,Q2)\n", "print (\"part 3 isobaric\")\n", "print \"dE = %.f kJ/kmol, W = %d kJ/kmol, Q = dH = %.f kJ/kmol\"%(dE3,W3,Q3)\n", "print (\"part 4 adiabatic\")\n", "print \"dH = %d kJ/kmol, W = -dE = %d kJ/kmol, Q = 0 kJ/kmol\"%(dH4,W4)\n", "print (\"part 5 isobaric\")\n", "print \"dE = %d kJ/kmol, W = %d kJ/kmol, Q = dH = %d kJ/kmol\"%(dE5,W5,Q5)\n", "print (\"The graph cannot be plotted since volume axis values are not known. In the textbook it is randomly drawn to be of that shape.\")\n", "\n", "# rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part a isothermal\n", "dH = 0, dE = 0, Q = W = 9363 kJ/kmol\n", "part 2 isometric\n", "dH = -7691 kJ/kmol, W = 0, Q = dE = -5512 kJ/kmol\n", "part 3 isobaric\n", "dE = -1838 kJ/kmol, W = -726 kJ/kmol, Q = dH = -2564 kJ/kmol\n", "part 4 adiabatic\n", "dH = 8317 kJ/kmol, W = -dE = -5961 kJ/kmol, Q = 0 kJ/kmol\n", "part 5 isobaric\n", "dE = 1388 kJ/kmol, W = 548 kJ/kmol, Q = dH = 1937 kJ/kmol\n", "The graph cannot be plotted since volume axis values are not known. In the textbook it is randomly drawn to be of that shape.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 page : 76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "from matplotlib.pylab import xlabel,ylabel,plot\n", "import math \n", "\t\t\t\n", "# Variables\n", "p = [2.75, 0.5, 0.31, 0.31, 2.75]\n", "v = [116.17, 654.8, 654.8, 597, 110.65]\n", "t = [440, 440, 170, 140, 410]\n", "h = [3325, 3356, 2802.6, 2738.5, 3257.7]\n", "e = [3005.6, 3028.6, 2602.6, 2553.6, 2953.4]\n", "\t\t\t\n", "# Calculations\n", "dh1 = h[1] - h[0]\n", "de1 = e[1] - e[0]\n", "q2 = e[2] - e[1]\n", "dh2 = h[2] - h[1]\n", "dh3 = h[3] - h[2]\n", "de3 = e[3] - e[2]\n", "W3 = p[2] *(v[3] - v[2])\n", "Q3 = de3+W3\n", "dh4 = h[4] -h[3]\n", "de4 = e[4] -e[3]\n", "dh5 = h[0] - h[4]\n", "de5 = e[0] - e[4]\n", "W5 = p[4] *(v[0] - v[4])\n", "q5 = de5+W5\n", "\t\t\t\n", "# Results\n", "print \"In case 1 , dH = %.1f kJ/kg dE = %.1f kJ/kg W = pDv kJ/kg Q = %.1f + W kJ/kg\"%(dh1,de1,de1)\n", "print \" In case 2, W = 0 kJ/kg Q = dE = %d kJ/kg dH = %.1f kJ/kg\"%(q2,dh2)\n", "print \" In case 3, dH = %.1f kJ/kg dE = %.1f kJ/kg W = %.1f kJ/kg Q = %.1f kJ/kg\"%(dh3,de3,W3,Q3)\n", "print \" In case 4, Q = 0 kJ/kg dH = %.1f kJ/kg dE = -W = %.1f kJ/kg\"%(dh4,de4)\n", "print \" In case 5, dH = %.1f kJ/kg dE = %.1f kJ/kg W = %.1f kJ/kg Q = %.1f kJ/kg\"%(dh5,de5,W5,q5)\n", "xlabel(\"Volume (m**3/kg)\")\n", "ylabel(\"Pressure (Mpa)\")\n", "plot(v,p)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "In case 1 , dH = 31.0 kJ/kg dE = 23.0 kJ/kg W = pDv kJ/kg Q = 23.0 + W kJ/kg\n", " In case 2, W = 0 kJ/kg Q = dE = -426 kJ/kg dH = -553.4 kJ/kg\n", " In case 3, dH = -64.1 kJ/kg dE = -49.0 kJ/kg W = -17.9 kJ/kg Q = -66.9 kJ/kg\n", " In case 4, Q = 0 kJ/kg dH = 519.2 kJ/kg dE = -W = 399.8 kJ/kg\n", " In case 5, dH = 67.3 kJ/kg dE = 52.2 kJ/kg W = 15.2 kJ/kg Q = 67.4 kJ/kg\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ "[<matplotlib.lines.Line2D at 0x10a39acd0>]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvhNACKiJNikREICC9SpGgKIqKqCxiXVEU\nFV9dEAVsgBUbCBZgRQQrKCgooiguA4rSDKETFhYVXMTOClgo8/5xn5iYTJLJMGfOzOT3ua65nHJy\nznNWd+65n3I/ICIiIiIiIiIiIiIiIiIiIiIiIiIiknDKAcuBTGAj8HABx00A/g2sAVpGp2kiIuKl\nFOefycAyoHOez3sC853n7Z1jRETEY0kun3+/888yQCngxzyf9wKmO8+XA5WA6i63SUREiuB2cEjC\nupV2A4uw7qXcagE7cr3eCdR2uU0iIlIEt4PDYaAF9oV/GpAe5BhfntcBl9skIiJFSI7SdfYA7wJt\nAH+u978G6uR6Xdt57y9OOumkwLZt29xsn4hIItoG1A/nD93MHKpgYwgA5YEzgdV5jnkbuMp53gH4\nGeuC+ott27YRCAQS9jFy5EjP26B70/3p/hLvAZwU7he4m5nD8dhgc5LzeAn4CBjofD4Zm6nUE9gK\n7AP6u9geEREJkZvBYR3QKsj7k/O8vtnFNoiISBjcHpCWEKSnp3vdBNck8r2B7i/eJfr9HYm8M4Vi\nVcDpPxMRkRD5fD4I83temYOIiOSj4CAiIvkoOIiISD4KDiIiko+Cg4iI5KPgICIi+Sg4iIhIPgoO\nIiKSj4KDiIjko+AgIiL5KDiIiEg+cRscli2DvXvt+eefw/ffe9seEZFEErfBYcYMaNYM/H54/31I\nS4PHH4fffvO6ZSIi8S9ug8OTT8JTT8EVV8A331iAWLLEgsSMGaAiriIi4Yv7kt0//QT/+Ad88gm8\n8AIcOgRDh0Lp0vDEE9CpU5RbKiISI0p0ye5jj4Xp0y2TuOwymDMHFi+GQYPg0kuhTx/Yts3rVoqI\nxJe4Dw7Zzj8f1q6FH3+EFi0gNRU2b4aWLaFdOxg82D4TEZGiJUxwAKhcGV56CcaOhX794K67LChs\n3Ai//gqNGsG4cfD77163VEQktiVUcMjWqxesWwfffWdZxNatMGmSzWxauBAaN4ZZszRoLSJSkLgf\nkC7KnDlw002WSTzwAKSkWIAYOhQqVLBB6w4dItxaEZEYUKIHpIvSu7dlEd98Y1nEp59C9+62cG7A\nABuw7tcPtm/3uqUiIrEj4YMDwHHHwauvwpgxcPHFljX88Qf07w9ZWdbN1KYN3H67TY0VESnpSkRw\nyHbRRZZF7Nxps5g++8y6lu69F9avh59/hoYNYcIECx4iIiVVwo85FGT2bLj5ZrjySrjvPihXzt5f\nt84yiP/8Bx55xLqlfPHyv5KISC5HMuYQL197EQ8OYLOZBg2ygDBtGrRvn/PZggXW/XTssTZo3bZt\nxC8vIuIqDUiHqWpVeP11yxwuuACGDcsp3NejB2RmwlVX2WeXXw5ffulte0VEosXN4FAHWARsANYD\ntwQ5Jh3YA6x2Hne72J4C/e1vtrp62zZo1QpWrLD3S5WyGU1btkD9+vbZ8OGwZ48XrRQRiR43g8MB\nYDDQBOgADALSghy3GGjpPB5wsT2FqlYN3ngDRo60RXQjRuSspK5YEUaPtgDy7bfQoAE88wwcOOBV\na0VE3OVmcPgGyHSe7wU2ATWDHBcz4x4+H1xyCaxZY9lCq1awcmXO57VqwdSpNh7x1lvQtCm8/bZW\nWotI4onWF3MqliE0wQJFtq7Am8BO4GtgKLAxyN+7MiBdmEAAZs6EW2+1rqV774WyZf/6+Xvv2aB1\n9eq20VDr1lFtoohIoWJ9QLoiMAu4lb8GBoAMbGyiOfAUMCcK7QmJz2crp9esscJ9bdrYqurcn/fs\naV1N/frBeefZ4PWOHd61WUQkUkq5fP7SwFwsO5gW5PM/sLEJgK3AEOAl4Nc8x40C8Pv9+P1+AFJT\nUyPc1OAqVrSupkqV7Mv/f/+Dzp1tsBogKckCx/XX20K6AQPsmHbt/pppiIi4ze/3M23atD+/Kxcv\nXgwwOpxzudmt5AOmAz9gA9PBVAe+BQJAO+B1rAsqr6h3KwXzzTdwww22QG7aNBuTyGvHDisV/uGH\nNrg9YAAkJ0e9qSIiMbsIrjOwBFiLffkD3Amc4DyfjM1guhE4COzHModlQc4VE8EBbKzhlVfgtttg\n4EC4+24oUyb/cRkZdszu3fDYY9YFpZXWIhJNsRocIilmgkO2XbssOHz5pW1T2qJF/mMCAZg3z8px\n1K5tg9bBjhMRcUOsD0gnpOOPh7lzLTs46ywYNSp/sT6fz7YvXbfOiv6dfbZVgv36a0+aLCISMgWH\nI+Dz2SB1ZiasWmWD0GvW5D+udGnbcCgry6a9Nmtm4xF7887dEhGJEQoOEVCzJrzzDvzjH3DmmVar\nKdjq6WOOsT0lMjKsVEeDBjBlChw6FP02i4gURmMOEfb113DddTazado0yxIKsnKldUv99JONR/To\nEbVmikgJoAHpGBMIWGAYNgz+7/+sWF/p0gUfO3cu3HEH1KtnM5uaNo1qc0UkQWlAOsb4fDbw/Pnn\nsHQpdOhgg9IFHdu7ty2g69kTzjjDMo9du6LbZhGR3BQcXFSnjtVfuukmOP10ePBBOHgw+LFlysAt\nt1jBv0qV4JRTbOxi377otllEBBQcXOfzwbXX2iD0kiVw6qmwYUPBx1eqZF1Lq1ZZTaeGDeGFFzRo\nLSLRpeAQJXXqwPvvWw2m9HR4+OGCswiAE0+EGTNg1iyb0dS6NSxcGLXmikgJpwFpD3z1lWUTe/bY\nwHXjxoUfHwjA7Nk2wN2oETz6KDRpEpWmikgc04B0nDnhBPjgAyvK17UrPPJI4VmEzwd9+lg3U/fu\n0K2bFQDcvTt6bRaRkkXBwSM+n3UxrVplFVw7dYJNmwr/m7JlYfBg2LwZUlIs43jwQdi/PzptFpGS\nQ8HBY3XrWnDo3x9OO826jIoafK5cGcaOheXLrXRHw4bw4otw+HB02iwiiU9jDjHkiy9sLGL/fpuh\n1KhRaH+3dKmttP7jD3jiCet2EhHRmEOCSE21LOLKK6FLFyupEcoU1k6d4LPPbMD6mmugVy/rehIR\nCZeCQ4xJSrJFc8uXw7vvWpDIyir673w+28500ybrnurSBQYNgu++c7/NIpJ4FBxiVL168NFHcNll\nlhmMHRtaFlGuHAwdakEiORnS0qwS7G+/ud9mEUkcGnOIA9u2WXfRoUMwdaqV+g7Vli1W+C8jAx56\nCPr1s+xERBKfxhwS3EknwaJF0LcvdOwI48aFXk6jQQN4802bzTRunBUBXLLE3faKSPxT5hBntm61\nLCIQsBlN9euH/reHD1tJjhEjoFUrW3xXnCxEROKLMocSpH598PttxXSHDjB+fOjrG5KSbAxj82b7\n244d4dZb4fvvXW2yiMQhBYc4lJRkX+qffQZvvGHrGrZtC/3vy5e3aa+bNln3VFqaTZvVoLWIZFNw\niGMnnwyLF9tmQR06wFNPFW+VdNWq8PTT8PHHNg6RlgYzZ1qXlYiUbBpzSBBbtlgJjtKlbUZTvXrF\nP8eiRTYNtnRpW2ndqVPk2yki0aMxB6FBA/v136sXtG8PzzxT/FpL3brBypW2CK9fPxvXKE53lYgk\nDgWHBFKqFAwZAp98Ai+/bPtRb99evHMkJcFVV9mq7JYtoV07O+ePP7rTZhGJTQoOCahhQwsQ555r\nX+4TJxY/i0hJgbvusj0k9u+3IoDjxsHvv7vTZhGJLRpzSHCbN8PVV0OFCvD881bcLxwbN8Ltt9v5\nHnkELr7Y6jmJSOzSmIMUqFEjyyJ69IC2bWHSpPBmIzVubIUAJ0+G+++Hzp1h2bLIt1dEYoObv/3q\nAC8C1YAA8E9gQpDjJgDnAPuBq4HVQY5R5hABGzfajKajjrIsom7d8M5z6JCV47jnHgsSDz8MJ54Y\n2baKyJGL1czhADAYaAJ0AAYBaXmO6QnUB04GrgcmutieEq9xY9sYqHt3aNMG/vnP8LKIUqUsyGRl\n2TnbtLEup59/jnybRcQbbgaHb4BM5/leYBNQM88xvYDpzvPlQCWguottKvGSk61Kq98Pzz1n3U1f\nfRXeuSpUgHvvhfXrLTA0bAgTJtiOdCIS36I15pAKtMQCQG61gB25Xu8EakepTSVakyZWfiM9HVq3\ntkARbs/d8cfb3y9caOMSp5wCb72lldYi8Sw5CteoCMwCbsUyiLzy9ocF/UoZNWrUn8/T09NJT0+P\nTOtKsORkuPNOWzh39dUwe7Z9ydepE975mjaFBQvsMXQoPPmk1Wxq2zaizRaRAvj9fvx+f0TO5fZk\nxNLAPOA94Mkgn08C/MAM5/VmoCuwO89xGpB22YEDNkV1/HjbOe6aa45squqhQ1ZS/N57beX1Qw+F\nPwAuIuFxc0C6GjaQPBPrElrmPB/kfFZou4DngY0EDwwAbwNXOc87AD+TPzBIFJQuDXffbVuTPvMM\n9OwJO3eGf75SpWDAAKv5VL++7R8xfDjs2RO5NouIewoLDs8Dr2PdQpOAvwP9gcnAUc5nUwr5+07A\nFUA3bHrqamzK6kDnATAf+A+w1TnvTWHeh0RIs2awfLnt9dCqlf36P5KkrWJFGD0a1q6Fb7+1Qetn\nn7VMRURiV2HpRjNgbRF/H8oxkaBuJQ+sXQt//zvUrGnTXmvVOvJzZmbaeMTOnfDoo3D++VppLeIW\nt7qVQvnSj0ZgEI80awYrVlh9ppYtYfr0I5+B1KIFfPghjB1r3Uynnw4ZGZFpr4hETigRpQHwELaY\nrZzzXgAIY8eAsClz8Fhmps1oql3bsoiaeVeshOHgQVupPWoUnHkmPPhg+DOlRCQ/t1dIv4CNORwA\n0rFFa6+EczGJXy1aWBbRpo09f+mlI88ikpNh4EBbaV2njp33rrvgl18i02YRCV8oESUDaAWsA5rm\neS9alDnEkNWrbSwiNdUK8R1/fGTOu2OHBYcPP7Rs4tprLYCISHjczhx+A0phM4puBi4CKoRzMUkM\nLVvCqlX2S79FC9tYKBKxu04dK+j37rswYwY0bw7z52ultYgXQoko7bC6SJWA+4GjgUexNQ/Roswh\nRn3+uY1F1KtnWUSNGpE5byAA8+ZZQb/atW1P6+bNI3NukZLC7cxhBfALsAe4BcscVMlfAKvLtGqV\nlc5o3hxefTUyv/R9Ppvmum4dXHghnHWWrdr++usjP7eIFC2U4NAWG2/IfqwB2rjZKIkvZcvCAw9Y\nd9BDD8FFF8HuCK1zL10aBg2yldbVqtn02pEjYW+wKl0iEjGhBIep2Mrlus5jkPOeyF+0aWPdTGlp\n9iX+2muRGy845hir+ZSRAVu3QoMGMGWK1XASkcgLpS9qNVZuOzfNVpJCrVxpYxGNGsHEifarP9Ln\nv+02+Oknq/zao0dkzy+SCNwec1iM1T1Kdx4TnfdaEd0AIXGkbVvLIk4+2bKI11+P/PkXL7b9rP/v\n/+Dss218QkQiI5SI4ueveyz48rzuFskGFUCZQxxbvtyyiFNOsYqvkc4i/vgDJk2ycY8LLoD77ovc\n2guReOZ25pCOBYDsR97XIoVq394WztWrZ1nEG29E9vxlysAtt9igdaVKFoTuuw/27YvsdURKksIi\nym1YhpD7mOzXAWCsi+3KS5lDgli2zLKIZs0si6haNfLX2L4dRoyATz6xbqerrrL9JURKGrcyh8eA\nK4HjsD0dKmL7OGQ/RIqtQwfLIurWtQAxe3bkr3HiibbCetYsm9HUurXtby0ioSssorQALgV6YLOT\nXgM+Ag5HoV15KXNIQJ9+Cv37WzmOp5+GKlUif41AwALQsGE2c+rRR6FJk8hfRyQWuZU5ZALDsGms\nU4BewAbnnyJHrGNHKwVeq5atsH7rrchfw+eDPn1g40bo3h3S0+GGGyK3SE8kUYUyIF0VCxDNgJ3A\nd662SEqU8uWtbtKsWfbr/rLL4IcfIn+dsmVh8GArD56SYtnDgw/C/v2Rv5ZIIigsOFwLLMD2ivYB\nfYEzgc+i0C4pYTp1siyiRg3LIubMcec6lSvbLnTLltn1Gja0SrCHvegsFYlhhfVFHQbWA18G+SxA\ndLuXNOZQgnz8sRXZa9cOJkyA445z71pLl9pK6wMHLINJT3fvWiLRdiRjDoX9Ubrzz+xv5bxTWheH\nc8EwKTiUMPv3w5132pqIiROhl4s/RQIBW8E9fLhlLY8+aoPXIvHOreAQSxQcSqglSyyLOPVUGD/e\nuoXc8ttvNmvqkUegb1/bjc6NdRgi0eLWbKV3gb8BKUE+SwEuAeaHc1GRUJ12GqxZA8cea7/q33nH\nvWuVKwdDh8KmTbZoLi3NAsVvv7l3TZFYVVhEqYZtC9oHOATsco6vASQDM4FniM7sJWUOgt9vWUSX\nLvDkkxYw3LRli3U1ZWTYPhX9+kFSKPP7RGJENLqVamB7OYANUH8TzsWOgIKDALbJz/DhNptp8mQ4\n91z3r7lkiQ1a+3w2aN2li/vXFIkEjTlIibNoEVx7LXTtCuPGWcE9Nx0+bCU5RoywchxjxtiGQyKx\nzO2qrCIxp1s3WLvWFtE1bQrvvefu9ZKSbIHe5s1WZbZjR7j1Vvj+e3evK+IVBQeJWxUrwrPPwvTp\ncNNNNh6xZ4+71yxf3lZyb9oEBw/aoPXjj8Pvv7t7XZFoCzU4pAANwzj/VGA3UNAeXenAHmwr0tXA\n3WFcQ0q400+3LKJsWcsiFixw/5pVq1rJ8Y8/tjGJtDSYOTNye2aLeC2UvqheWPnuskAqVmdpNKGt\nkO4C7AVeBJoG+TwdGBLCuTTmICFZuBAGDLAie088AcccE53rLlpkg9Zlylh5jo4do3NdkcK4PeYw\nCmgP/OS8Xg3UC/H8H+f6u4LEy6C4xIHu3S2LKFXKsogPPojOdbt1g1WrrHvrkkvgb3+Dbduic20R\nN4QSHA4AP+d5L1JlygJAR2ANtqCucYTOKyXY0UfbNNcpU+C66+D66+F//3P/uklJtutcVha0aGG1\noYYMgR9/dP/aIpGWHMIxG4DLnWNPBm4BPo3Q9TOAOsB+4BxgDhB0guCoUaP+fJ6enk66KqRJEc46\ny7KIoUMti5gyBc480/3rpqTAXXdZ99bIkVanacQIGDTIup1E3OL3+/H7/RE5VyhdOinYQPFZzusF\nwP1AqEUFUoF3CD7mkNd2oDWQ97eWxhzkiCxYYFnEOefY7KKjorjR7YYNcMcdllGMGQMXX2wL6kTc\n5uaYQzJWY+lOoI3zuIvQA0NRqpPT8HbOcyXhEnE9esC6dXDokGURH30UvWs3aQLvvguTJsH990Pn\nzrafhEgsKyo4HMTGF8Jdf/oa1gXVENgBXAMMdB5gdZvWYVuSPgn0C/M6IkU65hjrWpo4Ea6+Gm68\nEX75JXrX797d6jQNGGBbl/brB9u3R+/6IsURSrrxNjZ99UNgn/NeABt7iBZ1K0lE/fyzDRYvWgTP\nP29rJaJp3z6bajt+vC3eu+su90uASMnjdm2lq4O8FwCmh3PBMCk4iCvmz7fZTBdcYOW5K1aM7vV3\n7YJ774W337YAceONULp0dNsgiUuF90SOwE8/weDBttJ56lRvtgpdt85mVW3fbjvRXXCBBq3lyLkd\nHIL1igYIfSFcJCg4iOvmzYMbboALL7RZRRUqRL8NCxZYkKhc2WZVtW0b/TZI4nB7hXTbXI8uwHjg\nlXAuJhLLzjvPfsHv2QPNmsHiaO6S7ujRAzIz4corLXu4/HL48svot0Mk3MQ1A2gVyYYUQZmDRNU7\n71gW0aeP7QLnRRaxdy889pjta3399bbJUbRqRUlicDtzaI0FglbYOocbgFLhXEwkXpx/vmURP/wA\nzZtb9dVoq1gRRo+2Vd67d0PDhlai/MCB6LdFSp5QIoofG2MAW/fwBfA4kOVOk4JS5iCemTvXZhH1\n7WtZREqKN+3IzLTxiJ07LaM47zwNWkvhNFtJxGU//AC33AIrVsALL9gqZy8EArbr3dChUKOGDVq3\nimYHr8QVt7uVbgWOdi7wPDbe0COci4nEq+OOg1desWmmffvaArr9+6PfDp8Peva0rqZLLoFzz7VK\nsDt2RL8tkthCCQ7XAv/DCu9VBq4CxrjZKJFYdeGF9sW8a5eV5f40UvWJiyk5GQYOtGJ+depYW+6+\nO7rlQCSxhRIcslOSc4GXgPXuNUck9lWpAq+9llNh9bbb4NdfvWnL0UfDgw/aeMRXX0GDBraXxcGD\n3rRHEkcoweFz4AOgJ1au+2git9mPSNy66CLLInbutF/un33mXVvq1IEXX7TqrzNm2Ayr+fO1p7WE\nL5SBiiSs8N42bEe444BawFoX25WXBqQlps2aBTffbIvX7rsPypf3ri2BgK3TuOMOCxqPP27BQkoe\ntwekT8Wmrf4MXIlt/LMnnIuJJKo+fWxdxJdf2uwhL/dr8PmgVy9rT+/etiPeNdfA11971yaJP6EE\nh0lYqe7mwBBgK/Cim40SiUdVq8Lrr9vCtd69Ydgw+C1S22KFoXRp25p0yxaoVs1KgowcaSuvRYoS\nSnA4iC2C6w084zyiuMmiSHzp29fGIrZtsyxixQpv23PMMTZ4/vnnsHWrDVpPmWK74okUJJTg8Au2\nTegVwDysdIYqzosUolo1eOMN26vh/PNhxAj4/Xdv25Saams15s61wesWLawKrEgwoQxUHA9cCqwE\nPgZOANKJbteSBqQlbu3ebeU3srJg2rTYKMMdCMCcOTZofdJJNmh9yilet0oize0B6V3Am0BZ5/X3\nwJxwLiZSElWvDrNn205v551n//Q6i/D5bEHfhg224vr00+G662xxnwiEFhyuB94AJjuvawNvudYi\nkQTk88Fll8GaNfaF3KaNjQF4rUwZqxmVlWV7WJ9yik3F3bev6L+VxBZKcBgEdMZKaABsAaq51iKR\nBFajBrz1lu3NcM45VvLC6ywC4NhjrdLrypWwcaOVB582TYPWJVkoweF355EtmZwS3iJSTD6f7fC2\nZo3NamrTBjIyvG6VqVfPVljPmgXPPQetW8PChV63SrwQSnBYDNwFpABnYl1M77jZKJGS4PjjbebQ\nHXfA2WfbzKY//vC6VaZDB/jkE8tsBg606q8bN3rdKommUILDMOA7YB0wEJiPrZIWkSPk81nJjcxM\nWL3aZjKtXu11q4zPZyu/N26E7t2ha1fbOnX3bq9bJtFQ1BSnZKwKa6MotKUwmsoqCS8QgJdeso18\nbroJ7rzTBoxjxY8/wgMP2BqJIUNg8GBva0hJ0dycynoQq6tUN5yTi0jofD7buGf1ahsYbtfOxiVi\nReXKMHas1Y3KyLBB65degsOq0ZyQQokoH2NVWVdgNZbABqR7udWoIJQ5SIkSCMD06TYeMWiQZRGl\nY6wuwdKltpfFgQPwxBOQnu51iyQvt/eQ7hrk2AA2UB0tCg5SIu3caYvTdu+2qaXNmnndor8KBKzY\n4PDh0LSpbaPayOtOaPmTW91K5YHBQF9szGEp4HceoQaGqcBubDC7IBOAfwNrsAxFRBy1a9umPTff\nDGecAfffb7/UY4XPZ3tZb9oEp50GXbpYW7/7zuuWyZEqLDhMB1pjm/r0BB4P4/wvAGcX8nlPoD5w\nMrYSe2IY1xBJaD6f7ceQkWFdOR062F4NsaRcORtI37QJkpIgLQ0eecTbkuVyZAoLDmlYJdbJwMXA\naWGc/2Pgp0I+74UFIYDlQCWgehjXEUl4derAe+9ZEb/TT7e9o2Ntr+gqVWDCBPj0Uxu4btQIXn1V\ng9bxqLDgcLCA55FUC9iR6/VOrHaTiATh88GAAVaXafFiyyLWr/e6Vfk1aGBlQqZPh3HjrJ0ff+x1\nq6Q4kgv5rBm2l0O28rleB4CjI9SGvIMlQUeeR40a9efz9PR00jU1QkqwE06wvRieew66dbN1B7ff\nDsmF/T/aA127wvLlVpLjiiusHMeYMRY8JPL8fj9+vz8i5wprFLuYUrFyG02DfDYJG+Ce4bzejM2O\nyrsGU7OVRArw5ZeWTezZYzOaGjf2ukXB/forjB9ve0dcfrmVCznuOK9bldjc3s/BTW8DVznPOwA/\nkz8wiEgh6taFDz6Aa6+1GUNjxsTeWATYaurhw60cx8GDNh7x+OOxUZVW8nM7c3gNywSqYF/6I8nZ\nYjR7f4insRlN+4D+QLD6lMocRELwxRcWJPbutSwiLc3rFhVs82Zb5Ld+PTz8sO297YtGX0YJ4vYi\nuFig4CASosOHYfJkuOce+/K97TYoVcrrVhVs0SJrY9myttK6Y0evW5Q4FBxEJJ/t2y2L2L/fsohY\nXrl8+DC8/LJtodqhg3WNnXSS162Kf/E85iAiLjnxRNuo58oroXNn69+P1Z3dkpKs6GBWFrRoYUUH\nhwyxSrDiDQUHkQSWlGSF+1asgHnzrLxFVpbXrSpYSoplDxs2WMbTqJGtk4iVTZBKEgUHkRKgXj34\n17/gssugUyfr24/VLAJsr+1Jk2w8YuFCm547a5YV+pPo0JiDSAmzbRv072/B4YUX4mNB2sKFNmh9\n1FEW2Nq397pF8UFjDiISspNOAr/fqql27GjdNrGcRYBtU5qRYQPsF18M/frZgLu4R8FBpARKSoJb\nbrHieG++aRv1bN3qdasKV6qUZTxZWdbN1KaNlQz5+WevW5aYFBxESrD69S2LuPhim0I6fnzsV1Ct\nUMFKb6xfb4GhYUN46qnY2uciEWjMQUQA+Pe/7Zd5UhJMnWqBIx6sXWsZxPbtthPdBRdopXU2jTmI\nyBE7+WQrA967t2URTz0V+1kE2NapCxZYe++5x7rIVq3yulXxL17iqzIHkSjKyrIsokwZyyLq1fO6\nRaE5eNBWg997b86GSHXret0q7yhzEJGIatjQNuc57zxbrfz00/GRRSQnW/nyLVtsVlarVjBihJUz\nl+JRcBCRoEqVsn2hP/kEXnkFzjgjfqaPVqwIo0fbeMQ331iwe/ZZDVoXh4KDiBSqUSMLED17Qtu2\n9iUbD1kEQK1attDv/fdtym6zZvDOO1ppHQqNOYhIyDZtgquvtumkU6dCaqrXLQpdIADvvWfZUI0a\nVoiwVSsIV7MtAAANAElEQVSvW+UujTmISFSkpcHSpdCjhy1CmzQpfn6F+3yW/axdaxsLnXsu/P3v\nsGOH1y2LTQoOIlIsyckwbBgsWWLZw5ln2j7W8SI5GW64wWZk1a5tJcLvvht++cXrlsUWBQcRCUvj\nxvDppzZQ3bq17T4XL1kEwNFH21TXzEz46isrQDh5cmzuv+0FjTmIyBFbv97GIipXhilT4IQTvG5R\n8WVkWOXXb7+Fxx6Dc86J/5XWGnMQEU+dcooV8UtPtyziuefiK4sAG5z+17/g4YdtF7qzzoI1a7xu\nlXfiJS4qcxCJE+vWWRZRtaoFiTp1vG5R8R04AP/8J9x3nw1cP/AA1KzpdauKT5mDiMSMpk0ti+jc\n2X6NP/98/GURpUvb9qpbtkC1anZPI0fC3r1etyx6lDmIiGvWrrUsonp1yyJq1/a6ReH54gvb23rR\nIssm+ve3FeSxTpmDiMSkZs1g+XI49VRo2dJWK8fj77zUVCshMmcOTJ9u9/LBB163yl3KHEQkKtas\nsSyiZk3rz69Vy+sWhScQsCBxxx1W3O/xx21APhYpcxCRmNe8uWURbdvawrNp0+Izi/D54MILYcMG\nW3F9+ulw3XVW4C+RKDiISNSUKQOjRsGHH8K4cXD++fDf/3rdqvCUKWP7cGdlQaVK0KQJ3H8/7Nvn\ndcsiQ8FBRKKuRQtYudJmM7VoAS++GJ9ZBMCxx9qiuZUrLZto2NCyokOHvG7ZkXF7zOFs4EmgFDAF\neCTP5+nAXOA/zuvZwANBzqMxB5EElZFhYxF161r5inhcT5DbsmW2iG7/fnjiCSsv4pVYHXMoBTyN\nBYjGwKVAWpDjFgMtnUewwCAiCaxVK9vzuUULe7z8cvxmEWD7by9dasX8rr/edtPbuNHrVhWfm8Gh\nHbAV+AI4AMwALghyXLzMmBIRl5QpY/318+fDmDHQu3d8D/D6fNCnjwWFM86wsiI33gi7d3vdstC5\nGRxqAbkrpe903sstAHQE1gDzsQxDREqoNm3g889tamjz5ra2IJ6ziLJlYfBg2LwZypWzQeuHHoJf\nf/W6ZUVzMziE8q80A6gDNAeeAua42B4RiQNly1op7Xnz7Iv0ooviO4sAq1Y7bpyNR6xaBd26ed2i\noiW7eO6vsS/+bHWw7CG33NtrvAc8C1QGfsx7slGjRv35PD09nfT09Ag1U0RiUdu2lkWMHm1ZxJNP\nQr9+8V1Gu359eOYZ97Yn9fv9+P3+iJzLzf+Zk4Es4Azgv8AKbFB6U65jqgPfYllGO+B1IDXIuTRb\nSaQEW7HCZjSlpcGzz1qtpni1a5cFh1273L9WrM5WOgjcDCwANgIzscAw0HkA9AHWAZnYlNd+LrZH\nROJUu3Y25fXkky2LmDkzvsci4kG8JGjKHEQEsBIcV19tg7vPPmslteOJMgcRERe0b29ZRL16VvX1\njTe8blFiUuYgInHrs88si2je3AZ6q1b1ukVFU+YgIuKyU0+FzEw44QTbrW3WLK9blDiUOYhIQli6\n1HZoa9UKnn4aqlTxukXBKXMQEYmiTp0si6hZ07KIN9/0ukXxTcFBRBJGSgqMHWuD1MOGwaWXwg8/\neN2q+KTgICIJp3Nn25a0enXLIuaoME+xKTiISEJKSbGSGzNnwtChcPnlyiKKQ8FBRBJaly6WRVSp\nYlnE3Lletyg+aLaSiJQYixfDNdfY1p7lynnThj/+sH2zd+YtQ+qCI5mtpOAgIiXKvn2werW3bahS\nBRo1cv86Cg4iIpKP1jmIiEhEKTiIiEg+Cg4iIpKPgoOIiOSj4CAiIvkoOIiISD4KDiIiko+Cg4iI\n5KPgICIi+Sg4iIhIPgoOIiKSj4KDiIjko+AgIiL5KDiIiEg+Cg4iIpKPgoOIiOTjdnA4G9gM/BsY\nVsAxE5zP1wAtXW6PiIiEwM3gUAp4GgsQjYFLgbQ8x/QE6gMnA9cDE11sT8zy+/1eN8E1iXxvoPuL\nd4l+f0fCzeDQDtgKfAEcAGYAF+Q5phcw3Xm+HKgEVHexTTEpkf8DTeR7A91fvEv0+zsSbgaHWsCO\nXK93Ou8VdUxtF9skIiIhcDM4BEI8Lu/m16H+nYiIuCTvF3MkdQBGYWMOACOAw8AjuY6ZBPixLiew\nweuuwO4859oKnORSO0VEEtU2bFw3piRjDUsFygCZBB+Qnu887wAsi1bjRETEO+cAWdgv/xHOewOd\nR7annc/XAK2i2joREREREYkfU7ExhnW53qsMfAhsAT7AprhmG4EtmtsMnBWlNh6JOsAiYAOwHrjF\neT9R7rEcNg05E9gIPOy8nyj3B7ZmZzXwjvM6ke7tC2Atdn8rnPcS6f4qAbOATdh/n+1JnPtriP17\ny37swb5fEuX+6IKtjM4dHB4F7nCeDwPGOM8bY19CpbGxjK3EfgmQGkAL53lFrJstjcS6xxTnn8nY\nuFFnEuv+hgCvAG87rxPp3rZjXya5JdL9TQeucZ4nA8eQWPeXLQnYhf0YTaj7S+WvwWEzOYvhajiv\nwaJe7jIc72MD2fFkDtCdxLzHFGAl0ITEub/awEKgGzmZQ6LcG1hwOC7Pe4lyf8cA/wnyfqLcX25n\nAR87zyNyf7EaNaqTM511Nzk3WhNbKJct2MK6WJaKZUnLSax7TMJ+kewmpwstUe5vHHA7Ng07W6Lc\nG9i6ooXAKuA6571Eub8Tge+AF4AM4DmgAolzf7n1A15znkfk/mI1OOQWoPCFcfGyaK4iMBu4Ffgl\nz2fxfo+Hsa6z2sBp2K/s3OL1/s4DvsX6cwtaExSv95atE/aD5RxgENbNm1s8318yNgPyWeef+4Dh\neY6J5/vLVgY4H3gjyGdh31+sBofdWDoEcDz2f1CAr7E+tWy1nfdiXWksMLyEdStB4t0j2IDYu0Br\nEuP+OmL1v7Zjv8pOx/4dJsK9Zdvl/PM74C2sJlqi3N9O57HSeT0LCxLfkBj3l+0c4HPs3yEkzr8/\nIP+Yw6Pk9I0NJ/+AShksZdyGu6u8I8EHvIh1T+SWKPdYhZzZEOWBJcAZJM79ZetKzphDotxbCnCU\n87wCsBTru06U+wP777GB83wUdm+JdH9gFSb+nut1wtzfa8B/gT+wInz9sdkTCwk+FetObJR9M9Aj\nqi0NT2es2yWTnClnZ5M499gU68/NxKZE3u68nyj3l60rObOVEuXeTsT+vWVi06yzF6omyv0BNMcy\nhzXAm9ggdSLdXwXge3KCPCTW/YmIiIiIiIiIiIiIiIiIiIiIiIiIiIh47V/kLyX8D6wEQkG+IH9l\nUbfNJLyta0cW8V47ctbDrAUuyXPscOAyrF7QxcW4bi/gnmIcLyISU67D9vjI7TNsMWFBgpWddlN9\nYF4x/+ZB7Av6KWA8tjgr2HvlySlrUwNb4FQq13n+ha1KL25w8JFTrllEJO5UxmrDJDuvU4EvneeX\nYr+m15FTEgBygkMqfy3DMpScX+V+YCy2WnYT0BarJbQFuD/X31yBVc1dDUwieP2xu4Hrc73ei5Us\nWI9tstIBWIyVJzg/13ETgR+Bk4t4L1t2iYNsRwOfOM9fAC5ynt/vvE7C9mXfhFVZnUBOyY/sa50b\n5Doi+cRq4T0puX7EdiTr6bzuh3Xh1MQCQjesAmxb4IIizpW7ImUA+N35u4nAXOAG4BTgauBYbBOm\nvljBvZZY2ZPLg5y3E/blmy0F+Mg51y/AfViRvgud52Bf4O8BLwM3A80KeA9st7INzmNIrut0x8oi\nZPMBj2H7MfTHauZMwsqztMEyjNxVN1dgVXNFipRc9CEiUfcaFhTexvrcr8G+1P3AD84xr2BfdHOL\nOFfuwmLZtZHWO4/smvf/AU7AylW3JueLvzxWwTOvuuRUMwWrC7bAeb4O+A045Fwj1Xk/u7+/JTDa\neb42yHtgmUsToBG2Icsi4H9YLZzsLjefc87lwEDnvUbOvWRnWq/x1wznv1jgECmSMgeJRW9jlV1b\nYr/KV5O/7rwvyHsH+et/0+XzHPO788/DuZ5nv87+oTTduW5L7Mv2PoLLHXQO5DnXH0HOm200+QV7\nD6w42jZyupzakbPPcwDrImuNZT3Z7xXURrD/beJhfwKJAQoOEov2Yr+WXwBedd5biVVGPQ4boO2H\n9evnthuoho0/lMU26wlVAOsa6gNUdd6rjGUUeX2J1cl3Qyo5AaUuFhj+Tc7Wq7m/3N/HutrexTaT\n2gLUc/4O8s90Op6crEKkUOpWklj1GlZiua/zehc2jXMR9ot4HjmDrdlfmAewX/orsE1MNhZw7oJ2\nx9qEDTZ/gP1wOgDcBHyV57hPsD79z/NcnyCvi/tLvTN2nwecx/VYl9I52PhE3uvMxso1v42N09yE\nBY19WEDNff12/HWAWkREIqge9ms9mj4gZy/gwlTI9fwZbFtayNnnWz8IRURcNIPwFsG57R/YGM0G\nbEvTcs77vbCsSERERERERERERERERERERERERERERCSW/T/tRRjYWF8jNgAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x108041690>" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7 page : 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "# Variables\n", "P = 0.1*10**6 \t\t\t#Pa\n", "P2 = 0.55*10**6 \t\t\t#Pa\n", "M = 28.84\n", "R = 8314.4\n", "T1 = 303.1 \t\t\t#K\n", "T2 = 316.1 \t\t\t#K\n", "d1 = 0.154 \t\t\t#m\n", "d2 = 0.028 \t\t\t#m\n", "mass = 0.25 \t\t\t#m**3/s\n", "Q = 2.764*10**8 \t\t\t#J/h\n", "cp = 29.3*10**3 \n", "\t\t\t\n", "# Calculations\n", "rho1 = P*M/(T1*R)\n", "u1 = mass/(math.pi/4 *d1**2)\n", "rho2 = P2*M/(R*T2)\n", "u2 = u1*d1**2 *rho1/(d2**2 *rho2)\n", "Wsd = (u2**2 - u1**2 )/2 + cp/M *(T2-T1) + Q/(mass*rho1*3600)\n", "mdot = u1*math.pi/4 *d1**2 *rho1\n", "Ws = Wsd*mdot/745.7\n", "\t\t\t\n", "# Results\n", "print \"Power input to the compressor = %d hp\"%(Ws)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power input to the compressor = 109 hp\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.8 page : 81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "# Variables\n", "u1 = 1.1 \t\t\t#m/s\n", "rho1 = 1.21*10**3 \t\t\t#kg/m**3\n", "d1 = 0.078\n", "z1 = 4\n", "h2 = 18 \t\t\t#m\n", "g = 9.806\n", "\t\t\t\n", "# Calculations\n", "mdot = u1*rho1*math.pi/4 *d1**2\n", "Wsd = z1+h2\n", "Ws = Wsd*mdot*g\n", "dP = Ws*rho1/mdot\n", "\t\t\t\n", "# Results\n", "print \"Power input = %d W\"%(Ws)\n", "print \"Pressure drop = %.3f Mpa\"%(dP/10**6)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power input = 1372 W\n", "Pressure drop = 0.261 Mpa\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9 page : 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "# Variables\n", "eff = 0.75\n", "Hf = [-110600, -241980, -393770, 0]\n", "Hc = [30.35, 36, 45.64, 29.30]\n", "T2 = 540. \t \t\t#C\n", "T1 = 25. \t\t \t#C\n", "mass = 500. \t\t\t#kmol H2 produced\n", "\t\t\t\n", "# Calculations\n", "dHr = Hf[2] + Hf[3] - Hf[0] -Hf[1]\n", "dHpr = (eff*(Hc[2] +Hc[3]) + (1-eff)*(Hc[1]+Hc[0]))*(T2-T1)\n", "q = dHr*eff +dHpr\n", "heat = q*mass/eff\n", "\t\t\t\n", "# Results\n", "print \"Heat produced = %.3e kJ\"%(heat)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat produced = 4.397e+06 kJ\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.10 page : 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\t\t\n", "# Variables\n", "eff = 0.75\n", "Hf = [-110600, -241980, -393770, 0]\n", "Hc = [30.35, 36 ,45.64, 29.30]\n", "T2 = 540. \t\t\t#C\n", "T1 = 25. \t\t\t#C\n", "mass = 500. \t\t\t#kmol H2 produced\n", "work = 10.**6 \t\t\t#kJ\n", "\t\t\t\n", "# Calculations\n", "dHr = Hf[2] + Hf[3] - Hf[0] -Hf[1]\n", "dHpr = (eff*(Hc[2] +Hc[3]) + (1-eff)*(Hc[1]+Hc[0]))*(T2-T1)\n", "q = dHr*eff +dHpr\n", "heat = q*mass/eff\n", "qe = heat-work\n", "\t\t\t\n", "# Results\n", "print \"Heat produced = %.3e kJ\"%(qe)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat produced = 3.397e+06 kJ\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11 page : 89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import array\n", "\t\t\t\n", "# Variables\n", "so3 = 6.\n", "h2 = -296840. \t\t\t#kJ/kmol\n", "h3 = -395720. \t\t\t#kJ/kmol\n", "t2 = 400. \t\t\t#C\n", "t1 = 25. \t\t\t#C\n", "\t\t\t\n", "# Calculations\n", "Hr = so3*(h3-h2)\n", "cp = array([1.059, 0.967, 0.714])\n", "n = array([82.76, 11 ,8])\n", "M = array([28, 32, 64])\n", "Ht = sum(cp*n*M)\n", "Hre = Ht*(t2-t1)\n", "Hpr = Hre-Hr\n", "Tf = t1 + Hpr/3261.6\n", "\t\t\t\n", "# Results\n", "print \"temperature of exit gases = %d C\"%(Tf)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "temperature of exit gases = 570 C\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.12 page: 91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import array\n", "\t\t\t\n", "# Variables\n", "x = 0.25\n", "Hr = 1.4278*10**6 \t\t\t#kJ/kmol\n", "ti = 25. \t\t\t#C\n", "cp = array([1.24, 2.39, 1.11])\n", "M = array([44 ,18, 32])\n", "z = array([12, 3, 0.5])\n", "r = 4.186\n", "\t\t\t\n", "# Calculations\n", "v = cp*M*z\n", "v2 = sum(v)\n", "T = ti+ Hr/(v2)\n", "\t\t\t\n", "# Results\n", "print \"Theoretical temperature = %d C\"%(T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical temperature = 1806 C\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }