{ "metadata": { "name": "", "signature": "sha256:86277517338e3080962ec366bf78a36ead36dc032944d5f67a8c58022c6af85a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 : Ideal Gases" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.1 Page No. 404\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "m_CO2 = 40. ;\t\t\t# Mass of CO2-[kg]\n", "mol_wt_CO2 = 44. ;\t\t\t# Molecular mass of 1kmol CO2 -[kg]\n", "mol_V = 22.42 ;\t\t\t# Molar of ideal gas at standard condition-[cubic metre/kg mol]\n", "\n", "# Calculations\n", "V_CO2 = (m_CO2 * mol_V)/(mol_wt_CO2);\t\t\t# volume of CO2-[cubic metre]\n", "\n", "# Results\n", "print 'Volume occupied by 40 kg CO2 at standard condition is %.1f cubic metre.'%V_CO2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volume occupied by 40 kg CO2 at standard condition is 20.4 cubic metre.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.2 Page No. 405\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "p =1. ;\t\t\t# Pressure -[atm]\n", "V = 22415. ;\t\t\t# Molar valume -[cubic centimetre/g mol]\n", "T = 273.15 ;\t\t\t# Temperature-[K]\n", "\n", "# Calculations\n", "R = (p*V/T);\t\t\t# Universal gas constant-[(cubic centimetre.atm)/(K.g mol)]\n", "\n", "# Results\n", "print 'Universal gas constant is %.2f (cubic centimetre*atm)/(K*g mol). '%R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Universal gas constant is 82.06 (cubic centimetre*atm)/(K*g mol). \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.3 Page No.406\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "m_CO2 = 88. ;\t\t\t# Mass of CO2-[lb]\n", "mol_wt_CO2 = 44. ;\t\t# Molecular mass of 1 lb mol CO2 -[lb]\n", "mol_V = 359. ; \t\t\t# Molar volume-[cubic feet]\n", "\n", "# State 1-standard condition\n", "P1 = 33.91 ; \t\t\t# Pressure -[ft of water]\n", "T1 = 273. ;\t\t\t# Temperature-[K]\n", "\n", "# State 2\n", "P2 = 32.2 ;\t\t\t# Pressure -[ft of water]\n", "Tc = 15. ;\t\t\t # Temperature-[degree C]\n", "T2 = Tc+273 ;\t\t\t# Temperature-[K]\n", "\n", "# Calculations\n", "V1 = (m_CO2 * mol_V) / (mol_wt_CO2);\n", "V2 = (V1 * T2 * P1) / (T1 * P2);\n", "\n", "# Results\n", "print 'The volume occupied 88 lb of CO2 at given condition is %.0f cubic feet.'%V2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The volume occupied 88 lb of CO2 at given condition is 798 cubic feet.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.4 Page No. 408\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "mol_wt_N2 = 28. ;\t# Molecular mass of 1 kg mol N2 -[kg]\n", "mol_V = 22.42 ;\t\t# Molar of ideal gas at standard condition-[cubic metre/kg mol]\n", "Tc = 27. ;\t\t\t# Temperature-[degree C]\n", "T = Tc + 273. ;\t\t#Temperature-[K]\n", "P = 100. ;\t\t\t#Pressure-[kPa]\n", "\t\t\t\n", "Ps = 101.3 ;\t\t# Pressure -[kPa]\n", "Ts = 273. ;\t\t\t#Temperature-[K]\n", "\n", "# Calculations\n", "V = (T * Ps * mol_V)/(Ts * P) ;\t\t\t# Volume occupied by N2-[cubic metre]\n", "D_N2 = mol_wt_N2/V ;\t\t\t # Density of N2 at given condition-[kg/cubic metre]\n", "\n", "# Results\n", "print ' Density of N2 at given condition is %.3f kg/cubic metre.'%D_N2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Density of N2 at given condition is 1.122 kg/cubic metre.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 13.5 Page No. 409 \n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "mol_wt_N2 = 28. ;\t\t\t# Molecular mass of 1 lb mol N2 -[lb]\n", "mol_wt_air = 29. ;\t\t\t# Molecular mass of 1 lb mol air -[lb]\n", "mol_V = 359. ;\t\t\t # Molar volume of ideal gas-[cubic feet]\n", "\t\n", "Tf = 80. ;\t\t\t# Temperature-[degree F]\n", "T = Tf + 460. ;\t\t#Temperature-[degree Rankine]\n", "P = 745. ;\t\t\t#Pressure-[mm of Hg]\n", "\n", "Ps = 760. ;\t\t\t# Pressure -[mm of Hg]\n", "Ts = 492. ;\t\t\t#Temperature-[degree Rankine]\n", "\n", "# Calculations\n", "D_air = (Ts * P * mol_wt_air)/(T * Ps * mol_V) ;\t\t# Density of air at given condition-[lb/cubic feet]\n", "D_N2 = (Ts * P * mol_wt_N2)/(T * Ps * mol_V) ;\t\t\t# Density of N2 at given condition-[lb/cubic feet]\n", "sg_N2 = D_N2/D_air ;\t\t\t # Specific gravity of N2 compared to air at given condition \n", "\n", "# Results\n", "print ' Specific gravity of N2 compared to air at given condition is %.3f .'%sg_N2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Specific gravity of N2 compared to air at given condition is 0.966 .\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.6 Page No. 414\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "F_gas = 1. ;\t\t\t # Flue gas [kg mol]\n", "mf_CO2 = 14./100 ;\t\t\t# [mol fraction]\n", "mf_O2 = 6./100 ;\t\t\t# [mol fraction]\n", "mf_N2 = 80./100 ;\t\t\t# [mol fraction]\n", "P = 765. ;\t\t\t #Pressure-[mm of Hg]\n", "T = 400. ;\t\t\t # Temperature-[degree F]\n", "\n", "# Calculations\n", "p_CO2 = P * mf_CO2 ;\t\t# Partial pressure of CO2-[mm of Hg]\n", "p_O2 = P * mf_O2 ;\t\t\t# Partial pressure of O2-[mm of Hg]\n", "p_N2 = P * mf_N2 ;\t\t\t# Partial pressure of N2-[mm of Hg]\n", "\n", "# Results\n", "print ' Component pi(Partial pressure-[mm of Hg]) '\n", "print ' CO2 %.1f mm of Hg '%p_CO2\n", "print ' O2 %.1f mm of Hg '%p_O2\n", "print ' N2 %.1f mm of Hg '%p_N2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Component pi(Partial pressure-[mm of Hg]) \n", " CO2 107.1 mm of Hg \n", " O2 45.9 mm of Hg \n", " N2 612.0 mm of Hg \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.7 Page no. 416\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "G = 100. ;\t\t\t# Basis: Pyrolysis Gas-[lb mol] \n", "ub_CO = 10./100 ;\t# fraction of CO left unburnt\n", "ex_air = 40./100 ;\t# fraction of excess air\n", "m_vol = 359. ;\t\t# molar volume of gas at std. cond.-[cubic feet]\n", "Ts = 492. ;\t\t\t# Standard temperature -[degree Rankine]\n", "Ps = 29.92 ;\t\t#Standard pressure -[in. Hg]\n", "\n", "# Calculations\n", "# Analysis of entering gas of entering gas\n", "Tf1 = 90. ;\t\t\t# Temperature of gas-[degree F]\n", "T_gas = Tf1 + 460. ;\t#Temperature of gas-[degree Rankine]\n", "P_gas = 35. ;\t\t\t#Pressure-[in. Hg]\n", "CO2 = 6.4/100 ;\t\t\t# mol fraction of CO2\n", "O2 = 0.1/100 ;\t\t\t# mol fraction of O2\n", "CO = 39./100 ;\t\t\t# mol fraction of CO\n", "H2 = 51.8/100 ;\t\t\t# mol fraction of H2\n", "CH4 = 0.6/100 ;\t\t\t# mol fraction of CH4\n", "N2 = 2.1/100 ;\t\t\t# mol fraction of N2\n", "\n", "# Analysis of entering air\n", "Tf2 = 70. ;\t\t\t # Temperature of air -[degree F]\n", "T_air = Tf2 + 460. ;\t#Temperature of air-[degree Rankine]\n", "P_air = 29.4 ;\t\t\t#Pressure of air [in. Hg]\n", "f_N2 = 79./100 ;\t\t\t# mol fraction of N2\n", "f_O2 = 21./100 ;\t\t\t# mol fraction of O2\n", "\n", "\n", "O2r_O2 = O2 * G ;\t\t\t# O2 required by O2-[lb mol]\n", "O2r_CO = CO * G/2 ;\t\t\t# O2 required by CO-[lb mol]\n", "O2r_H2 = H2 * G/2 ;\t\t\t# O2 required by H2-[lb mol]\n", "O2r_CH4 = G * CH4 * 2 ;\t\t\t# O2 required by CH4-[lb mol]\n", "O2r_total = O2r_O2 + O2r_CO + O2r_H2 + O2r_CH4 ;\t\t\t# Total O2 required-[lb mol]\n", "ex_O2 = ex_air * O2r_total ;\t\t\t# Excess O2-[lb mol]\n", "total_O2 = ex_O2 + O2r_total ;\t\t\t# Total amt of O2 in air-[lb mol]\n", "total_N2 = total_O2 * (f_N2/f_O2);\t\t\t# Total amt of in air-[lb mol]\n", "air = total_O2 + total_N2 ;\t\t\t# Total air entering -[lb mol]\n", "\n", "# Product analysis\n", "P_CO = ub_CO * CO * G ;\t\t\t#Unburnt CO in P-[lb mol]\n", "P_N2 = N2 * G + total_N2 ;\t\t\t# N2 in P-[lb mol]\n", "P_CO2 = (CO2 + CO + CH4) * G - 1 * P_CO;\t\t\t#CO2 in P-[lb mol]\n", "P_H2O = (H2 + 2 * CH4) * G ;\t\t\t# H2 in P-[lb mol]\n", "P_O2 = (CO2 + O2 + 0.5 * CO) * G + total_O2 -P_CO2-0.5 * (P_H2O + P_CO);\t\t\t# O2 in P-[lb mol]\n", "P = P_CO + P_N2 + P_CO2 + P_H2O + P_O2 ;\t\t\t# Product-[lb mol]\n", "Tf3 = 400 ;\t\t\t# Temperature of product-[degree F]\n", "T_prod = Tf3 + 460 ;\t\t\t#Temperature of product-[degree Rankine]\n", "P_prod = 35 ;\t\t\t# Pressure of product -[in.Hg]\n", "V_gas = (G * m_vol * T_gas * Ps)/(Ts * P_gas);\n", "V_air = (air * m_vol * T_air * Ps)/(Ts * P_air);\n", "V_prod = (P * m_vol * T_prod * Ps)/(Ts * P_prod);\n", "air_ft3 = V_air/V_gas ;\t\t\t#Air supplied per ft**3 of gas entered-[cubic feet]\n", "P_ft3 = V_prod/V_gas ;\t\t\t#Product gas produced per ft**3 of gas entered-[cubic feet]\n", "\n", "# Results\n", "print ' Air supplied per ft**3 of gas entered %.2f cubic feet. '%air_ft3\n", "print ' Product gas produced per ft**3 of gas entered %.2f cubic feet.'%P_ft3\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Air supplied per ft**3 of gas entered 3.57 cubic feet. \n", " Product gas produced per ft**3 of gas entered 5.75 cubic feet.\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.8 Page No. 419\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T1c = 15. ;\t\t\t # Temperature of F & P -[degree C] \n", "T1 = 273. + T1c ;S\t# Temperature of F & P -[K] \n", "P1 = 105. ;\t\t\t# Pressure of F & P -[kPa]\n", "\n", "# Calculations\n", "# F analysis\n", "F_CO2 = 1.2/100 ;\t\t\t# Volume fraction \n", "F_odr = 98.8/100 ;\t\t\t# Volume fraction \n", "\n", "# P analysis\n", "P_CO2 = 3.4/100 ;\t\t\t# Volume fraction \n", "P_odr = 96.6/100 ;\t\t\t# Volume fraction \n", " \n", "Tc_CO2 = 7. ;\t\t\t#Temperature CO2 -[degree C] \n", "T_CO2 = 273. + Tc_CO2 ;\t\t\t# Temperature CO2 -[K]\n", "P_CO2 = 131. ;\t\t\t# Pressure of CO2 -[kPa]\n", "CO2 = 0.0917 ;\t\t\t# Volume flow rate of CO2-[cubic metre/min]\n", "# Convert given volume flow rate of CO2 at temperature of F & P\n", "nw_CO2 = (CO2 * T1 * P_CO2)/(T_CO2 * P1) ;\t\t\t# volume flow rate of CO2 at temperature of F & P-[cubic metre]\n", "\n", "from numpy import matrix\n", "a = matrix([[F_odr,-P_odr],[1, -1]]);\t\t\t# Matrix formed by coefficients of unknown\n", "b = matrix([[0],[-nw_CO2]]) ;\t\t\t# Matrix formed by constants\n", "a = a.I\n", "x = a*b ;\t\t\t# matrix of solution, x(1) = F;x(2) = P\n", "F = x[0] ;\t\t\t#Volume flow rate of entering gas-[cubic metre/min]\n", "P = x[1] ;\t\t\t#Volume flow rate of product [cubic metre/min]\n", "\n", "# Results\n", "print 'Volume flow rate of entering gas is %.2f cubic metre/min'%F\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volume flow rate of entering gas is 5.17 cubic metre/min\n" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": true, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }