{ "metadata": { "name": "", "signature": "sha256:cba11d6ad27a555b5f3aecc639d6f99831950fba74d42eb631521eded4620d06" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4 : Second Law of Thermodynamics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1 Page No : 84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "Q1 = 250.0;#Heat absorbed in Kcal\n", "T1 = (260+273.0);#Temperature at which engine absorbs heat\n", "T0 = (40+273.0);#Temperature at which engine discards heat\n", "#To Calculate work output, heat rejected, entropy change of system,surronding & total change in entropy and the efficiency of the heat engine\n", "\n", "#(i)Calculation of work output\n", "W = (Q1*((T1-T0)/T1));#Work done umath.sing equations 4.7 & 4.9 given on page no 98\n", "print \"i)The work output of the heat engine is %f Kcal\"%(W);\n", "\n", "#(ii)Calculation of heat rejected\n", "Q2 = (Q1*T0)/T1;\n", "print \" ii)The heat rejected is %f Kcal\"%(Q2);\n", "\n", "#(iii)Calculation of entropy\n", "del_S1 = -(Q1/T1);#Change in the entropy of source in Kcal/Kg K\n", "del_S2 = Q2/T0;#Change in the entropy of math.sink in Kcal/Kg K\n", "del_St = del_S1+del_S2;#Total change in entropy in Kcal/Kg K\n", "print \" iii)Total change in entropy is %d confirming that the process is reversible\"%(del_St);\n", "\n", "#(iv)Calculation of efficiency\n", "n = (W/Q1)*100;\n", "print \" iv)The efficiency of the heat engine is %f percent\"%(n);\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i)The work output of the heat engine is 103.189493 Kcal\n", " ii)The heat rejected is 146.810507 Kcal\n", " iii)Total change in entropy is 0 confirming that the process is reversible\n", " iv)The efficiency of the heat engine is 41.275797 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2 Page No : 89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "T1 = 373.0;#Temperature of the saturated steam in K\n", "T2 = 298.0;#Temperature of the saturated water in K\n", "#To calculate the total change in entropy and hence determine the reversibility of the process\n", "\n", "#del_H = del_Q+(V*del_P)\n", "#del_H =del_Q; math.since it is a consmath.tant pressure process\n", "\n", "#From steam table,\n", "#enthalpy of saturated steam at 373K is\n", "H1 = 6348.5;# in Kcal/Kg\n", "#enthalpy of saturated liquid water at 373K is\n", "H2 = 99.15;#in Kcal/Kg\n", "Q = H2-H1;#heat rejected in Kcal/Kg\n", "del_S1 = Q/T1;#change in entropy of the system in Kcal/Kg K\n", "del_S2 = Q/T2;#change in entropy of the surronding in Kcal/Kg K\n", "del_St = del_S1+del_S2;#total change in the entropy in Kcal/Kg K\n", "if(del_St == 0):\n", " print \"Process is reversible\";\n", "else:\n", " print \"Process is irreversible\";\n", "#end\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Process is irreversible\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3 Page No : 91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "Cp = 0.09;#specific heat of metal block in Kcal/Kg K\n", "m = 10.0;#mass of metal block in Kg\n", "T1 = 323.0;#initial temperature of the block in K\n", "T2 = 298.0;#final temperature of the block in K\n", "#consmath.tant pressure process\n", "#To find out entropy change of block,air and total entropy change\n", "\n", "#(i)To calculate the entropy change of block\n", "del_S1 = m*Cp*math.log(T2/T1);\n", "print \"i)Entropy change of block is %f Kcal/Kg K\"%(del_S1);\n", "\n", "#(ii)To calculate the entropy change of air\n", "Q = m*Cp*(T1-T2);#heat absorbed by air = heat rejected by block in Kcal\n", "del_S2 = (Q/T2);\n", "print \" ii)Entropy change of air is %f Kcal/Kg K\"%(del_S2);\n", "\n", "#(iii)To calculate the total entropy change\n", "del_St = del_S1+del_S2;\n", "print \" iii)Total entropy change is %f Kcal/Kg K\"%(del_St);\n", "if(del_St == 0):\n", " print \" Process is reversible\";\n", "else:\n", " print \" Process is irreversible\";\n", "#end\n", "#end \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i)Entropy change of block is -0.072503 Kcal/Kg K\n", " ii)Entropy change of air is 0.075503 Kcal/Kg K\n", " iii)Total entropy change is 0.003000 Kcal/Kg K\n", " Process is irreversible\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4 Page No : 94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "m1 = 10 #mass of metal block in Kg\n", "m2 = 50 #mass of water in Kg\n", "Cp1 = 0.09 #Specific heat of metal block in Kcal/Kg K\n", "Cp2 = 1 #Specific heat of water in Kcal/Kg K\n", "T1 = 50 #Initial temperature of block in deg celsius\n", "T2 = 25 #Final temperature of block in deg celsius\n", "\n", "#To calculate the total change in entropy\n", "#Heat lost by block = Heat gained by water\n", "Tf = ((m1*Cp1*T1)+(m2*Cp2*T2))/((m1*Cp1)+(m2*Cp2)) #final temperature of water in deg celsius\n", "Tf1 = Tf+273.16 #final temperature in K\n", "del_S1 = m1*Cp1*math.log(Tf1/(T1+273)) #change in entropy of the block in Kcal/K\n", "del_S2 = m2*Cp2*math.log(Tf1/(T2+273)) #change in entropy of the block in Kcal/K\n", "del_St = del_S1+del_S2\n", "print \"The total change entropy is \",\n", "print \"%.6f\" %del_St,\n", "print \"Kcal/K\"\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total change entropy is 0.030226 Kcal/K\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5 Page No : 96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "#Air at 20 deg celsius\n", "#P1 = 250;initial pressure in atm\n", "#P2 = 10;final pressure after throttling in atm\n", "\n", "#To calculate the entropy change\n", "#According to the given conditions from figure4.5(page no 103)\n", "S1 = -0.38;#initial entropy in Kcal/Kg K\n", "S2 = -0.15;#final entroy in Kcal/Kg K\n", "del_S = S2-S1;\n", "print \"Change in entropy for the throttling process is %f Kcal/Kg K\"%(del_S);\n", "#From figure 4.6(page no 104), the final temperature is -10 deg celsius\n", "#end \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in entropy for the throttling process is 0.230000 Kcal/Kg K\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7 Page No : 101" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "#Basis: 1 hour\n", "m = 10.0;#mass of air in Kg\n", "T = 293.0;#Consmath.tant temperature throughout the process in K\n", "#P1 = 1;#Initial pressure in atm\n", "#P2 = 30;#Final pressure in atm\n", "#According to the given data and umath.sing the graph or figure A.2.7 given in page no 105\n", "S1 = 0.02;#Initial entropy in Kcal/Kg\n", "S2 = -0.23;#Final entropy in Kcal/Kg\n", "H1 = 5.0;#Initial enthalpy in Kcal/Kg\n", "H2 = 3.0;#Final enthalpy in Kcal/Kg\n", "\n", "W = -((H2-H1)+T*(S2-S1))*m*(427/(3600*75.0));\n", "print \"The horse power of the compressor is %f hp\"%(W);\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The horse power of the compressor is 1.190065 hp\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.8 Page No : 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "#Basis: 1 Kg of steam\n", "#P1 = 30;Intial pressure in Kgf/cm**2\n", "#P2 = 3;Final pressure in Kgf/cm**2\n", "#T = 300;#Operating temperature\n", "#From figure A.2.8, \n", "H1 = 715.0;#Initial enthalpy of steam in Kcal/Kg\n", "H2 = 625.0;#Final enthalpy of steam in Kcal/Kg\n", "S1 = 1.56;#Initial entropy of steam in Kcal/Kg K\n", "S2 = 1.61;#Final entropy of steam in Kcal/Kg K\n", "Q = -1.0;#heat loss in Kcal/Kg\n", "To = 298;#The lowest surronding temperature in K\n", "\n", "#To calculate the effectiveness of the process\n", "W = (-(H2-H1)+Q);#Actual work output by the turbine in Kcal\n", "#The maximum or available work can be calculated from equation 4.14\n", "del_B = -((H2-H1)-(To*(S2-S1)));# Maximum work that can be obtained in Kcal\n", "E = (W/del_B)*100.0;\n", "print \"The effectiveness of the process is %f percent\"%(E);\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The effectiveness of the process is 84.842707 percent\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9 Page No : 108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#Given\n", "m = 1.0;#mass of liquid water in Kg\n", "T1 = 1350.0;#initial temperature in deg celsius\n", "T2 = 400.0;#final temperature in deg celsius\n", "Cp = 1.0;#Specific heat of water in Kcal/Kg K\n", "Cpg = 0.2;#Specific heat of combustion gases in Kcal/Kg K\n", "Hv = 468.35;#Heat of vapourisation at 14 Kgf/cm**2 and 194.16 deg celsius in Kcak/Kg\n", "To = 298.0;#Surronding temperature\n", "Tb = 194.16+273;#Boiling point of liquid water\n", "\n", "#To Calculate the maximum work obtained and the entropy change\n", "#(i)Calculation of maximum work\n", "#Q = del_H = m*Cp*(T2-T1); gas can be assumed to cool at consmath.tant pressure\n", "#From equation 4.14 (page no 110)\n", "del_B = -((m*Cpg*(T2-T1))-(To*m*Cp*math.log((T2+273)/(T1+273))));\n", "print \"i)The maximum work that can be obtained is %f Kcal/Kg of gas\"%(del_B);\n", "\n", "#(ii)To Calculate the change in entropy\n", "del_S =(m*Cp*math.log(Tb/To))+((m*Hv)/Tb);\n", "print \"ii)The entropy change per Kg of water is %f\"%(del_S);\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i)The maximum work that can be obtained is -72.325299 Kcal/Kg of gas\n", "ii)The entropy change per Kg of water is 1.452126\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }