{ "metadata": { "name": "", "signature": "sha256:bc77360c046c25bc1074d9e1441ee10dd742c14709d1f92baa61c939b8a28b76" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14 : Further Developments" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.1 Page No : 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import math \n", "from matplotlib.pyplot import *\n", "\t\n", "#initialisation of variables\n", "a= 60.5\n", "Q= 0.2 \t#ft**3/sec flow rate\n", "d= 3. \t#in diameter\n", "u= 0.0325\n", "g= 32.2 \t#ft/sec**2\n", "T= [50.0, 60.0, 70.0, 80.0, 90.0, 100.0]\n", "Ep= [294.5, 188.6, 113.2, 60.4, 37.7, 24.5]\n", "Eh= [0 ,69.9, 139.8, 209.7, 279.5, 349.4]\n", "Et= [295, 258, 253, 270, 317, 374]\n", "\t\n", "#CALCULATIONS\n", "re= a*4*Q/(math.pi*(d/12)*u*g)\n", "\t\n", "#RESULTS\n", "print 'Reynolds Number = %.1f '%(re)\n", "print (T)\n", "print (Ep)\n", "print (Eh)\n", "print (Et)\n", "plot(T,Ep)\n", "plot(T,Eh)\n", "plot(T,Et)\n", "\n", "xlabel(\"T (F)\")\n", "ylabel(\"Eh,Ep,Eh&Ep (kW)\")\n", "suptitle(\"Variations of Ep, Eh and (Ep+Eh) with T\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Reynolds Number = 58.9 \n", "[50.0, 60.0, 70.0, 80.0, 90.0, 100.0]\n", "[294.5, 188.6, 113.2, 60.4, 37.7, 24.5]\n", "[0, 69.9, 139.8, 209.7, 279.5, 349.4]\n", "[295, 258, 253, 270, 317, 374]\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 1, "text": [ "<matplotlib.text.Text at 0x2b11ed0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEhCAYAAABhpec9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtczvf7wPFXNeccJnIKmTmV0sFhKHKMYma2YRg2xoaS\n44ZNGM2GsNl+9p0xs4PDbLblOMqZME2OI0zlVHKKzr1/f3zWTVRS3d33Xdfz8ejh7u7+fD7XfZf7\nut+n622mlFIIIYQQ2TA3dABCCCGMmyQKIYQQOZJEIYQQIkeSKIQQQuRIEoUQQogcSaIQQgiRI0kU\nJqZjx45s3bo1030LFy7k3XffzfU5pk+fzvbt23N8zLfffsuVK1d03w8fPpxTp049XbAFYPz48TRp\n0oTJkydnun/FihVUrVoVZ2dn3dfp06fzdI0hQ4bw3HPP6c7j5uYGgL+/P/Pnz8/3c3gSW1tb4uLi\nsvxZ586duXv3LgAWFhaZnu8nn3ySr+tevHiRMmXKZDrnqlWrALC0tMzymMWLF/Pdd9/l6Xq///47\nc+fOBeDXX3/N9Pfk4eHBkSNHsj02PDxcF6OVlZXu99W1a9c8xSKekhIm5auvvlJDhw7NdN8LL7yg\ndu/enavj09LScvU4Dw8Pdfjw4aeOr6BVrFhRpaenP3b/ihUr1JgxYwrkGkOGDFE///zzY/f7+/ur\nefPmFcg1cmJra6tu3Ljx2P3bt29X7777ru57S0vLPF+jffv26uLFi5nuu3DhgmratGmWj8/uWnfu\n3FEtWrTIcxwZBg8erNatW6f7/mn+3rL7fQn9kRaFienTpw9BQUGkpqYC2qfCy5cv4+bmxogRI2jR\nogUNGzbkvffe0x1ja2vLe++9R6tWrVi3bh1Dhgzh559/BrRPzS1btqRx48YMGTKE9PR01q1bx+HD\nhxkwYAAuLi4kJiZm+sS3fPly7OzssLOzY+zYsbrrWFpaMm3aNN0nv4wWyY8//oiDgwPOzs64u7s/\n9pzS09MZM2aM7pwrV64E4MUXXyQ+Ph4XFxfWrFnz2HEqi7WiISEhtGvXjhdffJFGjRoxdOjQLB+X\nm3MBnDx5ks6dO1O3bl3mzZuX5WNGjhyZ7eue8fo2atSI48ePAxATE4O7uztOTk68/fbb2V77hx9+\noFevXk+M3dbWlsmTJ9O8eXOaNWvGmTNnHnuMmZkZZmZmTzzXw7L6XZYvXx4rKytOnDiR6bFpaWk8\n99xzANy6dQsLCwv27NkDQLt27Th37hwrVqxgzJgx7N+/n99//52JEyfi4uLC+fPnAVi7di1t2rSh\nXr167NixI8fYcvM7FQXIoGlK5EmPHj3Uhg0blFJKBQQEqIkTJyqllLp9+7ZSSqnU1NRMn9BsbW3V\nggULdMc//Iks4xillBo0aJDuU56Hh4c6cuSI7mcZ3//777+qVq1a6ubNmyotLU117txZ/fTTT0op\npczMzNSmTZuUUkpNmjRJTZ8+XSmllJ2dnbp+/bpSSqn4+PjHns/333+vPD09lVJK3bhxQ9WsWVNF\nR0crpbL/ZLt8+XJVtWpV5eTkpJycnJSzs7NKSEhQwcHBqnTp0urSpUsqPT1deXp6qh9++CHH13Pw\n4MGqXr16unMNHDhQKaXU9OnTVdu2bVVaWpqKjY1Vzz77rEpKSnrs+Jxe9y+//FIppdQXX3yhBg8e\nrJRS6u2331Zz5sxRSim1ZcsWZWZmlmWLonHjxpnut7Cw0MXo5OSk1qxZo7vO3Llzda9l165dHzuX\nh4dHli2KMmXKZDrnnj17lFLZ/y6VUurDDz9UX3zxxWPX6Natmzpx4oT6/fffVYsWLdTs2bNVYmKi\nqlevnlJK+52NHj1aKfV4q8DDw0NNnjxZKaXUxo0bVfv27R87f4YhQ4Zkao0I/ZMWhQnq378/P/30\nEwCrV6+mf//+ACxbtoxmzZrh6urKiRMnMn2yfOWVV7I81x9//IGrqyvNmjVjx44dmY5Rj3xqU0px\n4MABOnfuTKVKlTA3N6d///7s3r0bgJIlS9KtWzcAXF1diYyMBLRPlAMHDuSrr74iISHhsRj27t1L\nv379AKhcuTKdOnVi//79Ob4GZmZm9OvXj6NHj3L06FH++usvSpcuDUDLli2pXbs2ZmZm9O3bV/fJ\nNqdzzZs3T3eujD54MzMzvL29MTc3x8rKiurVq3P9+vXHjs/pdc9oEbi4uOhejz179uh+Z127duXZ\nZ5/NMq7Lly9TuXJl3fdlypTRxXj06FFeffVV3c9ee+01AF599VXda7d8+XJdi+Dw4cN4eXnh7OxM\nnz59dMfVr18/0znbtm0LZP+7BKhZsyYXL158LF53d3d27drF7t27ef/999mzZw+HDx+mRYsWWT6/\nR/++snqthHGQRGGCXnzxRbZv387Ro0e5f/8+zs7OnDlzhiVLlrB3717CwsLw9vbWdU8BlCtX7rHz\nxMfHM3bsWIKCgvj7778ZPnx4pmOy6qowMzPL9B9cKaV7XIkSJXT3m5ubk56eDsCXX37JrFmzuHLl\nCq6urlkO3D56ztzI7nEPx/1wfHlRsmRJ3W0LCwvdc8rwpNe9VKlSjx376GuoL0OHDtUlgObNm7Np\n0yaOHj2q63bMSXa/S8j+NW3Xrh27du0iNDQULy8vbt26pesKzMqj58jqtRLGQRKFCbK0tKRDhw4M\nHTqU119/HYDExEQsLS0pV64csbGxbNq06YnnSU1NxdzcnEqVKpGQkMDatWt1PytTpgz37t3L9Hgz\nMzNat27Njh07uHXrFunp6axZsybbN4IMFy9epGXLlkyfPp1q1ao99mnU3d2dtWvXopQiLi6O4OBg\nWrduneM5c3qjDQ0NJTIyEqUUa9eu1c1ieuONNzh06NBTny8neXnd3dzcWL16NQDbtm3j5s2bWT6u\nZs2a3LhxI1dxrFu3TvdvmzZtsnxMQSWnK1euYGtr+9j9LVu2ZN++fVhYWFCqVCmaNWvG0qVLs/z7\nyOrvSxivZwwdgMib/v378/LLL+sGeZs1a4aDgwMNGjSgfv36ujfHnFSqVImhQ4fSuHFj6tatS6tW\nrXQ/GzRoEEOHDqVChQrs27dPd7+NjQ0zZ87UvZF7enrqukAe/oT48OCpn58f58+fJz09nQ4dOuDi\n4pIpjr59+7J3717s7OwwMzMjICCAmjVrPnbOh5mZmbF69epM3UpffPEFZmZmtGjRgtGjR3P69Gna\ntm2r69YKDw+nVq1aWZ5v4sSJfPTRR7pzHzx4MMfrZ8jt6/7w6zFr1iz69OnDTz/9RKtWrahbt26W\nx7i5uXH48GE8PT0BSEhIwNnZWffz7t27M2fOHABiY2Np3rw5qampWQ78Z/dcIiIiMp3zrbfeYvTo\n0dn+LkFLxFkN7JcsWZI6derwwgsvAFoLY/Xq1Tg4ODx2nr59+zJs2DACAwN1Se5JsT7Nz0XBMlOF\n0QYWopCEhIQwf/58fv/990z337lzh+HDh+s+yZuCkJAQVq9ezZdffpnj4+rVq8eRI0cyjWfoy507\nd+jUqVO2LTNRNEnXkyhSspsGWqFCBZNKEqAtQjt79qxuwV12CvPT9YoVK/D19S206wnjIC0KIYQQ\nOZIWhRBCiBxJohBCCJEjSRRCCCFyJIlCCCFEjiRRCCGEyJEkCiGEEDmSRCGEECJHek8UaWlpODs7\n07NnTwDi4uLo0qULjo6OeHp6cuvWLd1jAwICsLOzw8HB4bFd3IQQQhiG3hPFokWLdDV8QNuG09vb\nm2PHjtG9e3emT58OwJEjR1i/fj3h4eFs3ryZESNGkJycrO/whBBCPIFeE0VUVBQbN25k2LBhusqV\nGzduZNCgQQAMHDiQoKAgAIKCgujXrx8WFhbUqlULe3t7QkND9RmeEEKIXNBrovDz8+PTTz/F3PzB\nZWJiYrCysgKgSpUquo1goqOjsbGx0T3OxsaGqKgofYYnhBAiF/SWKP744w+sra1xdnaW/W2FEMKE\n6W0/in379vHbb7+xceNGEhMTuXPnDoMGDaJq1arExsZSpUoVYmJisLa2BrQWxMPbH0ZFRVG7du3H\nzvv8888TERGhr7CFEKJIql+/PufOncvbwYWxMXdISIjq0aOHUkqp0aNHq8DAQKWUUgsWLFBjxoxR\nSil1+PBh1bx5c5WSkqIiIyNV3bp1VXJy8mPnKqSQTcLDG94Xd/JaPCCvxQPyWjyQn/fOQtvhLmPW\n04wZM+jbty/ffPMN1atX1+3G5erqSu/evXF0dMTc3JylS5dm2rdXCCGEYRRKomjfvj3t27cHoHLl\nymzbti3Lx02ZMoUpU6YURkhCCCFySVZmmzAPDw9Dh2A05LV4QF6LB+S1KBgmt8OdmZmZzKISQoin\nlJ/3TmlRCCGEyJEkCiGEEDmSRCGEECJHkiiEEELkSBKFEEKIHEmiEEIIkSNJFEIIIXJUaCU8hBBC\nGIBSsHt3vk4hiUIIIYoipWDjRggIgKtX83Uq6XoSQoiiJC0NfvoJnJ1hyhQYPRpOn87XKaVFIYQQ\nRUFSEnz3HcydC9bWMHs2eHnBf5W780MShRBCmLL4ePjf/2D+fGjaFJYtA3f3AkkQGSRRCCGEKYqL\ng88/177at4cNG8DVVS+XkjEKIYQwJVeuwMSJ8PzzcPEi7NoFa9fqLUmAJAohhDAN58/DyJFgb6+N\nR4SFwTffQOPGer+0JAohhDBm4eEwYAC0bAlWVtoMpsWLoU6dQgtBEoUQQhijAwegVy/o0gUcHCAi\nQpvJZG1d6KHoLVEkJibSokULnJ2dadiwIX5+fgD4+/tjY2ODs7Mzzs7ObNq0SXdMQEAAdnZ2ODg4\nsHXrVn2FJoQQxkkp2LYNOnaEvn2ha1e4cAHeew8qVjRYWHrdCjUhIYEyZcqQmpqKm5sbAQEB7Nq1\ni/LlyzNu3LhMjz1y5AgjR47kwIEDXL16FTc3N86cOUPJkiUzByxboQohipr0dG3W0pw52nTX99+H\n/v2hRIkCu0R+3jv1Oj22TJkyACQnJ5OWlka1atUAsgw2KCiIfv36YWFhQa1atbC3tyc0NBQ3Nzd9\nhiiEEIaTkgI//ggffwzlymkrqXv1AnPjGhXQazTp6ek4OTlRrVo1OnTogJ2dHQBLliyhSZMmDBw4\nkLi4OACio6OxsbHRHWtjY0NUVJQ+wxNCCMNISIAlS6BBA1ixAhYtgtBQ6N3b6JIE6DlRmJubExYW\nRlRUFLt27SIkJIRRo0YRERHByZMnqV+/Pj4+PvoMQQghjMft21rroV492LpVq8m0Y4c2YF2AK6kf\nlpCSwMydM/N1jkJZmV2xYkW8vb05cOAAHh4euvtHjBhBhw4dAK0FERkZqftZVFQUtWvXzvJ8/v7+\nutseHh6ZzimEEEbn+nWt1bB0KXh6agPWDg56vWRwcDBfrvuSrRFbqVm+Zv5OpvQkNjZW3blzRyml\n1P3795W7u7v6448/1PXr13WPWbx4serdu7dSSqnDhw+r5s2bq5SUFBUZGanq1q2rkpOTHzuvHkMW\nQoiC9e+/So0Zo1SlSkqNGKHUuXOFctm/r/6tPFZ4qKZfNFU7zu9QSuXvvVNvLYrLly/zxhtvoJQi\nMTGR119/HW9vbwYNGsSxY8dITk6mbt26LFu2DABXV1d69+6No6Mj5ubmLF26lBIFOOIvhBCF5swZ\nrYrrr7/CW2/BiRNQM5+f6nPhxv0bfBj8IWtPrsXfw5+3Xd/mGfP8v83rdXqsPsj0WCGE0frrL22j\noJAQbR+IMWOgcmW9XzY1PZWlh5cyY+cMXrV7lZkdZmJV1irTY4x2eqwQQhR5GVuNzpmjldsYPx6W\nLwdLy0K5fPCFYHw3+2JV1oo/3/gTx2qOBX4NSRRCCJEXGVuNzpkD167B5MnaorlSpQrl8v/e+pcJ\n2yZwKPoQ87rOo0+TPpjpaeaUJAohhHgaaWlaWe+AAO3799+HV16BZwrn7fR+yn3m7pnL54c+x7eV\nLytfWkmZEmX0ek1JFEIIkRtJSbBypTZIXa2a1pIooK1Gc0MpxZoTa5i4bSJtarfh6Iij1KlYOBVk\nJVEIIURO4uPhq69gwQJtq9FvvinwrUafJOxqGL6bfbmdeJvven9He9v2hXZtkEQhhBBZi4uDzz7T\nSm3oeavR7MTej2Xajmn8cvoXZnjMYLjLcCzMLQo1BpD9KIQQIrOHtxr9999C2Wr0UanpqXx28DOa\nLGlCSYuSnBp1ipHNRxokSYC0KIQQQnP+PHzyCaxZAwMHaluNFuIuchm2n9+O72ZfqltWJ3hwME2t\nmxZ6DI+SRCGEKN7Cw7VCfVu2wIgR2lajBthF7sLNC4zfOp6wq2HM7zqflxq/pLfprk9Lup6EEMWT\nkWw1ei/5HtN2TKP5/5rjWsOVk6NO0rtJb6NJEiAtCiFEcaIU/PmntgYiIgImTdJKfZfR7zqErENR\n/HT8Jyb9OQn3Ou78PfJvbCrYPPlAA5BEIYQo+gphq9GncfTKUXw2+3Av+R4/9vkRtzrGvZOnJAoh\nRNH18FajZcvC1KkG3Wo05l4MU3dM5bczvzGrwyzedH7TYDOZnoYkCiFE0RMbq62iXrxY201u0SLo\n3LlQF8k9LCUthSWHljB792wGOgzk9OjTVCpdySCx5IUkCiFE0ZCerm0r+vXXsHkz9OyptSZatzZo\nWFsjtjJ281hsKtiwc8hO7KraGTSevJD9KIQQpi06WivrvWwZVKgAw4fDgAHw7LMGDSsiLoLxW8cT\nfj2cBV0X8GKjFw06kyk/750yPVYIYXpSUrTB6Z49tfpLkZHa6umwMG3DIAMmifjkeKZsn0Krr1vR\nqlYrTrx7gl6NexnVdNenJV1PQgjTERGhtRxWrNDGHoYN07qXCmmToJwopfg+/Hve+/M9OtTrwN8j\n/6ZWhVqGDqtASKIQQhi3xET45Rf43/+0VdSDBmlrIeyMp6//8OXD+GzyITktmTWvrqFN7TaGDqlA\n6a3rKTExkRYtWuDs7EzDhg3x8/MDIC4uji5duuDo6Iinpye3bt3SHRMQEICdnR0ODg5s3bpVX6EJ\nIUxBeDj4+oKNjVbae+RIiIrSyn0bSZK4Fn+Ntza8Rc8fezLMZRihw0OLXJIAPSaK0qVLs2vXLo4e\nPcrJkyfZv38/wcHBTJ8+HW9vb44dO0b37t2ZPn06AEeOHGH9+vWEh4ezefNmRowYQXJysr7CE0IY\no7t3tVlLL7wA3btrg9OHDsG2bfDaa4W2zeiTJKcls2D/App+2ZRKpStxetRp3nR+E3Ozojnsq9eu\npzL/LYtPTk4mLS0Na2trNm7cSGhoKAADBw7khRdeYNGiRQQFBdGvXz8sLCyoVasW9vb2hIaG4uZm\n3CsWhRD5pBSEhmpdSz//rO39MG0adOtWaNuLPo3N5zYzdvNY6j1bj91Dd9O4SmNDh6R3ev0tpKen\n4+LiQkREBO+88w729vbExMRgZWUFQJUqVbh+/ToA0dHRdOzYUXesjY0NUVFR+gxPCGFIcXHw3Xda\nCyIhQRuYPnkSatQwdGRZOnvjLOO2juN07GkCPQPxbuBt0jOZnoZeE4W5uTlhYWHcvn0bT09PgoOD\nC+S8/v7+utseHh54eHgUyHmFEHqWng4hIVpy2LgRvL211dPt2xusrMaT3E26y0e7PmLZ0WVMajuJ\nda+uo9QzxtEFlpOQkBBCQkIK5FyF0q6rWLEi3t7eHDx4kKpVqxIbG0uVKlWIiYnB+r+SvjY2NkRG\nRuqOiYqKonbt2lme7+FEIYQwAVeuaFNaly3TKrUOHw6ffw6VKxs6smylq3S++/s7puyYQufnOhP+\nTjg1yhtnaycrj36InjFjRp7PpbcUfuPGDe7evQtAQkIC27Ztw8HBAS8vL1atWgXAqlWr8PLyAsDL\ny4vVq1eTmppKVFQUx48fp2XLllmfPD1dX2ELIQpKair8/rtWhM/OTttB7ocf4Ngx8PEx6iQRGh1K\nm2VtWHJoCetfW8+3L31rUkmioOmtRXH58mXeeOMNlFIkJiby+uuv4+3tTevWrenbty/ffPMN1atX\nZ82aNQC4urrSu3dvHB0dMTc3Z+nSpZTIpgRwWvWaWLzYQ/sD7NzZILXkhRDZOH9em866fLm2leiw\nYbBqFZQvb+jInuhq/FXe3/4+W85tYU6nObzR7I0iO5PpaZhkrae21c+xZtBv1AzdAEePQseOWtLo\n0QOqVDF0iEIUP0lJ8Ouv2tjD0aPantPDhmnlNUxAcloyiw4sYu7eubzp/CbT2k2jQqkKhg6rQOWn\n1pNJJoofflD4+mobU3VsdgOCgrS6L3/+Cc2aaUmjVy94/nlDhytE0XbihJYcVq0CR0dt7OGll6B0\naUNHlmtB/wTht8WPhlYNWeC5gIZWDQ0dkl4Uu0ShlCI4GPr2hcBArVAkoC31375dSxq//671gWYk\njRYtjHZWhRAmJT4e1qzREsTFizB0KLz5JtSvb+jInsqZ2DP4bfEj4mYEgZ6BeDXwMnRIelUsEwXA\n8ePg5QXvvguTJz+yJ0l6uraIZ8MG7evWLa3SZK9eWleVCX3iEcLglILDh7XksGYNuLtrXUteXka5\nKC4nd5LuMGvnLJaHLec9t/fwaeVDSYuShg5L74ptogCtFL2XF7RtC599BhbZ7Sp49iz89puWNI4d\n0wbBX3xRm8f93wJAIcQjbt6E77/XVk3fvaslh8GDoZbpVUVNV+l8G/YtU3dMpdvz3ZjTaQ7VLasb\nOqxCU6wTBcDt29CnD5Qrp1UcLlv2CSeJiXkwrrFjBzg7P+iieu45/QUvhClQCnbu1FoPf/yh1Vwa\nNgw6dDDZ7tsDUQfw2eSDhbkFi7stpkWtFoYOqdAV+0QBkJys/S3/8482PFG1ai5PmJCgDYJnjGtY\nWz9IGq6uJvsfQ4indvUqfPutliBKldL+Qw0aZNIt7st3L/Pen++x/cJ2Pu70MQMcBxTb6a6SKP6j\nFHzwAaxeDZs25WHSU1oaHDz4YFzj7l2te6pXL+3TlJFUrhSiwKSlwZYtWnIIDtaa5sOGQatWjwz6\nmZak1CQWHljIp/s+ZbjLcKa4T6F8KeNfx6FPhZIoEhMTMTMzo5SB3yxz82SXLgV/f21ad6tW+bjY\nmTMPxjWOH4euXR+Maxh4P14h8uXixQeL4mrW1JJD375aWW8TppTi939+Z9yWcdhb2zO/63yeryzT\n5EFPiSI9PZ1ff/2VH3/8kX379pGeno5SCgsLC1q3bs2AAQN46aWXCr16Ym6f7B9/aLP2li3T3tvz\n7fp17aQbNmifvJo3f9BFZWtbABcQQs+Sk7W/36+/hiNH4PXXtQTh6GjoyArEqZhTjN0ylku3L7HQ\ncyGez3saOiSjopdE0a5dO9zd3XnxxRdxcnLStSSSkpI4evQov/32G3v27GHXrl15jzwvAT/Fkw0N\n1d7HP/wQ3nmnAIO4f1/bSGXDBi151KjxIGm4uJh0k10UQadOaZ+YVq4Ee3ttUVzv3kWm9M2txFvM\nCJnBqvBVTHWfyqgWoyhhkXX5n+JML4kiOTmZkiVznluclJRU6F1RT/tkIyK0SRt9+sDs2XoYm05L\ng/37H4xrJCQ8GNfw8IAnvIZC6MW9e7B2rdZ6iIiAIUO0RXENGhg6sgKTlp7GN0e/4YPgD3ix0Yt8\n1PEjrMtZGzoso6WXROHr60vbtm1p27YttYxoznRenmxMjPbeXb++1i2rt/dupeD06QfjGqdOgaen\nljS6d4dKlfR0YVHsJSfDhQvaeqGgIG1GR5s2WuvBywuyKbBpqvZc2oPPJh/KlijL4u6LcanhYuiQ\njJ5eEsVnn33G/v372bdvH0op2rRpo0sczZo1w9xA00bz+mTv39e6ZO/ehfXroWJFPQT3qKtXH4xr\n7NwJLVs+6KKqU6cQAhBFSmLig2Rw7pz2lXH78mWoXVub6ufmprUgbGwMHXGBi7oTxaRtk9h9aTef\ndP6Efk37FZtd5vJL77OeoqOjdUljw4YNxMTEcOfOnTxdML/y82TT0rQy+Lt3a5trFer/o3v3YOtW\nLWkEBWkXz0gaTk4yriE0CQlame6sksHVq1C3rpYMGjTQ/s34srUtcq2GhyWkJDB//3wWHljIuy3e\nZXLbyZQrWc7QYZkUvSUKpRTHjh1j37597Nu3j5MnT1KlShXatGnD9OnT8xxwfuTnyYLWO/Tpp9rm\nWkFB4OBQgMHlVmoq7Nv3YFwjJeXBuEb79kX6P7xAa95mJIFHk0FMjPam/2giaNBAa4WaWF2l/FJK\nsf7UeiZsm4BrDVfmdZ2HbSVbQ4dlkvSSKLp06cKdO3dwcnKiVatWtG7dmsaNGxu8mZffRJHhhx9g\n7Nj/SpV3LIDA8kopbUP5DRu0sY1//oFu3R6Ma5j4vPZiKz4++2QQFwf16mVOBhm3a9fOoWBZ8RJ+\nLRzfzb7E3I9hUbdFdKxnyP+opk8viWLEiBH8/ffflC1bllatWtGmTRtat25NFQNvDFRQiQLQlSpf\nuFAbvzAKV65opUQ2bND6yFq31pJGz57am4gwHnfuZJ0Izp3TCpDVr/94q+D557WCepIMshWXEMeH\nwR+y5sQaprefzojmI3jGvHi1pPRBr2MUt2/f5sCBA+zfv5/9+/cTGxuLvb09K1euzNMF86sgEwVA\neLi20HrUKJg0yciGCuLjtfIKGeMatrYPxjUcHY0s2CLq1q3sk0F8fOZE8HAyqFlT6oQ9pdT0VL46\n8hUzds7glSavMLPDTKzKmm6dKWOTn/fOJ6bp0qVLU7ZsWcqUKUOpUqWIjIwkKSkpTxczRg4O2nCB\ntzdcugSLFxvRhz1LS20BSJ8+2rjGnj1a0ujdW+uyatVKe0y5ctpX2bJPd7tECUk2oHUFZZUIzp3T\nZho9nAjat4e33tJu16ghr18BCbkYgs8mH6zKWrFt0DYcqxWN1eJFRbYtCj8/P/bt28c///yDs7Oz\nbnps69atqZTL9QCRkZEMGDCAmzdvkpyczFtvvcWkSZPw9/fn66+/pup/JV7nzJlD9+7dAQgICOC7\n777DwsKC+fPn07Vr18wBF3CLIkNGqXJLS2384omlyg1JKa32VHi4Npvq3j1tgPRpb6en5z3JmFIi\nUgpu3MiZWDMGAAAgAElEQVQ6GZw9qyXhjJbAo4PI1aoZx3Moov699S8Ttk3gUPQh5nWdR58mfQw+\nDlpU6aXradGiRbi5ueHk5IRFHj9iX7t2jZiYGJo2bUp8fDwuLi6sXbuWX3/9lfLlyzNu3LhMjz9y\n5AgjR47kwIEDXL16FTc3N86cOZNphbi+EgVoa5beekt773iqUuWmKiUl70nG2BKRUtqMoaxaBWfP\nao/JKhk0aABVqkgyKGT3U+7z8Z6PWXJoCb6tfJnYZiJlShSNkiLGSi9dT76+vgB8+OGHzJw5U3d/\nWloagwYN4ocffnjiyatVq0a1atUAsLS0xNHRkejoaIAsAw4KCqJfv35YWFhQq1Yt7O3tCQ0Nxc3N\n7emeVR6VLKmVw5k2TVvUunmzyW0D/HRKlNBWi+trxXheElFsbN4S0b172tTRhxOBt/eD7ytXlmRg\nBJRSrD6xmknbJtG2TlvCRoRRu6JM0jB2TxyjuHTpEgEBAbz//vskJSXx2muv4ezs/NQXunjxIocO\nHWL58uUcOnSIJUuW8PXXX+Pq6srixYupXLky0dHRdHxorqqNjQ1RUVFPfa38MDPTakLVrq0tcN2w\nQVtQLfKgMBJRRvIoXVpLBsJoHb1yFN/NvtxNvsv3L3+Pe113Q4ckcumJieKbb75hwIABBAQEsGPH\nDry8vPDz83uqi8THx/Pqq6+yaNEiypcvz6hRo/jwww8B8Pf3x8fHh1WrVuX6fP7+/rrbHh4eeHh4\nPFU8uTFypDaL0dtbqw/Vs2eBX0LkV4kSWi2WQqnHIvIq5l4M03ZMY8OZDczsMJO3nN/CwtxYZowU\nXSEhIYSEhBTIubIdozhy5IhuUCklJYURI0bQpk0bhg0bBoCLS+6KcKWkpNCjRw+6deuWZYK5fPky\nHTp04MyZM8yaNYsyZcowYcIEAHr06MH7779P27ZtHwSsxzGKrGSUKp8+XUseQojcSUlLYcmhJcze\nPZsBDgOY3n46z5aRDb8MRS+D2R4eHplmHyilMn0fHBz8xJMrpRg8eDBWVlYEBgbq7r9+/TrW1lo5\n4M8++4zg4GDWr1+vG8zev3+/bjD77NmzlHiopEVhJwrQxkO7d4dXX9W6paSrW4icbY3YytjNY7Gp\nYMPCbguxq2pn6JCKPaPdM3vPnj20a9cOR0dHXZKZM2cOP/zwA8eOHSM5OZm6deuybNkyXSnzOXPm\nsGrVKszNzZk/fz6enpl3qTJEogBtQk3Pntq46LJlss2EEFmJiItg3NZxHL9+nAVdF/BioxdluquR\n0EuiWLFiBQMHDuSZbIqQJScn8/333zN06NA8XTivDJUoQBs37d9fGzv9+WfpGhciQ3xyPLN3zeZ/\nf/2PCW0m4PeCH6WeKdxNzUTO9DI9Nj4+nhYtWtC4cWOaN29OjRo1UEpx9epVDh8+zOnTpxk+fHie\ngzZFZctqe1mMGQPu7gYoVS6EkUlX6Xx/7Hve3/4+Het15Ng7x6hZvqahwxIF7Illxvfu3cuePXu4\ndOkSAHXr1sXNzY02bdoYpElpyBZFBqXgk09gyRItWTRtatBwhDCIQ9GH8NnsQ2p6Kou7LaZ17daG\nDknkwGjHKPTBGBJFhu+/Bz8/bdfJDh0MHY0QheNq/FWmbJ/C5nObmd1xNoOdBmNuJgUQjV1+3jvl\nt5sPAwZo+1n07avVhxKiKEtOS2bevnk4fOlAlbJVOD36NEOdh0qSKAakyHs+dewI27drC/OiomDi\nRJk+K4qeoH+C8NviR0Orhux9cy8NrRoaOiRRiKTrqYBERYGXF7RrB4sWGVGpciHy4UzsGfy2+BFx\nM4KFngvp3qC7oUMSeaTXrqfr168zYsQI7O3tadq0KSNHjuT69et5ulhRZmOjbUh36pRWrvz+fUNH\nJETe3U68zYStE2j7TVs61etE+DvhkiSKsScmit69e1O3bl3++OMPfvvtN+rWrUvv3r0LIzaTU7Ei\nbNqk7WnRqZNWCFUIU5Ku0vnm6Dc0XtKYmwk3OfHuCca3GU9JC1lhWpw9sevJycmJsLCwTPc5Oztz\n9OhRvQaWHWPtenqYUjB1KqxbpyWOIl2qXBQZ+yP347PZhxLmJVjcfTHNazY3dEiiAOm166lTp06s\nWbOG9PR00tPTWbduXaZS4OJxZmYwZ442ddbNTSssKISxunz3MoN+GcSra1/Ft5Uve9/cK0lCZPLE\nFoWlpSX379/H/L+N4tPT0ylXrpx2sJkZd+7c0X+UDzGFFsXDfvtN2zVPSpULY5OYmkjg/kDm75/P\n265vM8V9CpYlLQ0dltATWXBn5A4ehJdeAn9/GDHC0NGI4k4pxYYzGxi/dTyO1RyZ12Ue9StL/2hR\np5eup4c3Etq7d2+mn33++ed5ulhx1aqVNiNq3jxt7MLE8pwoQk7GnMRzlSdTd0xlaY+l/NL3F0kS\n4omybVE8PGD96OC1DGbnTUwM9OgBjRrB119LqXJReG4m3MQ/xJ8fjv/AB+0+4J3m71DCosSTDxRF\nhpTwMBFVq0JwMNy6pS3Ou33b0BGJoi4tPY2lh5fSeEljktKSOPnuSXxa+UiSEE9FSngUsrJl4Zdf\ntFLl7dpp1Wf/27NJiAK1699d+G72pXzJ8mwZuAWn6k6GDkmYqGy7nsqUKcPzzz8PQEREBPUfWgwQ\nERHBfQMtPTblrqeHZZQq/+ILCAqSUuWi4Fy6fYmJ2yayP3I/n3b5lNfsX5Nd5oR+Ni46depUngMS\nT2ZmBpMna6U/OnaENWvAw8PQUQlTlpCSwKf7PmXRwUWMbjGa5b2WU7ZEWUOHJYqAbBOFra1tpu/j\n4uKoXLkyAOfOndNrUMXJgAFQowa89ppWTLB/f0NHJEyNUoqfT/3MhK0TaFmrJX+9/Rd1K9U1dFii\nCMn1YHaXLl3w9vbmxx9/pGvXrrk6JjIyknbt2uHg4ECjRo345JNPAC3pdOnSBUdHRzw9Pbl165bu\nmICAAOzs7HBwcGDr1q1P+XRMU0ap8smT4dNPZfqsyL1j147RcWVHZu6cyYqXVrDm1TWSJETBU9mI\nj49XycnJme5bunSpMjMzU6tWrcrusEyuXr2qwsPDlVJK3b17VzVo0ECFhYWp0aNHq8DAQKWUUoGB\ngcrHx0cppdThw4dV8+bNVWpqqoqKilK2trYqKSkp0zlzCNnkRUYq1bSpUqNHK5WaauhohDGLvRer\n3v3jXVX1k6pqSegSlZKWYuiQhJHLz3tnti0KDw8Pbt68qft+/fr1zJ07ly1btrBixYpcJaFq1arR\n9L9RWktLSxwdHYmOjmbjxo0MGjQIgIEDBxIUFARAUFAQ/fr1w8LCglq1amFvb09oMSqUZGMDe/bA\niRPwyitSqlw8LjU9lSWhS2iypAlmZmacHn2ad1u8yzPmMoFR6E+2iSIxMRFra2sAli5diq+vL5s2\nbaJLly7ExMQ89YUuXrzIoUOHcHNzIyYmBisrKwCqVKmi298iOjoaGxsb3TE2NjZERUU99bVMWcWK\nsHkzlCsnpcpFZsEXgnFZ6sLPp35m+xvb+dzrcyqXqWzosEQxkO3HkAoVKjBz5kyioqL4+uuv2bVr\nFw0bNuT69eskJiY+1UXi4+N55ZVXWLRoERUqVMh30P7+/rrbHh4eeBSx6UIlS8LKlVq5jzZtpFR5\ncffvrX+ZsG0Ch6IPMb/rfF5u8rJMdxVPFBISQkhISIGcK9tE8fPPP/Pll19Sr149Vq9ezZtvvkn7\n9u3ZuXMnkydPzvUFUlJS6NOnDwMGDOCll14CoGrVqsTGxlKlShViYmJ0LRcbGxsiIyN1x0ZFRVG7\ndu3HzvlwoiiqzM0hIABq19ZKlf/2G7RoYeioRGG6n3KfuXvm8vmhz/Ft5cvKl1ZSpkQZQ4clTMSj\nH6JnzJiR53PlunpsdHQ0u3fvxt7eHgcHh1ydXCnF4MGDsbKyIjAwUHf/mDFjqF+/PmPHjiUwMJAL\nFy6wePFijhw5wsiRI9m/fz9Xr17Fzc2Ns2fPUqLEg3IDRWXB3dPYsAGGDYPly7VaUaJoU0qx5sQa\nJv05idY2rfmkyyfUqVjH0GEJE6f3MuPJyclcv36dtLQ0XZO3Tp0n/+Hu2bOHdu3a4ejoqDsuICCA\nli1b0rdvX65du0b16tVZs2YNlSpVAmDOnDmsWrUKc3Nz5s+fj6enZ+aAi2GiADhwAHr3llLlRV3Y\n1TB8N/tyO/E2i7svpl3ddoYOSRQRek0U8+bNY86cOVSvXh0LCwvd/eHh4Xm6YH4V10QBcPYsdO8O\n/frBrFna6m5RNMTej2Xajmn8cvoXZnrMZJjLMCzMLZ58oBC5pNdEUbduXf766y/dLCVDK86JAuD6\ndW2nvMaN4X//k1Llpi41PZUvD33JrF2z6N+0P/4e/jxb5llDhyWKIL2WGW/QoAHPPit/uMbC2vpB\nqfL27eH4cUNHJPJq+/ntOP2fExvObCB4cDCLui+SJCGMUrYtivnz5wNw8uRJzpw5g7e3NyX/+/hq\nZmbGuHHjCi/KhxT3FkWG9HT46iv44AMYPlz7t4xMiDEJF25eYPzW8YRdDWN+1/m81Pglme4q9E4v\nLYq7d+8SHx9PnTp16Ny5M8nJycTHxxMfH8/du3fzHKwoGObmMHIkHDsGERHg4AB//mnoqERO7iXf\nY9qOabT4Xwtca7hyctRJejfpLUlCGL1cT499WEpKSqYpq4VJWhRZ27gR3n0X3N1hwQJtNz1hHJRS\n/HT8Jyb9OYl2ddsxt/NcbCrYPPlAIQqQXloUbm5uutsZdZkytGrVKk8XE/rj5aXViKpWTdsEafly\nqUJrDP668hfuy92Zt38eP/X5ie9f/l6ShDA52SaKe/fu6W4ff2TEVD7RG6dy5WDePK1W1BdfQIcO\ncOaMoaMqnmLuxfD272/j9b0Xg5sNJnRYKG3rtDV0WELkSa73oxCmw9n5wQK9tm1hxgxISjJ0VMVD\nSloKCw8sxO4LO8qVKMfp0acZ7jpc1kQIk5Ztrafbt2+zfv16lFK624Due2HcLCzA1xdefhlGjwYn\nJ1i6FNrJQl+92RqxlbGbx1K7Ym12DdlFk6pNDB2SEAUi28HsIUOG6GZjKKUem5mxfPly/UeXBRnM\nzptffgEfH/D0hE8+gcpSnbrARMRFMG7rOE5cP8ECzwX0bNhTZjIJo6P3Wk/GRBJF3t25o5UuX7dO\nG8t4/XUpA5If8cnxzNk9h6+OfMWENhPwe8GPUs+UMnRYQmSpUBPFr7/+So0aNQw280kSRf4dPAhv\nvw3Vq2uD3rLXxdNRSvF9+Pe89+d7dKjXgbmd51KzfE1DhyVEjvLz3vnU+ycePHiQ48ePk5KSwubN\nm/N0UWFYrVrB4cOwcKF2e8IEGD8eDLQ0xqQcvnwYn00+pKSnsPbVtbSu3drQIQmhd9L1VMxduKAt\n1IuO1kqCvPCCoSMyTtfirzFl+xQ2ntvI7I6zGeI0BHMzmTQoTIdeiwLev3+fgIAAvL296dGjBx9/\n/DEJCQl5upgwPvXqaau6p0zRZkiNGgUyqe2B5LRk5u+bT9Mvm/JsmWc5Peo0bzq/KUlCFCtPbFH0\n6NGDmjVr0r9/f5RSrF69mujoaP7444/CijETaVHoz82bMHmyljgWLoQ+fYr3YPems5vw2+JHvWfr\nsdBzIY2qNDJ0SELkmV4Hs5s2bfrYyuys7isskij0b88ebbC7fn1YsgRysZlhkXL2xlnGbR3H6djT\nBHoG4t3AW6a7CpOn164nFxcXQkNDdd8fOnQIFxeXPF1MmAY3NwgL0wa6XVwgMBBSUw0dlf7dTbrL\n5G2Tab2sNe513Dn+znF6NOwhSUIUe09sUTRu3Jh//vmH2rVrY2ZmxqVLl2jUqBHPPPMMZmZmHDt2\nrLBiBaRFUdj++UcrZ377tjbY7epq6IgKXrpK57u/v2PKjil0ea4LAZ0CqFG+hqHDEqJA6bXr6eLF\nizle0NbWNttj33zzTYKCgrC2ttbtse3v78/XX39N1f/qYM+ZM4fu3bsDEBAQwHfffYeFhQXz58+n\na9euOV5bFA6lYOVKmDRJW6Q3axZYWho6qoIRGh2KzyYfFIrF3RbTykYqI4uiKV/vnSob27dv190+\nf/58pp/9/PPP2R2Wya5du9Rff/2lmjZtqrvP399fzZ8//7HHHj58WDVv3lylpqaqqKgoZWtrq5KS\nkh57XA4hCz2LiVFq8GCl6tRR6rffDB1N/ly5e0UN+XWIqjGvhlpxdIVKS08zdEhC6FV+3juzHaMY\nP3687vbLL7+c6WezZs3KVRJyd3fPcr9tlUVWCwoKol+/flhYWFCrVi3s7e0zjY0Iw6tSBVas0Pa6\nGDcOXnkFLl82dFRPJzktmU/3fkrTL5piXdaa06NPM9hpsEx3FSIHBvnfsWTJEpo0acLAgQOJi4sD\nIDo6GhubBxu62NjYEBUVZYjwxBN07Ajh4dCkCTRrppUBSUszdFRPFvRPEE2/aMrOf3ey7619zO0y\nlwqlKhg6LCGM3lOX8MivUaNG8eGHHwLaeIWPjw+rVq16qnP4+/vrbnt4eODh4VGAEYrcKF1aG6vo\n31+bSrtypTbY7eho6Mgedyb2DH5b/Ii4GcGibovo3qC7oUMSQu9CQkIICQkpkHNlmyjOnz/Piy++\niFKKCxcu0LNnT93PLly4kOcLVqlSRXd7xIgRdOjQAdBaEJGRkbqfRUVFUbt27SzP8XCiEIZlZwe7\ndsGyZdC5M7z5Jnz4IZQta+jI4E7SHWbunMmKsBW87/Y+v/b7lZIWJQ0dlhCF4tEP0TNmzMjzubKd\n9fSkTJTbT/EXL16kZ8+eullP169fx9raGoDPPvuM4OBg1q9fz5EjRxg5ciT79+/n6tWruLm5cfbs\nWUo8UqlOZj0Zr6tXwc8PQkPhyy8hi0lrhSJdpbMibAVTd0zF63kv5nSaQzXLaoYJRggjoZfqsQXR\nndO/f3927txJbGwstWvXZsaMGQQHB3Ps2DGSk5OpW7cuy5YtA8DV1ZXevXvj6OiIubk5S5cufSxJ\nCONWvTr8+CNs2gQjRkCbNrBgAVQrxPfoA1EH8Nnkg4W5Bb/1+40WtVoU3sWFKKKeunrs4MGDKVu2\nLKNGjaJp06b6iitb0qIwDffuaXt1r1gBc+ZoXVLmepw6cfnuZd778z22X9jOx50+ZoDjAJnJJMRD\nCnXjotDQUC5dukRoaCiffPJJni6aH5IoTEtYmDbYXbq0tmd3kwLeRjopNYnAA4HM2zeP4S7DmeI+\nhfKlyhfsRYQoAmQrVGHU0tK0MYsZM7S9L95/X0sc+aGU4vd/fmfclnHYW9szv+t8nq/8fMEELEQR\npNdEcfz4cebNm0dkZCTp6em6C+7YsSNPF8wvSRSmKyoKfHzgxAmtdZHXYbBTMacYu2Usl25fYqHn\nQjyf9yzQOIUoivSaKBo1asTYsWNxcXHBwsJCd0FXA1WHk0Rh+jZsgDFjtOm0n34KVla5O+524m1m\n7JzBd8e+Y6r7VEa1GEUJC5nwIERu6DVRtGzZ0qhKaUiiKBru3oVp02D1ai1ZDByY/SZJaelpLA9b\nzgfBH9CjQQ9md5qNdTnrwg1YCBOnl0QRFxeHUorPPvuM6tWr06tXL0qVKqX7eeXKlfMWbT5Joiha\nDh3SBrurVNHGMZ5/ZJhh76W9+Gz2ofQzpVncbTGuNYtgnXMhCoFeEoWtrW2OG7bkZ3V2fkiiKHpS\nU2HRIggI0IoNTpgAMYnRTP5zMjv/3cncznPp37S/bCAkRD7IrCdRJFy8CCNHJ3K09AKSXBYw+oWR\nvOf2HpYli8jmF0IYkF62Qn14jcTatWsz/WzKlCl5upgQ2VFKEZb4K2e72lO39SFKrQzlxtqPSL0v\nSUIIQ8s2Ufz444+623PmzMn0s02bNukvIlHsnIw5SddVXZm6YypLeywldPwvnDnwHEqBvT2sWaPt\nsieEMAypcSAM5mbCTXw3+dJ+RXt6NuxJ2IgwOj/XGYBKleD//g/WroWZM6FHD61rSghR+CRRiEKX\nlp7GV0e+osmSJiSlJXHy3ZP4tPLJck1Emzbw11/Qti00bw7z52uD30KIwpPtYLaFhQVl/9tUICEh\ngTJlyuh+lpCQQKqB/rfKYLZp2/3vbnw3+2JZ0pLF3RfjVN0p18eeOwcjR8KNG9omSS2kMKwQuSaz\nnoTRi7wdyaQ/J7H30l4+7fIpr9m/lqfprkrBqlUwcSL07QsffQTlpQagEE+kl1lPQhSEhJQEZu2c\nhfNSZxpUbsCpUafo27RvntdEmJnBoEFavai7d7XB7g0bCjhoIUQm0qIQeqGU4pfTvzB+63hca7gy\nr+s8bCvZFvh1QkK0TZLq1IHx48HTM/tSIEIUZ9L1JIxK+LVwxm4Zy/V711nUbREd63XU6/WSkrSd\n9QIDISUFxo7VakcZw77dQhgLSRTCKMQlxDE9eDqrT6xmevvpjGg+gmfMs91tt8ApBcHBsHAhHDgA\nw4dr+1/UqlVoIQhhtGSMQhhUWnoaXx76kiZLmpCm0jg16hSjWo4q1CQBWpdTx47w22+wdy/cvg1N\nm2qtiyNHCjUUIYoUvSaKN998k2rVquHg4KC7Ly4uji5duuDo6Iinpye3bt3S/SwgIAA7OzscHBzY\nunWrPkMTBWTnxZ24fOXC6hOr2TZoG194f4FV2VxuMKFHDRrA55/D+fPQrBn07g3t2sH69dqOe0KI\n3NNr19Pu3buxtLTkjTfeIDw8HIAxY8ZQv359xo4dy8KFC7lw4QKLFi3iyJEjjBw5kgMHDnD16lXc\n3Nw4c+YMJUuWzBywdD0ZhUu3LzFx20QORB1gXpd5vGL3ilFXd01JgV9+0cYxrl7Vdtp76y2oUMHQ\nkQlROIy268nd3Z1nn302030bN25k0KBBAAwcOJCgoCAAgoKC6NevHxYWFtSqVQt7e3uj2jBJaO6n\n3GdGyAxclrpgV8WOU6NO8ar9q0adJABKlIDXXoP9+7WB74MHwdYW/Py0VocQInuFPkYRExOD1X97\nX1apUoXr168DEB0djY2Nje5xNjY2REVFFXZ4IhtKKdaeWIvdEjtOxp7krxF/Md1jOmVLmN7Uohde\ngJ9+grAwKFkSWraEl1+GXbuk+KAQWSnc0cYC4u/vr7vt4eGBh4eHwWIpDo5dO4bvZl/iEuL49qVv\naW/b3tAhFYg6dWDuXPjgA/j2Wxg2TFvl7eentT4e6fUUwqSEhIQQEhJSIOcq9ERRtWpVYmNjqVKl\nCjExMVhba3sf29jYEBkZqXtcVFQUtWvXzvIcDycKoT837t/gg+AP+PnUz/i392e46/BCn8lUGCwt\nYdQoeOcd2LhRG8eYPFmbWjtihLZNqxCm5tEP0TNmzMjzuQq968nLy4tVq1YBsGrVKry8vHT3r169\nmtTUVKKiojh+/DgtW7Ys7PAEkJqeypLQJTRZ0gQLMwtOjTrFOy3eKZJJ4mHm5lo58+3bYdMmiIjQ\nZk+NGAEnTxo6OiEMR6+znvr378/OnTuJjY2lWrVqzJw5k169etG3b1+uXbtG9erVWbNmDZUqVQK0\nDZJWrVqFubk58+fPx9PT8/GAZdaTXgVfCMZnsw/W5axZ1G0RTa2bGjokg7p2TdsX48svwclJW/Ut\nZUKEKZKV2SLfLt66yIStEzhy5Qjzuszj5SYvG/1MpsKUmKjNllq4UMqECNNktNNjhfG7n3KfD4M/\nxPUrV5pVa8bJd0/Sx66PJIlHlC4NQ4dqM6U+/xz++EObXjt1Kly+bOjohNAvSRTFlFKKn47/ROPP\nG3M27ixhI8L4oP0HlClR5skHF2NZlQmxt5cyIaJok66nYijsahg+m3y4m3yXxd0W417X3dAhmbSb\nN+Hrr+Gzz7RWxtix0KsXWFgYOjIhHpAxCpErsfdjmbZjGr+e/pWZHWbylvNbWJjLu1lBSU3VaklJ\nmRBhjGSMQuQoJS2FxQcX02RJE0o/U5pTo07xtuvbkiQK2DPPSJkQUTRJi6KI+/P8n/hu9qVm+Zos\n9FyIvbW9oUMqVi5dgiVLYNkyrXqtnx+4ucn0WlH4pOtJPOb8zfOM3zqev6/+zQLPBfRq1EtmMhlQ\nfLxWJmTRIq0rauxYKRMiCpckCqFzL/keAXsC+L/D/8e41uMY13ocpZ8pbeiwxH/S0x+UCTl9WsqE\niMIjYxQCpRQ/hP9A4yWNuXjrIn+P/Jsp7lMkSRgZKRMiTJG0KIqAv678hc8mHxJSE1jcbTFt67Q1\ndEjiKUiZEFEYpOupmLp+7zpTt0/l939+56OOHzHUaajMZDJhiYnaPhmBgQ/KhAwaBGVkDaQoANL1\nVMykpKWw8MBC7L+wp3yp8pwefZphLsMkSZi40qVhyJDMZULq1pUyIcLwpEVhYrZGbGXs5rHUqViH\nQM9AmlRtYuiQhB6dPavNlPr+e/D21qbXuroaOiphiqTrqRiIiItg3NZxnLh+gkDPQHo07CHTXYsR\nKRMi8ksSRREWnxzP7F2z+d9f/2Nim4mMfWEspZ4pZeiwhIFImRCRVzJGUQQppVh1bBWNP29M9N1o\njr1zjMlukyVJFHM5lQm5cMHQ0YmiSloURujw5cP4bPIhJT2Fz7p/xgs2Lxg6JGHEIiO1we+MMiED\nBoCzM9SrJ1NsxQPS9VREXIu/xpTtU9h0bhOzO85msNNgzM2k0SdyJz4eVq7UFvKFhcHdu9CsmbY2\nw9lZ+9fOTsqGFFeSKExccloynx38jI/3fsyQZkP4oP0HVCglnc4if2JjtYQRFgZHj2r/XrgAjRpl\nTh7NmkHFioaOVuibSSYKW1tbKlSogIWFBSVKlCA0NJS4uDj69u3LtWvXqFGjBqtXr6ZSpUqZAy5i\niWLT2U34bfHjuWefI9AzkEZVGhk6JFGE3b8Px49nTh7h4VCtWubk4ewMNWtK11VRYpKJol69ehw5\ncoTKlSvr7hszZgz169dn7NixLFy4kAsXLrBo0aJMxxWVRHH2xln8tvjxz41/CPQMxLuht6FDEsVU\nWhFll+YAAAzeSURBVJq2XuPh5HH0KCj1IHFkJI+GDWVKrqky2URx+PBhrKysdPfVr1+f0NBQrKys\niI2N5YUXXuDcuXOZjjP1RHE36S4f7fqIZUeXMbntZHxf8KWkhXQaC+OiFFy58iBxZCSPq1ehadPM\nrQ8HByhb1tARiycxyUTx3HPPUalSJVJTU3n77bcZPXo0FSpU4M6dO7rHPPo9mG6iSFfpfPf3d0zZ\nMYWu9bsS0CmA6pbVDR2WEE/lzh34++/MrY/Tp7Upuo92XUnpdOOSn/fOZwo4llw7cOAA1tbWxMTE\n0K1bNxo3bpzrY/39/XW3PTw88PDwKPgAC1BodChjNo0BYP1r62ll08rAEQmRNxUqgLu79pUhORlO\nnXqQPIKCtNuWlo8nD5myW3hCQkIICQkpkHMZxayngIAAAL7++msOHjxIlSpViImJoXXr1ibd9XTl\n7hXe3/4+WyO2EtApgEHNBsl0V1EsKAUXLz4+7vHwlN2M5CFTdguHyXU93b9/H4CyZcty7949vLy8\nGD9+PNu2bdMNZgcGBnLhwgUWL16cOWATSBTJacksOrCIuXvn8pbzW0xrN43ypcobOiwhDC42Vuu6\nejh5yJTdwmFyieLChQu89NJLmJmZcf/+ffr168fMmTMzTY+tXr06a9asMbnpsUH/BOG3xY9GVRqx\noOsCGlg1MHRIQhi1hARtyu7DyUOm7BY8k0sU+WGsieJM7Bn8tvhx/uZ5FnZbSLfnuxk6JCFM1sNT\ndjOSR8aU3UeTh0zZzR1JFAZ0O/E2s3bN4tu/v+W9tu8xptUYme4qhB5kTNl9eNwjLEy7L2PKbkby\nkCm7j5NEYQDpKp0VYSuYumMqXs97MafTHKpZVjN0WEIUO3fuwLFjmZPHqVPalN1GjcDGRvuqXfvB\n7Vq1oFQxK8QsiaKQ7Y/cj89mH0qYl2Bx98U0r9ncoPEIITLLmLIbEaFV142Kyvx1+bI2WP5oAnn0\nqyjtVy6JopBcvnuZ9/58jx0XdvBx54953eF1me4qhAlKT4fr1x9PIFFRDxJLdLS2FiSrBPJwcilX\nztDPJnckUehZUmoSgQcCmbdvHsNdhjPFfYpMdxWiiFNKm877aAJ59KtUqeyTSMaXMexAKIlCT5RS\n/P7P74zbMg57a3vmd53P85WfL5RrCyGMn1IQF5d9qyTjtoVF9l1cGfdXrKjfqb+SKPTgVMwpxm4Z\ny6Xbl1jUbRFd63fV+zWFEEWPUnD7ds6tkshIrTsspy4uGxuoXDnvyUQSRQG6lXiLGSEzWBW+iqnu\nUxnVYhQlLEro7XpCCAHa7K2cWiZRUZCY+OQB+KpVs04mJlkU0NikpaexPGw5HwR/QM+GPTnx7gms\ny1kbOiwhRDFRoYJW98rOLvvHxMdrg+wPJ5Bjx2DjxgeJ5d49bfrvowkkPyRRAHsv7cVnsw9lninD\nH/3/wLWmq6FDEkKIx1haamtDGuWwEeb9+1oyebglcupU/q5brLueou5EMfnPyez6dxdzO8+lf9P+\nmEkhGSFEEZSf985iuQggMTWR2btm4/R/TtSrVI9To07xusPrkiSEECILxarrSSnFr6d/ZfzW8ThV\ndyJ0eCjPPfucocMSQgijVmwSxcmYk/hu9uXy3ct81fMrOj/X2dAhCSGESSjyXU83E27iu8mX9iva\n07NhT8JGhEmSEEKIp1BkE0VaehpLDy+l8ZLGJKUlcfLdk/i08pE1EUII8ZSKZNfT7n9347PZh/Il\ny7Nl4BacqjsZOiQhhDBZRSpRRN6OZOK2ieyL3MenXT7lNfvXZCaTEELkk9F1PW3evBkHBwfs7OyY\nO3duro5JSElg1s5ZOC11oqFVQ06NOkXfpn0lSQghRAEwqkSRlJTEO++8w+bNmzl27Bjr1q3j6NGj\n2T5eKcXPJ3/G7gs7/r72N0fePsLMDjMpV9JECsTnU0hIiKFDMBryWjwgr8UD8loUDKNKFAcPHsTe\n3p5atWrxzDPP0LdvX4KCgrJ8bPi1cDqt7IT/Tn+WvbiMda+tw7aSbeEGbGDyn+ABeS0ekNfiAXkt\nCoZRJYqoqChq166t+97GxoaoqKjHHjd642g6rexEnyZ9ODriKB3rdSzMMIUQolgxqsHs3I4ppKt0\nTo06hVVZKz1HJIQQAmVEdu3apby9vXXff/LJJ+qjjz7K9Jj69esrQL7kS77kS76e4qt+/fp5fm82\nquqxiYmJNG7cmL1792JtbU2bNm34//buKKTJLowD+D8qqECKzVmzWavWcrpNpuZFjDDYEC0Iampd\n1EVeBdGF0WWIWNRFYEUgQdSNWdZlUCZLyhBMxWR4U8OyNAvdlqVtlNPnu4hetNrk65tufu//B17s\ncDaf8/Buz8553/fs2rVryM/PT3ZoRESqlVJLT6tWrUJDQwNKSkowMzODI0eOsEgQESVZSs0oiIgo\n9aTUVU9/YjQaYbfb4XA4UFRUBAAIhUJwu92w2+0oKSnB+Ph4kqNceOPj4ygvL0deXh4sFgs6OztV\nmYeXL1/C4XAof2vXrsWVK1dUmQsAqKmpgdlsRnZ2NjweD8LhsGpzceHCBZjNZlitVly+fBmAej4r\njh07hvXr18Nmsylt8cZ+/vx55OTkwGazobW1df5/8NdnNxaJ0WiUYDA4p+3EiRNSX18vIiL19fVy\n8uTJZIS2qDwejzQ1NYmIyPT0tHz+/FmVeZhtenpaNmzYIO/evVNlLvx+v2zZskW+ffsmIiIVFRVy\n/fp1Veaip6dHcnNzJRKJSDQaFZfLJT6fTzW5aG9vl97eXrFarUpbrLH39PRIYWGhRKNRGR4eFqPR\nqBxDsSyJQhEIBOa0bd26VWkbGxv7T2fzl4JAICAmk+m3drXl4VePHj0Sp9MpIurMRTAYFLPZLKFQ\nSKampmTfvn3S2tqqylzcunVLqqqqlMd1dXVy9uxZVeXizZs3cwpFrLHX1tbKxYsXlX579+6VZ8+e\nxX3tlF96WrZsmTJ9unr1KgBgbGwMWu2PeyjS09MxOjqazBAXnN/vh06nQ0VFBaxWK44ePYqJiQnV\n5eFXd+7cweHDhwGo75gAAI1Gg1OnTmHTpk3IzMzEunXr4Ha7VZkLm82Gp0+fIhQKIRwO48GDBxga\nGlJlLn6KNfb379/DYDAo/WLd2DxbyheKzs5O9Pb24vHjx7h58ya8Xm+yQ1p0MzMz6O7uxunTp9Hf\n3w+NRoO6urpkh5VU379/x/3791FeXp7sUJJmYGAAly5dwuDgIEZGRjA5OYnGxsZkh5UUNpsN1dXV\nKC4uxp49e2Cz2bgpaAKlfKHIyMgAAOh0Ong8HnR3d0On0yEQCAD4UTV/9vm/ysrKwsaNG7Fz504A\ngMfjQV9fHzIyMlSVh9kePnyIgoIC6HQ6AFDdMQEAXV1d2LVrF7RaLVasWIEDBw6go6NDlbkAgOPH\nj8Pn8+H58+fIzMxEdna2anMBxH5PGAwGDA0NKf1+3TrpT1K6UITDYYTDYQDA169f0dLSgtzcXJSV\nlSnfnBobG1FWVpbMMBdcVlYW0tPT8erVKwCA1+uFxWJBaWmpqvIw2+3bt5VlJwCqOyYAwGQyobOz\nE5FIBCICr9eLbdu2qTIXAJQPxY8fP6K5uRmVlZWqzQUQ+z1RVlaG5uZmRKNRDA8Po7+/X7miNKbE\nn1JJnNevX4vdbpe8vDzZvn27nDlzRkR+nMRzuVxis9nE7XbLp0+fkhzpwuvr65PCwkLJycmR0tJS\nCYVCqsyDiMjk5KRotVr58uWL0qbWXNTU1IjJZBKz2SyVlZUSiURUmwun0yl2u10KCgqkra1NRNRz\nXBw6dEj0er2sXLlSDAaD3LhxI+7Yz507JxaLRXJzc6WlpWXe1+cNd0REFFdKLz0REVHysVAQEVFc\nLBRERBQXCwUREcXFQkFERHGxUBARUVwsFETzCAaDyrbmer0eBoMBDocD+fn5mJqamtPX5XJhYmIC\nALB8+fI5W6K/ffsWPp8PVVVVyRgG0V9LqV+4I0pFWq0WL168AADU1tYiLS0N1dXVv/Vra2vDjh07\nkJaWBgBYs2aN8rzZBgYGMDo6qqrtJGhp44yC6F+KdY9qU1MT9u/fP+/zS0tLce/evUSHRbRgWCiI\nEqSjowOFhYXK40gkoiw7HTx4UGkvKipCe3t7MkIk+itceiJKkJGREWg0GuXx6tWr/7j0pNfrMTg4\nuIiREf03nFEQLTIR4W8l0JLCQkGUIJmZmQgGg/P2+/DhAzZv3rwIERElBgsF0b8UazbgdDrR09Mz\nb7+uri7s3r17QWIjWgjcZpwoQZ48eYLm5mY0NDTE7VdcXIy7d+/y8lhaMjijIEqQ4uJi+P1+5Ya7\nP/H5fDCZTCwStKRwRkFERHFxRkFERHGxUBARUVwsFEREFBcLBRERxcVCQUREcbFQEBFRXP8A3miz\npEyyc1UAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x1faccd0>" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.2 Page No : 535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "wcb= 2. \t#ton weighing\n", "wc= 100. \t #ton\n", "wa= 6.5 \t #% of the weight\n", "wca= 20. \n", "r= 0.8\n", "r1= 1.2\n", "\t\n", "#CALCULATIONS\n", "wca1= wc/wa\n", "wca2= wcb*(wca1/wca)**1.5\n", "Wca= wcb*r**(9./4)*(1./r1)**(9./4)*(wca1/wca)**1.5\n", "\t\n", "#RESULTS\n", "print ' Wc/Wa = %.2f '%(wca1)\n", "print ' Wc,a = %.2f ton'%(wca2)\n", "print ' Wc,a = %.2f ton'%(Wca)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Wc/Wa = 15.38 \n", " Wc,a = 1.35 ton\n", " Wc,a = 0.54 ton\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }