{ "metadata": { "name": "", "signature": "sha256:829300ed441b0056de124b3c59bbb1f7034cd4f5704a4d95b4ff6c77357fd0c5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 : Introduction to Material Balances" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.1 Page no. 142\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from numpy import matrix\n", "\n", "# Variables\n", "# Given\n", "P_O = 89 ; # Premium octane -[octane/gal]\n", "S_O = 93 ; # Supereme octane - [octane/gal]\n", "R_O = 87 ; # Regular octane - [octane/gal]\n", "CP = 1.269 ; # Cost of premium octane -[$/gal]\n", "SP = 1.349 ; # Cost of supereme octane -[$/gal]\n", "RP = 1.149 ; # Cost of regular octane -[$/gal]\n", "\n", "# Let x and y fraction of regular octane and supreme octane is blended respectively,therefore: x + y = 1 ...(a)\n", "# and 89 = 87x + 93y ...(b)\n", "# Solve equations (a) and (b) simultaneously\n", "# Calculation\n", "a = matrix([[1,1],[87,93]]) ; # Matrix of coefficients of unknown\n", "b = matrix([[1.0],[89.0]]) ; # Matrix of constant\n", "a = a.I\n", "c = a * b\n", "cost = c[0]*RP + c[1]*SP ; # Cost after blending - [$/gal]\n", "sv = CP - cost ; # Save on blending - [$/gal]\n", "\n", "# Result\n", "# Check whether there is loss or save\n", "if (sv<0):\n", " print 'We will not save money by blending.'\n", "else:\n", " print 'We will save money by blending, and save is %.3f $/gal.'%sv" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "We will save money by blending, and save is 0.053 $/gal.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.2 Page no. 147\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "fd= 1000.0 ; #feed rate-[L/hr]\n", "cfd= 500.0; #Weight of cells per litre- [mg/L]\n", "dn= 1.0 ; #Density of feed-[g/cm**3]\n", "wp= 50.0 ; # Weight percent of cells in product stream\n", "\n", "# Calculation and Result\n", "Pg=(fd*cfd*dn)/(1000*wp*.01) ; # Mass balance for cells \n", "print ' Product flow(P) per hour is %.1f g'%Pg\n", "Dg= (fd*dn*1000) - Pg*(wp*.01) ; # Mass balance for the fluid\n", "print ' Discharge flow per hour is %.3e g'%Dg" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Product flow(P) per hour is 1000.0 g\n", " Discharge flow per hour is 9.995e+05 g\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 6.3 Page no. 154\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "dn = 0.80 ; #Density of motor oil-[g/cm**3]\n", "\n", "# Calculation and Result\n", "in_ms = (10000*(0.1337)*62.4*dn) ; # Initial mass of motor oil in the tank -[lb]\n", "print ' Initial mass of motor oil in the tank is %.1f lb'%in_ms\n", "\n", "m_fr = .0015 ; #Mass fractional loss\n", "print ' Mass fractional loss is %.4f '%m_fr\n", "\n", "Dsg = m_fr*in_ms ; # Mass balance for the fluid\n", "print ' Discharge of motor oil on flushing flow for 10000 gal motor oil is %.1f lb'%Dsg" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Initial mass of motor oil in the tank is 66743.0 lb\n", " Mass fractional loss is 0.0015 \n", " Discharge of motor oil on flushing flow for 10000 gal motor oil is 100.1 lb\n" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": true, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }