{ "metadata": { "name": "", "signature": "sha256:63761cd2f20f542c8cf7d5599bfa09993cda87c6763136710915fa76185904f1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 21 : Energy Terminology Concepts and Units" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 21.1 Page no : 616" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from scipy.integrate import quad\n", "\n", "# Variables\n", "V1 = 0.1 ;\t\t\t# Volume of gas initially -[cubic metres]\n", "V2 = 0.2 ;\t\t\t# Volume of gas finally -[cubic metres]\n", "T1 = 300 ;\t\t\t# Temperature of gas initially -[K]\n", "P1 = 200 ;\t\t\t# Pressure of gas finally -[kPa]\n", "R = 8.314 ;\t\t\t# Universal gas constant \n", "n = (P1*V1)/(T1*R) ;\t\t\t# Moles of gas taken-[kg mol]\n", "#You are asked to calculate work by eqn. 21.1 , but you do not know the F(force) exerted by gas , so write F = P.A, multiply divide A and eqn 21.1 reduces to W= integate(P.dv)\n", "\n", "# Calculations and Results\n", "# Isobaric process see fig E21.1b to see the path followed\n", "def f(V):\n", " return -(P1)\n", "W= quad(f,V1,V2)[0] ;\t\t\t# Work done by gas on piston -[kJ]\n", "print ' (a)Work done by gas on piston for isobaric process is %.0f kJ . ',W\n", "\n", "def f1(V):\n", " return -(T1*R*n/V)\n", "W= quad(f1,V1,V2)[0] ;\t\t\t# Work done by gas on piston -[kJ]\n", "print '(b)Work done by gas on piston for isothermal process is %.2f kJ . ',W\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " (a)Work done by gas on piston for isobaric process is %.0f kJ . -20.0\n", "(b)Work done by gas on piston for isothermal process is %.2f kJ . -13.8629436112\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 21.2 page no. 624\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "id_ = 3. ;\t\t\t# Internal diameter of tube-[cm]\n", "Vf = 0.001 ;\t\t\t# Volume flow rate of water in tube-[cubic meter/s]\n", "rho = 1000. ;\t\t\t# Assumed density of water-[kg/cubic meter] \n", "\n", "# Calculations\n", "rad = id_/2. ;\t\t\t# Radius of tube -[ cm]\n", "a = 3.14*rad**2 ;\t\t\t# Area of flow of tube -[squqre centimeter]\n", "v = Vf*(100)**2/a ;\t\t\t# Velocity of water in tube - [m/s]\n", "KE = v**2/2. ;\t\t\t# Specific(mass=1kg) kinetic energy of water in tube -[J/kg]\n", "\n", "# Results\n", "print 'Specific kinetic energy of water in tube is %.2f J/kg . '%KE\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Specific kinetic energy of water in tube is 1.00 J/kg . \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 21.3 page no. 626\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "# Let water level in first reservoir be the reference plane\n", "h = 40. ;\t\t\t# Difference of water-[ft]\n", "g = 32.2 ;\t\t\t# acceleration due to gravity-[ft/square second]\n", "\n", "# Calculations\n", "PE=g*h/(32.2*778.2) ;\t\t\t#\t\t\t# Specific(mass=1kg) potential energy of water -[Btu/lbm]\n", "\n", "# Results\n", "print 'Specific potential energy of water is %.4f Btu/lbm . '%PE\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Specific potential energy of water is 0.0514 Btu/lbm . \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 21.4 page no : 629" ] }, { "cell_type": "code", "collapsed": true, "input": [ "\n", "\n", "# Variables\n", "#Constant volume process \n", "mol_air = 10. ;\t\t\t# Moles of air-[kg mol]\n", "T1 = 60.+273 ;\t\t\t# Initial temperature of air-[K]\n", "T2 = 30.+273 ;\t\t\t# final temperature of air-[K]\n", "# Additional data needed\n", "Cv = 2.1*10.**4 ; \t\t\t# Specific heat capacity of air at constant volume-[J/(kg mol*C)]\n", "\n", "# Calculations\n", "def f(T):\n", " return mol_air*Cv\n", "del_U = quad(f,T1,T2)[0] ;\t\t\t#Change in internal energy-[J]\n", "\n", "# Results\n", "print 'Change in internal energy is %.1e J . '%del_U\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in internal energy is -6.3e+06 J . \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 21.7 page no : 633" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "#Constant pressure process \n", "mol_air = 10. ;\t\t\t# Moles of air-[kg mol]\n", "T1 = 60+273 ;\t\t\t# Initial temperature of air-[K]\n", "T2 = 30+273 ;\t\t\t# final temperature of air-[K]\n", "\n", "# Calculations\n", "# Additional data needed\n", "Cp = 2.9*10**4 ;\t\t\t# Specific heat capacity of air at constant pressure-[J/(kg mol*C)]\n", "# Use eqn. 21.11 for del_H\n", "def f(T):\n", " return mol_air*Cp\n", "\n", "del_H = quad(f,T1,T2)[0] ;\t\t\t#Change in enthalpy-[J]\n", "print 'Change in enthalpy is %.1e J . '%del_H\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Change in enthalpy is -8.7e+06 J . \n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }