{ "metadata": { "name": "", "signature": "sha256:912103c870040cf2e80e26b9450874f8f07874fb3d9db28d3d6ce1077a023edc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 : Steady, One-Dimensional, Reversible Flow" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1 Page No : 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "g= 32.2 \t#ft/sec**2 gravitational acceleration\n", "h= 4. \t#ft diameter\n", "d2= 0.16 \t#ft\n", "d1= 0.3 \t#ft\n", "dp= 13.6 \t#lbf/in**2 mercury\n", "\t\n", "#CALCULATIONS\n", "Q= (math.pi/4)*math.sqrt(2*g*dp*h/((1/d2**4)-(1/d1**4)))\n", "\t\n", "#RESULTS\n", "print 'Volumetric flow rate = %.2f ft**3/sec'%(Q)\n", "\n", "# note: book answer is not accurate." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volumetric flow rate = 1.24 ft**3/sec\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2 Page No : 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "w= 0.0765 \t#lbm/ft**3 density\n", "v1= 120. \t#ft/sec velocity\n", "go = 62.4 \t#lmb/ft**3\n", "\t\n", "#CALCULATIONS\n", "dp= (w*v1**2)/(2*go)\n", "\t\n", "#RESULTS\n", "print 'Difference in pressure= %.2f lbf/ft**2'%(dp)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Difference in pressure= 8.83 lbf/ft**2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3 Page No : 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "r=1.4\n", "g= 32.2 \t#ft/sec**2 gas\n", "R= 53.3 \t#lbf ft/lbm\n", "T1= 760. \t#R Temperature\n", "p2= 2. \t#lbf/in**2\n", "p1= 3. \t #lbf/in**2\n", "\t\n", "#CALCULATIONS\n", "V2= math.sqrt(2*r*R*g*T1*(1-(p2/p1)**((r-1)/r))/(r-1))\n", "\t\n", "#RESULTS\n", "print 'Velocity in working section = %.f ft/sec'%(V2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity in working section = 999 ft/sec\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4 Page No : 166" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "y = 1.4\n", "g = 32.2 \t#ft/sec**2\n", "R = 53.3 \t#lbf ft/lbm\n", "T = 32. \t#C air\n", "T1 = 2000. \t#R air\n", "y1 = 1.32\n", "p = 1440. \t#lbf/in**2\n", "v1 = 1.2306 \t #ft**3/lbm\n", "v2 = 1.2546 \t #ft**3/lbm\n", "bm = 3.13*10**5 \t#lbf/in**2\n", "w = 62.4 \t #lbf/ft**3\n", "\t\n", "#CALCULATIONS\n", "a1= math.sqrt(y*R*(460+T)*g)\n", "a2= math.sqrt(y1*R*T1*g)\n", "r2= p/(v1-v2)\n", "a3= math.sqrt(-g*(v1+v2)**2*0.5**2*r2)\n", "a4= math.sqrt(bm*144*g/w)\n", "\t\n", "#RESULTS\n", "print ' Acoustic veloctiy in air at 32 F = %.f ft/sec'%(a1)\n", "print ' Acoustic veloctiy in air at 2000 R = %.f ft/sec'%(a2)\n", "print ' Acoustic veloctiy in steam at 480 F = %.f ft/sec'%(a3)\n", "print ' Acoustic veloctiy in water at 60 F = %.f ft/sec'%(a4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Acoustic veloctiy in air at 32 F = 1087 ft/sec\n", " Acoustic veloctiy in air at 2000 R = 2129 ft/sec\n", " Acoustic veloctiy in steam at 480 F = 1727 ft/sec\n", " Acoustic veloctiy in water at 60 F = 4823 ft/sec\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5 Page No : 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "r= 1.4\n", "ma2= 2.5 \t#ft/sec\n", "g= 32.17 \t#ft/sec**2\n", "p2= 1. \t#lbf/in**2\n", "ps= 17.08 \t#lbf/in**2\n", "ps2= 75. \t#lbf/in**2\n", "Ts= 720. \t#R\n", "R= 53.3 \t#lbf ft/lbm gas\n", "A= 4. \t#ft**2 flow area\n", "ps3= 0.4 \t#lbf/in**2\n", "A2= 0.685 \t#ft**2\n", "P= 5. \t#per cent throat area\n", "\t\n", "#CALCULATIONS\n", "R1= (1+0.5*(r-1)*ma2**2)**(r/(r-1))\n", "R2= (2*(r/(r-1))*(p2/ps)**(2/(r))*(1-(p2/ps)**((r-1)/r)))**0.5\n", "m2= R2*ps2*144*(g/(R*Ts))**0.5*0.1\n", "m= m2*A\n", "At= A*R2/A2\n", "m1= m*(1-(P/100))\n", "mrp= (1-(P/100))*R2\n", "\t\n", "#RESULTS\n", "print ' Mass flow rate= %.1f lbm/sec'%(m)\n", "print ' Area of throat= %.3f ft**2'%(At)\n", "print ' Mass flow rate= %.1f lbm/sec'%(m1)\n", "print ' Mass flow rate parameter = %.4f'%(mrp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass flow rate= 32.5 lbm/sec\n", " Area of throat= 1.517 ft**2\n", " Mass flow rate= 30.9 lbm/sec\n", " Mass flow rate parameter = 0.2468\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7 Page No : 181" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "r1= 10. \t#ft point - 1\n", "r2= 0.2 \t#miles point - 2\n", "w= 0.0765 \t#lbm/ft**2 density\n", "g= 32.2 \t#ft/sec**2\n", "V1= 1. \t#ft/sec velocity\n", "\t\n", "#CALCULATIONS\n", "k= r2*5280*V1 \n", "dp= w*k**2*10*((1/r1)**2-(1/(5280*r2))**2)/(2*g)\n", "\t\n", "#RESULTS\n", "print 'k = %.f ft**2/sec'%(k)\n", "print ' pressure difference = %.1f lbf/ft**2'%(dp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "k = 1056 ft**2/sec\n", " pressure difference = 132.5 lbf/ft**2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.9 Page No : 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "w= 12. \t#ft wide\n", "q= 300. \t#ft**3/sec rate\n", "h= 10. \t#ft depth upstream of the gate\n", "g= 32.2 \t#ft/sec**2\n", "R= 2.6\n", "\t\n", "#CALCULATIONS\n", "hc= ((q/12)**2/g)**(1./3)\n", "r= h/hc\n", "h1= hc*(((h/hc)+0.5*(hc/h)**2)-0.5*R**2)\n", "\t\n", "#RESULTS\n", "print ' hc = %.2f ft'%(hc)\n", "print ' stream depth = %.3f ft'%(h1)\n", "#rounding-off error\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " hc = 2.69 ft\n", " stream depth = 1.013 ft\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.10 Page No : 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "Q= 400. \t#ft**3/sec flow rate\n", "b1= 25. \t#ft channel width\n", "b2= 20. \t#ft channel width\n", "h1= 6. \t#ft stream depth\n", "z1= 2.5 \t#ft elevation of channel bottom\n", "z2= 3.3 \t#ft elevation of channel bottom\n", "g= 32.2 \t#ft/sec**2\n", "\t\n", "#CALCULATIONS\n", "hc1= (Q**2/(g*b1**2))**(1./3)\n", "hc2= (Q**2/(g*b2**2))**(1./3)\n", "r= (hc1/hc2)*((h1/hc1)+0.5*(hc1/h1)**2)+((z1-z2)/hc2)\n", "\t\n", "#RESULTS\n", "print ' hc1 = %.3f ft'%(hc1)\n", "print ' hc2 = %.3f ft'%(hc2)\n", "print ' Ratio = %.3f '%(r)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " hc1 = 1.996 ft\n", " hc2 = 2.316 ft\n", " Ratio = 2.293 \n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }