{ "metadata": { "name": "", "signature": "sha256:da2384fa5db2cbd49ec84301569b45dd22f0d12dd2e12e0fa83528eb61b2d43b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 25 : Energy Balances How to Account for Chemical Reaction" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.1 page no. 766\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Qa = -393.51 ;\t\t\t# Heat of reaction of reaction (a) - [kJ/g mol C] \n", "Qb = -282.99 ;\t\t\t# Heat of reaction of reaction (b) - [kJ/g mol CO] \n", "del_Ha = Qa ;\t\t\t# Change in enthalpy of reaction A - [kJ/g mol C]\n", "del_Hb = Qb ;\t\t\t# Change in enthalpy of reaction B - [kJ/g mol CO]\n", "\n", "# Calculations\t\n", "del_Hfc = del_Ha - del_Hb ;\t\t\t# Standard heat of formation of CO - [kJ/g mol C]\n", "\n", "# Results\n", "print 'Standard heat of formation of CO is %.2f kJ/g mol C.'%del_Hfc\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard heat of formation of CO is -110.52 kJ/g mol C.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 25.2 page no. 767\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "H_H2 = 0 ;\t\t\t# Standard heat of formation of H2 -[kJ/ g mol H2]\n", "H_Cl2 = 0 ;\t\t\t# Standard heat of formation of Cl2 -[kJ/ g mol Cl2]\n", "H_HCl = -92.311 ;\t\t\t# Standard heat of formation of HCl -[kJ/ g mol HCl]\n", "\n", "# Calculations\n", "H_f = 1*H_HCl - (1./2)*(H_H2 + H_Cl2) ; \t\t\t# Standard heat of formation of HCl by reaction - [kJ/ g mol HCl]\n", "\n", "# Results\n", "print 'Standard heat of formation of HCl(g) is %.3f kJ/g mol HCl.'%H_f\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard heat of formation of HCl(g) is -92.311 kJ/g mol HCl.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 25.3 page no. 771\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "H_fNH3 = -46.191 ;\t\t\t# Standard heat of formation of NH3 -[kJ/ g mol]\n", "H_fO2 = 0 ;\t\t\t#Standard heat of formation of O2 -[kJ/ g mol]\n", "H_fNO = 90.374 ;\t\t\t# Standard heat of formation of NO -[kJ/ g mol]\n", "H_fH2O = -241.826 ;\t\t\t# Standard heat of formation of H2O -[kJ/ g mol]\n", "\n", "# Calculations\n", "H_rxn = ((4*H_fNO + 6*H_fH2O) - (4*H_fNH3 + 5*H_fO2))/4. ;\t\t\t# Heat of above reaction-[kJ/ g mol NH3]\n", "\n", "# Results\n", "print 'Heat of above reaction is %.3f kJ/g mol NH3.'%H_rxn\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat of above reaction is -226.174 kJ/g mol NH3.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 25.4 page no. 773\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P1 = 1. ;\t\t\t# Initial pressure - [atm]\n", "P2 = 1. ;\t\t\t# Final pressure - [atm]\n", "T1 = 500. ;\t\t\t# Initial temperature -[degree C]\n", "T2 = 500. ;\t\t\t# Final temperature -[degree C]\n", "\n", "m_CO2 = 1. ;\t\t\t# Moles of CO2 - [ g mol]\n", "m_H2 = 4. ;\t\t\t# Moles of H2 - [ g mol]\n", "m_H2O = 2. ;\t\t\t# Moles of H2O - [ g mol]\n", "m_CH4 = 1. ;\t\t\t# Moles of CH4 - [ g mol]\n", "\n", "H_fCO2 = -393.250 ;\t\t\t# Heat of formation of CO2 - [kJ/g mol] \n", "H_fH2 = 0. ;\t\t\t# Heat of formation of H2 - [kJ/g mol] \n", "H_fH2O = -241.835 ;\t\t\t# Heat of formation of H2O - [kJ/g mol] \n", "H_fCH4 = -74.848 ;\t\t\t# Heat of formation of CH4 - [kJ/g mol] \n", "\n", "H_CO2 = 21.425 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of CO2 - [kJ/g mol] \n", "H_H2 = 13.834 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of H2 - [kJ/g mol] \n", "H_H2O = 17.010 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of H2O - [kJ/g mol] \n", "H_CH4 = 23.126 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of CH4 - [kJ/g mol] \n", "\n", "# Calculations\n", "H_rxn_25 = (m_CH4*H_fCH4 + m_H2O*H_fH2O) - (m_CO2*H_fCO2 + m_H2*H_fH2) ;\t\t\t# Heat of reaction at 25 C\n", "sum_H_rct = m_CO2*H_CO2 + m_H2*H_H2 ;\t\t\t# sum of heat of formation of reactant - [kJ]\n", "sum_H_pdt = m_CH4*H_CH4 + m_H2O*H_H2O ;\t\t\t#sum of heat of formation of product - [kJ]\n", "# Heat of above reaction is calculated by eqn. 25.4\n", "H_rxn_500 = sum_H_pdt - sum_H_rct + H_rxn_25 ;\t\t\t# Heat of reaction at 500 C\n", "\n", "# Results\n", "print 'Heat of above reaction at 500 degree C and 1 atm is %.1f kJ.'%H_rxn_500\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat of above reaction at 500 degree C and 1 atm is -184.9 kJ.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.5 page no. 775\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "m_CO2 = 1. ;\t\t\t# Moles of CO2 - [ g mol]\n", "m_H2 = 4. ;\t\t\t# Moles of H2 - [ g mol]\n", "m_H2O = 2. ;\t\t\t# Moles of H2O - [ g mol]\n", "m_CH4 = 1. ;\t\t\t# Moles of CH4 - [ g mol]\n", "P1 = 1. ;\t\t\t# Initial pressure - [atm]\n", "P2 = 1. ;\t\t\t# Final pressure - [atm] \n", "\n", "T1_CO2 = 800. ;\t\t\t# Initial temperature of entering CO2 -[K]\n", "T1_H2 = 298. ;\t\t\t# Initial temperature of entering H2 -[K]\n", "T2 = 1000. ;\t\t\t# Temperature of exiting product - [K]\n", "\n", "m1_CO2 = 1. ;\t\t\t# Moles of entering CO2 - [ g mol]\n", "m1_H2 = 4. ;\t\t\t# Moles of entering H2 - [ g mol]\n", "f_con = 70./100 ;\t\t\t# Fractional conversion of CO2 \n", "m2_H2O = 2*f_con ;\t\t\t# Moles of H2O in product - [ g mol]\n", "m2_CH4 = 1*f_con ;\t\t\t# Moles of CH4 in product - [ g mol]\n", "m2_CO2 = m1_CO2*(1-f_con) ;\t\t\t# Moles of CO2 in product - [ g mol]\n", "m2_H2 = m1_H2*(1-f_con) ;\t\t\t# Moles of CO2 in product - [ g mol]\n", "\n", "H_fCO2 = -393.250 ;\t\t\t# Heat of formation of CO2 - [kJ/g mol] \n", "H_fH2 = 0 ;\t\t\t# Heat of formation of H2 - [kJ/g mol] \n", "H_fH2O = -241.835 ;\t\t\t# Heat of formation of H2O - [kJ/g mol] \n", "H_fCH4 = -74.848 ;\t\t\t# Heat of formation of CH4 - [kJ/g mol] \n", "\n", "H1_CO2 = 22.798 ;\t\t\t# Change in enthalpy during temperature change from 298K to 800 K of CO2 - [kJ/g mol] \n", "H1_H2 = 0 ;\t\t\t# Change in enthalpy during temperature change from 298K to 298 K of H2 - [kJ/g mol] \n", "H2_H2O = 25.986 ;\t\t\t# Change in enthalpy during temperature change from 298K to 1000 K of H2O - [kJ/g mol] \n", "H2_CH4 = 38.325 ;\t\t\t# Change in enthalpy during temperature change from 298K to 1000 K of CH4 - [kJ/g mol] \n", "H2_CO2 = 33.396; \t\t\t# Change in enthalpy during temperature change from 298K to 1000 K of CO2 - [kJ/g mol] \n", "H2_H2 = 20.620; \t\t\t# Change in enthalpy during temperature change from 298K to 1000 K of H2 - [kJ/g mol] \n", "\n", "# Calculations\n", "H_rxn_25 = (m_CH4*H_fCH4 + m_H2O*H_fH2O) - (m_CO2*H_fCO2 + m_H2*H_fH2) ;\t\t\t# Standard heat of reaction at 25 C-[kJ]\n", "H_rxn_ac = f_con*H_rxn_25 ;\t\t\t# Heat of reaction actual - [kJ]\n", "sum_H_rct = m1_CO2*H1_CO2 + m1_H2*H1_H2 ;\t\t\t# sum of heat of formation of reactant - [kJ]\n", "sum_H_pdt = m2_CH4*H2_CH4 + m2_H2O*H2_H2O + m2_CO2*H2_CO2 + m2_H2*H2_H2 ;\t\t\t#sum of heat of formation of product - [kJ]\n", "H_rxn = sum_H_pdt - sum_H_rct + H_rxn_ac ;\t\t\t# Heat of reaction -[kJ/ g mol CO2]\n", "\n", "Q = H_rxn ;\t\t\t# Heat transfer to/from the reactor - [kJ]\n", "\n", "# Results\n", "print 'Heat transfer to/from the reactor is %.3f kJ.Since Q is negative , the reactor losses heat.'%Q\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat transfer to/from the reactor is -40.515 kJ.Since Q is negative , the reactor losses heat.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.6 page no. 776\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "H_EtOH =-1330.51 ;\t\t\t# Change in enthalpy of ethanol -[kJ/g mol]\n", "H_Ac = -887.01 ;\t\t\t# Change in enthalpy of acetate -[kJ/g mol]\n", "H_Fr = -221.75 ;\t\t\t# Change in enthalpy of formate -[kJ/g mol]\n", "H_Lc = -1330.51 ;\t\t\t# Change in enthalpy of lactate -[kJ/g mol]\n", "H_Mn = -2882.78 ;\t\t\t# Change in enthalpy of mannitol -[kJ/g mol]\n", "mol_EtOH =1.29 ;\t\t\t#ethanol produced / g mol mannitol -[g mol]\n", "mol_Ac = 0.22 ; \t\t\t#acetate produced / g mol mannitol -[g mol]\n", "mol_Fr = 1.6 ; \t\t\t#formate produced / g mol mannitol-[g mol]\n", "mol_Lc = 0.4 ;\t\t\t#lactate produced / g mol mannitol-[g mol]\n", "mol_Mn = 1.0 ;\t\t\t#mannitol produced / g mol mannitol-[g mol]\n", "B_growth = 40.5 ;\t\t\t# Biomass growth -[g cells/g mol mannitol]\n", "\n", "# Calculations and Results\n", "del_H1 = H_EtOH*mol_EtOH +H_Ac*mol_Ac + H_Fr*mol_Fr + H_Lc*mol_Lc - H_Mn*mol_Mn ;\t\t\t# Net enthalpy change for several products (metabolites) per g mol mannitol consumed -[kJ]\n", "printnt ' (a) Net enthalpy change for several products (metabolites) per g mol mannitol consumed is %.2f kJ.'%del_H1\n", "\n", "\t\t\t#(b)\n", "del_H2 = del_H1 / B_growth ;\t\t\t#Net enthalpy change for several products (metabolites) per g cells produced-[kJ]\n", "print ' (b) Net enthalpy change for several products (metabolites) per g cells produced is %.2f kJ.'%del_H2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " (a) Net enthalpy change for several products (metabolites) per g mol mannitol consumed is 84.28 kJ.\n", " (b) Net enthalpy change for several products (metabolites) per g cells produced is 2.08 kJ.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.7 page no. 777\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Solution \n", "\n", "# Variables\n", "H_Cb = -26. ;\t\t\t#Standard heat of formation of carbaryl(C12H11O2N) -[kJ/ g mol]\n", "H_HCl = -92.311 ;\t\t\t#Standard heat of formation of HCl -[kJ/ g mol]\n", "H_Ma = -20.0 ;\t\t\t#Standard heat of formation of methyl amine(CH3NH2) -[kJ/ g mol]\n", "H_Mi = -9*10**4 ;\t\t\t#Standard heat of formation of methyl isocynate(C2H3NO) -[kJ/ g mol]\n", "H_Nc = -17.9 ;\t\t\t#Standard heat of formation of 1-Napthalenyl chloroformate(C11H7O2Cl) -[kJ/ g mol]\n", "H_N = 30.9 ;\t\t\t#Standard heat of formation of napthol(C10H8O) -[kJ/ g mol]\n", "H_P = -221.85 ;\t\t\t#Standard heat of formation of phosgene(COCl2) -[kJ/ g mol]\n", "\n", "# Calculations\n", "H_rxn_a = (2*H_HCl + 1*H_Mi) - (1*(H_Ma) + 1*H_P ) ;\t\t\t# Heat of reaction (A)-[kJ]\n", "H_rxn_b = (1*H_Cb ) - (1*(H_Mi) + 1*H_N ) ;\t\t\t# Heat of reaction (B)-[kJ]\n", "H_rxn_c = (1*H_Nc) - (1*(H_N) + 1*H_P ) ;\t\t\t# Heat of reaction (C)-[kJ]\n", "H_rxn_d = (1*H_Cb + 1*H_HCl) - (1*(H_Nc) + 1*H_Ma ) ;\t\t\t# Heat of reaction (D)-[kJ]\n", "\n", "# Results\n", "#Bhopal Process\n", "print ' Bhopal process .'\n", "print ' (a) Heat of reaction (A) is %.1e kJ.'%H_rxn_a\n", "print ' (b) Heat of reaction (B) is %.1e kJ.'%H_rxn_b\n", "\n", "#Alternate process\n", "print ' Alternate process .'\n", "print ' (c) Heat of reaction (C) is %.2f kJ.'%H_rxn_c\n", "print ' (d) Heat of reaction (D) is %.2f kJ.'%H_rxn_d\n", "print ' The above data show that capital cost of Bhopal process could be higher than alternate process.'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Bhopal process .\n", " (a) Heat of reaction (A) is -9.0e+04 kJ.\n", " (b) Heat of reaction (B) is 9.0e+04 kJ.\n", " Alternate process .\n", " (c) Heat of reaction (C) is 173.05 kJ.\n", " (d) Heat of reaction (D) is -80.41 kJ.\n", " The above data show that capital cost of Bhopal process could be higher than alternate process.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.8 page no. 782\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P1 = 1. ;\t\t\t# Initial pressure - [atm]\n", "P2 = 1. ;\t\t\t# Final pressure - [atm]\n", "T1 = 500. ;\t\t\t# Initial temperature -[degree C]\n", "T2 = 500. ;\t\t\t# Final temperature -[degree C]\n", "\n", "m_CO2 = 1. ;\t\t\t# Moles of CO2 - [ g mol]\n", "m_H2 = 4. ;\t\t\t# Moles of H2 - [ g mol]\n", "m_H2O = 2. ;\t\t\t# Moles of H2O - [ g mol]\n", "m_CH4 = 1. ;\t\t\t# Moles of CH4 - [ g mol]\n", "\n", "H_fCO2 = -393.250; \t\t\t# Heat of formation of CO2 - [kJ/g mol] \n", "H_fH2 = 0 ;\t\t\t# Heat of formation of H2 - [kJ/g mol] \n", "H_fH2O = -241.835 ;\t\t\t# Heat of formation of H2O - [kJ/g mol] \n", "H_fCH4 = -74.848 ;\t\t\t# Heat of formation of CH4 - [kJ/g mol] \n", "\n", "H_CO2 = 21.425 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of CO2 - [kJ/g mol] \n", "H_H2 = 13.834 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of H2 - [kJ/g mol] \n", "H_H2O = 17.010 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of H2O - [kJ/g mol] \n", "H_CH4 = 23.126 ;\t\t\t# Change in enthalpy during temperature change from 25 to 500 degree C of CH4 - [kJ/g mol] \n", "\n", "# Calculations\n", "H_in = (H_fCO2 + H_CO2)*m_CO2 + (H_fH2 + H_H2)*m_H2 ;\t\t\t# Enthalpy change for inputs -[kJ]\n", "H_out = (H_fH2O + H_H2O)*m_H2O + (H_fCH4 + H_CH4)*m_CH4 ; \t\t\t# Enthalpy change for outputs -[kJ]\n", "del_H = H_out - H_in ;\t\t\t# Net enthalpy change of process -[kJ]\n", "\n", "# Results\n", "print 'Heat of above reaction at 500 degree C and 1 atm is %.1f kJ.'%del_H\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat of above reaction at 500 degree C and 1 atm is -184.9 kJ.\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.9 page no. 783\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Solution \n", "\n", "# Variables\n", "m_CO = 1. ;\t\t\t# Moles of CO input- [g mol]\n", "m1_O2 = 1.5 ;\t\t\t# Moles of O2 input - [g mol]\n", "m_CO2 = 1. ;\t\t\t# Moles of CO2 output - [g mol]\n", "m2_O2 = 1. ;\t\t\t# Moles of O2 output - [g mol]\n", "T_in_CO = 298. ;\t\t\t# Temperature of entering CO -[K]\n", "T_in_O2 = 400. ;\t\t\t#Temperature of entering O2 -[K]\n", "T_out_CO2 = 300. ;\t\t\t# Temperature of exiting CO2 -[K]\n", "T_out_O2 = 300. ;\t\t\t# Temperature of exiting O2 -[K]\n", "\n", "H_fCO = -110.520 ;\t\t\t# Heat of formation of CO - [kJ/g mol] \n", "H_fO2 = 0 ;\t\t\t# Heat of formation of O2 - [kJ/g mol] \n", "H_fCO2 = -393.250 ;\t\t\t# Heat of formation of CO2 - [kJ/g mol] \n", "\n", "H_CO = 0 ;\t\t\t# Change in enthalpy during temperature change from 298K to 298 K of CO - [kJ/g mol] \n", "H1_O2 = 11.619 ;\t\t\t# Change in enthalpy during temperature change from 298K to 400 K of input O2 - [kJ/g mol] \n", "H_CO2 = 11.644 ;\t\t\t# Change in enthalpy during temperature change from 298K to 300 K of CO2 - [kJ/g mol] \n", "H2_O2 = 8.389 ;\t\t\t# Change in enthalpy during temperature change from 298K to 300 K of output O2 - [kJ/g mol] \n", "\n", "# Calculations\n", "H_in = (H_fCO + H_CO)*m_CO + (H_fO2 + H1_O2)*m1_O2 ;\t\t\t# Enthalpy change for inputs -[kJ]\n", "H_out = (H_fCO2 + H_CO2)*m_CO2 + (H_fO2 + H2_O2)*m2_O2 ;\t\t\t# Enthalpy change for inputs -[kJ]\n", "del_H = H_out - H_in ;\t\t\t# Net enthalpy change of process -[kJ]\n", "\n", "# Results\n", "print 'Heat of above reaction is %.1f kJ.'%del_H\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat of above reaction is -280.1 kJ.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.10 page no. 788\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Solution \n", "\n", "# Given \n", "Ex_hv = 29770.0 ;\t\t\t# Experimental heating value of given coal - [kJ/kg]\n", "\n", "C = 71.0/100 ;\t\t\t#Fraction of C in coal \n", "H2 = 5.6/100 ;\t\t\t# Fraction of H2 in coal \n", "N2 = 1.6/100 ;\t\t\t# Fraction of N2 in coal \n", "S = 2.7/100 ;\t\t\t# Fraction of S in coal \n", "ash = 6.1/100 ;\t\t\t# Fraction of ash in coal \n", "O2 = 13.0/100 ;\t\t\t#Fraction of O2 in coal \n", "\n", "# Calculations\n", "HHV = 14544*C + 62028*(H2 - O2/8) + 4050*S ;\t\t\t# Higher heating value (HHV) by Dulong formula -[Btu/lb]\n", "HHV_SI = HHV *1.055/0.454 ;\t\t\t# HHV in SI unt - [kJ/kg]\n", "\n", "# Results\n", "print 'The experimental heating value - %.0f kJ.'%Ex_hv\n", "print ' Higher heating value (HHV) by Dulong formula - %.0f kJ.'%HHV_SI\n", "print ' The two values are quite close.' \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The experimental heating value - 29770 kJ.\n", " Higher heating value (HHV) by Dulong formula - 29980 kJ.\n", " The two values are quite close.\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 25.11 page no. 789\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "H_req = 10**6 ;\t\t\t# Heat requirement - [Btu]\n", "\n", "d_N6 = 60.2 ;\t\t\t# Density of fuel no. 6-[lb/ft**3]\n", "d_N2 = 58.7 ;\t\t\t# Density of fuel no. 2-[lb/ft**3]\n", "S_N6 = 0.72/100 ;\t\t\t# Sulphur content in fuel no. 6\n", "S_N2 = 0.62/100; \t\t\t#Sulphur content in fuel no. 2\n", "lhv_N6 = 155000 ;\t\t\t#Lower heating value of No.6 -[Btu/gal]\n", "lhv_N2 = 120000 ;\t\t\t#Lower heating value of No.2 -[Btu/gal]\n", "\n", "# Calculations\n", "S1 = H_req*d_N6*S_N6/lhv_N6 ;\t\t\t# Sulphur emmited when we use fuel NO. 6-[lb]\n", "S2 = H_req*d_N2*S_N2/lhv_N2 ;\t\t\t# Sulphur emmited when we use fuel NO. 2-[lb]\n", "\n", "# Results\n", "print ' Sulphur emmited when we use fuel NO. 6 is %.2f lb.'%S1 \n", "print ' Sulphur emmited when we use fuel NO. 2 is %.2f lb.'%S2 \n", "print 'Clearly fuel no. 6 should be selected because of its low SO2 emmission.'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Sulphur emmited when we use fuel NO. 6 is 2.80 lb.\n", " Sulphur emmited when we use fuel NO. 2 is 3.03 lb.\n", "Clearly fuel no. 6 should be selected because of its low SO2 emmission.\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": true, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }