{ "metadata": { "name": "", "signature": "sha256:d460554b2abe6f6d6700d68291fcbf83cdf7b3bd9d716f5a9395eef88b744934" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 : Turbomachines:Elementary Analysis" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1 Page No : 426" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from sympy.functions.elementary.trigonometric import acot\n", "\n", "#initialisation of variables\n", "rt= 1.3 \t#ft\n", "rr= 0.6 \t#ft\n", "Q= 75. \t#ft**3 flow rate\n", "rm= 0.95\n", "w1= 40. \t#rev/sec \n", "bim= 153. \t#degrees blade inlet angle\n", "bom= 147. \t#degrees blade outlet angle\n", "w= 62.4 \t#lb/ft**3\n", "g= 32.2 \t#ft/sec**2\n", "\t\n", "#CALCULATIONS\n", "A= round(math.pi*(rt**2-rr**2),2)\n", "Va= round(Q/A,2)\n", "Vbm= rm*w1\n", "#a= -1/math.degrees(math.atan(-Vbm/Va))\n", "a = math.degrees(acot(-Vbm/Va))\n", "im= a-bim\n", "vwm= Vbm+Va*1/math.tan(math.radians(bom))\n", "dvwm= rm*vwm\n", "C= w*Q*dvwm/g\n", "Cw= C*w1\n", "dp= Cw/Q\n", "\n", "#RESULTS\n", "print ' Incidence = %.1f degrees'%(im) \n", "print ' Oulet velocity = %.2f ft/sec'%(vwm)\n", "print ' Change of whirl at the mean radius = %.2f ft**2/sec'%(dvwm)\n", "\n", "print ' Torque = %.f lbf/ft'%(C)\n", "print ' Rate of working = %.f ft lbf/sec'%(Cw)\n", "print ' Workdone by the rotor = %.f lbf/ft**2'%(dp)\n", "\n", "# note : answer in book is wrong. please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Incidence = -178.3 degrees\n", " Oulet velocity = 10.37 ft/sec\n", " Change of whirl at the mean radius = 9.86 ft**2/sec\n", " Torque = 1432 lbf/ft\n", " Rate of working = 57300 ft lbf/sec\n", " Workdone by the rotor = 764 lbf/ft**2\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2 Page No : 428" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "vbm= 38. \t#ft/sec\n", "va= 17.94 \t#ft/sec\n", "a= 147.5 \t#degrees\n", "vwm= 10.37 \t#ft/sec\n", "C= 1430. \t#lbf/ft\n", "P= 763. \t#lbf/ft**2\n", "\t\n", "#CALCULATIONS\n", "vwm1= vbm+va*1/math.tan(math.radians(a))\n", "p= (vwm-vwm1)/vwm\n", "C1= C*(1-p)\n", "P1= P*(1-p)\n", "\t\n", "#RESULTS\n", "print ' Oulet Velocity = %.2f ft/sec'%(vwm1) \n", "print ' Torque = %.f lbf/ft'%(round(C1,-1))\n", "print ' Workdone by the rotor = %.f lbf/ft**2'%(P1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Oulet Velocity = 9.84 ft/sec\n", " Torque = 1360 lbf/ft\n", " Workdone by the rotor = 724 lbf/ft**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3 Page No : 430" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from sympy.functions.elementary.trigonometric import acot\n", "\t\n", "#initialisation of variables\n", "a= 154 \t #degrees\n", "vbm= 38 \t#ft/sec\n", "bom= 147 \t#degrees outlet angle\n", "vwm= -7.78 \t#ft/sec outlet whirl velocity\n", "w= 62.4 \t#lbf/ft**3\n", "g= 32.2 \t#ft/sec**2\n", "vb= 38 \t#ft/sec velocity\n", "A= 4.18 \t#ft**2 flow area\n", "e= 0.95\n", "\t\n", "#CALCULATIONS\n", "vat= (vwm-vb)*math.tan(math.radians(bom))\n", "Q= vat*A\n", "#a1= 1/math.tan(math.radians(-vbm/vat))\n", "a1 = math.degrees(acot(-vbm/vat))\n", "imt= a1-a\n", "C= w*Q*vwm*e/g\n", "\n", "#RESULTS\n", "print ' Flow rate = %.1f ft**3'%(Q)\n", "print ' Incidence angle= %.f degrees'%(imt)\n", "print ' Torque= %.f lbf ft'%(C)\n", "#Incorrect value for a1 in textbook. Hence the difference in answers" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Flow rate = 124.3 ft**3\n", " Incidence angle= -192 degrees\n", " Torque= -1780 lbf ft\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4 Page No : 435" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import *\n", "\t\n", "#initialisation of variables\n", "rt= 0.5 \t#ft radius\n", "rr= 0.16 \t#ft root radius\n", "dv1= 88.3 \t#ft/sec\n", "b= 150. \t#degrees\n", "r= array([0.16, 0.3, 0.5])\n", "vw= array([2.5, 5, 7.5])\n", "vb= array([46.6, 88.3, 132.5])\n", "vrb= array([44.16, 88.3, 132.5])\n", "v1= array([-1.154, -0.385])\n", "\t\n", "#CALCULATIONS\n", "A= math.pi*(rt**2-rr**2)\n", "Va= -dv1*math.tan(math.radians(b))\n", "Q= Va*A\n", "ari = degrees((arctan(Va/(vw - vb)))) + 180\n", "ari = array([ari[0],ari[2]])\n", "#a= tan(radians(v1))+180\n", "b = degrees(math.tan(0.577))\n", "i = ari - 150\n", "\n", "#RESULTS\n", "print ' Velocity = %.2f ft/sec'%(Va)\n", "print ' Flow rate = %.1f ft**3'%(Q)\n", "\n", "print (v1)\n", "print (ari)\n", "print (i)\n", "\n", "# rounding off error. and for 'i' answer is wrong. please check. " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity = 50.98 ft/sec\n", " Flow rate = 35.9 ft**3\n", "[-1.154 -0.385]\n", "[ 130.86126801 157.81238868]\n", "[-19.13873199 7.81238868]\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.5 Page No : 436" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import *\n", "\t\n", "#initialisation of variables\n", "rt= 0.5 \t#ft\n", "rr= 0.16 \t#ft\n", "dv1= 88.3 \t#ft/sec\n", "b= 150. \t#degrees\n", "a= 5. \t#degrees mean radius\n", "v1= array([-0.933 ,-0.311])\n", "i= array([1.0, 5.0 ,6.7])\n", "\t\n", "#CALCULATIONS\n", "b1= b+a\n", "A= math.pi*(rt**2-rr**2)\n", "Va= -dv1*math.radians(math.tan(b1))\n", "Q= Va*A\n", "a1= degrees(tan(v1))+180\n", "\n", "\t\n", "#RESULTS\n", "print ' Velocity = %.2f ft/sec'%(Va)\n", "print ' Flow rate = %.1f ft**3/sec'%(Q)\n", "\n", "print (v1)\n", "print (a1)\n", "print (i)\n", "#Incorrect calculations in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity = -2.76 ft/sec\n", " Flow rate = -1.9 ft**3/sec\n", "[-0.933 -0.311]\n", "[ 102.69071396 161.58339075]\n", "[ 1. 5. 6.7]\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.6 Page No : 439" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "r= 1. \t#in\n", "b= 0.75 \t#in rotor inlet width\n", "w= 180. \t#rev/sec\n", "B= 120. \t#degrees blade inlet angle\n", "Bo= 150. \t#degrees blade outlet angle\n", "ro= 3. \t#ft\n", "bo= 0.5 \t#ft\n", "Vbo= 180. \t#ft/sec\n", "w1= 62.4 \t#lbf/ft**3 density\n", "g= 32.2 \t#ft/sec**2\n", "\t\n", "#CALCULATIONS\n", "Q= -2*math.pi*(r/12)**2*(b/12)*w*math.tan(math.radians(B))\n", "Vfo= Q/(2*math.pi*(ro/12)*(bo/12))\n", "Vwo= Vbo*(ro/12)+Vfo*1/math.tan(math.radians(Bo))\n", "C= w1*Q*Vwo*(ro/12)/g\n", "dp= w1*Vwo*w*(ro/12)/g\n", "ari= degrees(math.atan((-Q*0.8/(2*math.pi*(r/12)**2*(b/12)*w))))+180\n", "i1= ari-B\n", "\n", "#RESULTS\n", "print ' Flow rate = %.2f ft**3/sec'%(Q)\n", "print ' radial velocity= %.2f ft/sec'%(Vfo)\n", "print ' outlet whirl velocity= %.2f ft/sec'%(Vwo)\n", "print ' Torque= %.2f lbf ft'%(C)\n", "print ' Stagnant pressure = %.f lbf/ft**2'%(dp)\n", "print ' Incidence angle = %.1f degrees'%(i1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Flow rate = 0.85 ft**3/sec\n", " radial velocity= 12.99 ft/sec\n", " outlet whirl velocity= 22.50 ft/sec\n", " Torque= 9.27 lbf ft\n", " Stagnant pressure = 1962 lbf/ft**2\n", " Incidence angle = 5.8 degrees\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.7 Page No : 447" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "r= 1.4\n", "Mai= 0.5 \t#ft/sec mach number\n", "T= 582. \t#R temperature\n", "psi= 3040. \t#lbf/in**2 pressure\n", "R= 53.3 \t #ft lbf/lbm gas\n", "g= 32.2 \t#ft/sec**2\n", "Vwi= 300. \t#ft/sec velocity\n", "m= 35. \t#lb/sec\n", "rm= 0.7 \t #ft radius\n", "rp= 4.25\n", "w= 1200. \t#rev/sec\n", "cp= 0.24\n", "J= 778. \t#lb\n", "\t\n", "#CALCULATIONS\n", "tr= 1+0.5*(r-1)*Mai**2\n", "Ti= round(T/tr)\n", "pr= tr**(r/(r-1))\n", "pi= psi/pr\n", "ai= pi/(R*Ti)\n", "Vi= Mai*(r*R*g*Ti)**0.5\n", "Vai= math.sqrt(Vi**2-Vwi**2)\n", "h= m/(2*math.pi*ai*rm*Vai)\n", "pr1= rp**(1./12)\n", "Vwo= Vwi+(pr1**((r-1)/r)-1)*(cp*J*g*T/(rm*w))\n", "BO= 1/math.tan(math.radians((Vwo-w*rm)/Vai))\n", "\n", "\n", "#RESULTS\n", "print ' Absolute air velocity = %.f ft/sec'%(Vi)\n", "print ' air velocity = %.f ft/sec'%(Vai)\n", "print ' Blade height = %.3f ft'%(h)\n", "print ' velocity = %.f ft/sec'%(Vwo)\n", "print ' outlet balde angle = %.1f degrees'%(BO) #incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Absolute air velocity = 577 ft/sec\n", " air velocity = 493 ft/sec\n", " Blade height = 0.186 ft\n", " velocity = 446 ft/sec\n", " outlet balde angle = -71.7 degrees\n" ] } ], "prompt_number": 30 } ], "metadata": {} } ] }