{ "metadata": { "name": "", "signature": "sha256:a162cef37f1f083e6a9ef4ac7692713ff724aae06050b0ea06458a8bbbc97c25" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15 : Fuel Cells" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.1 Page No : 321" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "del_F = -56.29;#Smath.radians(numpy.arcmath.tan(ard free energy change in Kcal/Kgmole\n", "del_H = -68.317;#Smath.radians(numpy.arcmath.tan(ard heat of reaction in Kcal/kgmole\n", "F = 23.06;#Electro-chemical equivalent in Kcal/volt\n", "J = 2.0;#Valance for H2\n", "\n", "#To Calculate the emf of the cell, cell efficiency and heat to be removed to maintain isothermal conditions\n", "#Basis: 1 Kgmole of H2\n", "#From equation 15.4 (page no 355)\n", "E = -del_F/(F*J);\n", "print '1.The emf of the cell is %f volt.'%(E);\n", "n = del_F/del_H*100;\n", "print ' 2.The cell efficiency is %f percent.'%(n);\n", "Q = del_H-del_F;\n", "print ' 3.The heat to be removed is %f Kcal to maintain the temperature at 25 degree celsius.'%(Q);\n", "#end\n" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }