{
 "metadata": {
  "name": "",
  "signature": "sha256:747d23d1d49d9ec45297f78a51cc698e8f77e86dac46ee6fa2ac037964e152b9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12 : Turbomachines: Further Analysis"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.1 Page No : 461"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "from matplotlib.pyplot import *\n",
      "import math \n",
      "\t\n",
      "#initialisation of variables\n",
      "d= 0.0764 \t        #lbm/ft**3\n",
      "u= 3.74*10**-7 \t    #lbf sec/ft**2\n",
      "D= 15.           \t#in\n",
      "g= 32.2 \t        #ft/sec**2\n",
      "p= 14.7 \t        #lb/in**2\n",
      "r1= [0.02, 0.04, 0.06, 0.08, 0.1, 1.15]\n",
      "r2= [0.0338, 0.0267, 0.0199, 0.0159, 0.0132, 0.0100]\n",
      "r3= [0.46, 0.92, 1.38, 1.84, 2.3, 2.64]\n",
      "r4= [2.97, 2.35, 1.75, 1.4, 1.16, 0.88]\n",
      "r5= [0.0206, 0.0163, 0.0121, 0.0097, 0.0081, 0.0061]\n",
      "\t\n",
      "#CALCULATIONS\n",
      "re= (d/u)*(p*100*2*math.pi/60)*(D/12)**2/g\n",
      "\t\n",
      "#RESULTS\n",
      "print  'Reynolds Number = %.2e '%(re)\n",
      "print \"m/qwD**3     g0deltaPe/QW**2D**2     m(lbm/sec)      deltap(lbf/ft**2)      deltap(lbf/in**2)\"\n",
      "for i in range(len(r1)):\n",
      "    print \"%7.2f     %8.4f              %7.2f         %7.2f              %8.4f\"%(r1[i],r2[i],r3[i],r4[i],r5[i])\n",
      "\n",
      "plot(r3,r5)\n",
      "xlabel(\"m lbm/sec\")\n",
      "ylabel( \"dPs lbf/ft**2\") \n",
      "suptitle(\"Actual perfomance curve\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "Reynolds Number = 1.53e+06 \n",
        "m/qwD**3     g0deltaPe/QW**2D**2     m(lbm/sec)      deltap(lbf/ft**2)      deltap(lbf/in**2)\n",
        "   0.02       0.0338                 0.46            2.97                0.0206\n",
        "   0.04       0.0267                 0.92            2.35                0.0163\n",
        "   0.06       0.0199                 1.38            1.75                0.0121\n",
        "   0.08       0.0159                 1.84            1.40                0.0097\n",
        "   0.10       0.0132                 2.30            1.16                0.0081\n",
        "   1.15       0.0100                 2.64            0.88                0.0061\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 1,
       "text": [
        "<matplotlib.text.Text at 0x1c015d0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEhCAYAAABV3CYhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclGXex/HPIApmB01FiyE1tYzhrEYecMlDBGoesIe0\nSMV23TYzs3ystvLwVJsdttTKTE0r3cqw0kIpU9CydK1Ry9rSXE2GttZDlqnkINfzx10TiCAIwzDw\nfb9evprDdd/zu7h7zW+u+zrZjDEGERGRMxTg6wBERMS/KZGIiEiVKJGIiEiVKJGIiEiVKJGIiEiV\nKJGIiEiVKJFIjXnzzTcJCAjgq6++Om3ZJ598kmPHjp3xZy1atIhbb731jI8vz6uvvsoll1xCnz59\nvHJ+EX+jRCI15uWXX2bAgAG8/PLLpy07c+ZMjh49esafZbPZzvjYshhjKCoqYuHChSxatIg1a9ZU\n+2fUVkVFRb4OQWoxJRKpET///DObNm3iqaee4tVXX/W8XlhYyC233MJll11GdHQ0M2fOZPbs2Xz7\n7bdceeWVnl/9Z599tueYzMxMRo8eDcCKFSuIj48nMjKSXr168Z///KfcOKZOnUp6ejoJCQm0b9+e\np59+2vPe9OnTiYqK4rLLLuPuu+8GYM+ePVx66aWMGjWKmJgYHnzwQTZs2EBGRgaTJ0+moKCA4cOH\n43A4iIyM5J133gGsFtHgwYNJTk6mXbt2PPXUUzz22GN06dKFuLg49u/fD8DcuXO5/PLLcTgcDBw4\nkJ9//hmAUaNGcdttt9GrVy8uuugi/vGPf3jinDZtGpdddhkxMTFMnjwZgK+++oorr7yS6Oho4uPj\n+fzzz0vV/fDhw1x33XU4HA6io6NZtmxZuX/bUaNG8ec//5kePXowadIk2rVrx48//ugp27FjR/bt\n28d3333HgAEDiI6OJiYmhnXr1pV7DaQOMiI1YPHixWbs2LHGGGMSEhLMJ598Yowx5u9//7tJS0vz\nlDt06JAxxpi2bduaAwcOeF4/++yzPY8zMzPNqFGjjDHG/Pjjj57X582bZ8aNG2eMMWbhwoWex8VN\nmTLFxMTEGLfbbX744QcTGhpq9u7da5YvX27+9Kc/GWOMOXHihBkwYIBZvXq12b17twkICDAff/yx\n5xyJiYme+B988EHPcTt37jStW7c2x44dMwsXLjQdOnQwx44dM/v27TPnnnuumT9/vjHGmNtvv908\n+uijpeK/9957zWOPPWaMMWbUqFHmuuuuM8YY88UXX5g2bdoYY4x5/fXXTY8ePczx48dLHN+9e3ez\nc+dOY4wxGzduND169ChV9/Hjx5s777zT8/y3Y8v6244cOdIMHjzY895tt91mFi5c6PmMfv36GWOM\nGTJkiPnggw+MMcZ88803pn379qU+W+q2QF8nMqkfXn75ZW6//XYArr32Wl5++WXi4uJYs2aN53WA\n8847r1Ln/frrr5k4cSIHDhzA7XZz0UUXlVveZrMxaNAgAgMDadq0KX369GHjxo2sW7eOd999l9jY\nWACOHDnCnj176NChA23atKFz586nPN+GDRuYNGkSAB06dKBjx45s374dm83GlVdeSXBwMMHBwTRt\n2pSUlBQAIiMj2bp1KwCbNm3ivvvu49ixYxw+fJi+fft6zn3NNdcAcNlll3laMO+99x6jR4+mYcOG\nAJx77rns378fp9PJtdde6zn2VP1La9asYfny5Z7n55577mn/VkOHDvU8T0tLY/r06YwaNYpXXnmF\ntLQ0T0y7d+/2lPvll184fPgw55xzTrnnl7pDiUS87uDBg+Tk5Hi+YE+cOEFAQACPPvooYPU9nE7x\nMsW/JMeNG8e9995LSkoK69atY+rUqZWO77f+lPvuu4+MjIwS7+3Zs4cmTZpUOLbi5wsKCvK8FhAQ\n4Hlus9k8fQ4jR45k9erVOBwOXnjhBXJzcz3HNGrUqNQ5bTZbqc8zxtCyZUu2bNly2rqe6m9d1t8W\n4KyzzvI8vuKKK/j666/Zv38/y5cv5/777/fEtHnzZgID9XVSX6mPRLwuMzOTG2+8kT179rB79272\n7t1L27Ztef/99+nXrx/z5s3zfJn9dg++cePGHDlyxHOO5s2b8+WXX2KM4c033/R8sRYUFNC6dWsA\nXnzxxdPGYoxhxYoVuN1ufvjhB9asWcMVV1xBUlISCxcupKCgAIDvv//e0wooT0JCgqfPZ9euXezc\nuZOIiIgKJUeA48ePExISwokTJ1iyZMlpBwn069ePRYsWcfz4ccD6e7Vs2ZKWLVvy9ttve+p4qj6S\nfv36MXfuXM/zn376CSj7b3sym83GkCFDuP322wkPD6dZs2YA9O3bl2effdZTbvv27RWqu9QdSiTi\nda+88gpDhgwp8VpqaiqvvPIK48aNo3nz5p7O45deegmAMWPGlOhs/9vf/kZSUhIJCQlccMEFnvPc\nd999DBkyhPj4eJo3b17il/upvhBtNhuRkZH07t2bzp07c88992C32xk4cCADBgwgLi6OmJgYrrnm\nGg4fPuw5piwTJkzgxx9/xOFwMHjwYF544QWCgoJKff7Jj397Pm3aNDp37kxCQgKdOnUqFevJjwcN\nGkS/fv2IiooiNjaWGTNmANaQ5Mcff5yoqCgiIiLIzMwsFev//d//sXfvXsLDw4mJifGMOivrb3uq\nuqelpbFkyRLPbS2AZ599ltWrVxMZGUlERASzZs0q8+8ldZPNVPSnk0gdMG3aNM4++2zuuOMOX4ci\nUmeoRSL1jjfmmIjUZ2qRiIhIlahFIiIiVaJEIiIiVaJEIiIiVaJEIiIiVaJEIiIiVaJEIiIiVaJE\nIiIiVeL1RJKdnU1kZCTh4eGe5RxONn78eBwOB3FxcZ6F5/Ly8ujVqxeRkZFceumlPPLII57yEydO\nJDw8nPDwcAYMGMCBAwe8XQ0RESmDVxPJL7/8ws0330x2djaffvopmZmZpVYoXbZsGXv37uXzzz9n\nwYIFnk11GjVqxDPPPMNnn33GJ598wvz589m2bRsAAwcOZPv27XzxxRdERETwwAMPeLMaIiJSDq8m\nkk2bNuFwOAgNDSUwMJC0tDSysrJKlFm5ciXp6ekAxMbGUlhYiMvlolWrVkRERADWDm5RUVF8++23\nAFx55ZUEBFih9+jRg/z8fG9WQ0REyuHVROJyuQgLC/M8t9vtuFyuSpfZs2cPmzdvpmfPnqU+47nn\nnmPQoEHVHLmIiFSUVxNJRRfHK2tjILD2+r722muZOXNmqR3XHnzwQRo1asT1119f9WBFROSMeHVL\nM7vdTl5enud5Xl5eidZH8TLx8fGA1UKx2+0AuN1uUlNTGTFiBIMHDy5x3AsvvEBWVhZr16495Wd3\n6NCBXbt2VWd1RETqtOjoaGJiYli0aFHlDvTmhvDHjh0zbdq0MS6Xyxw/ftx06dLFfPLJJyXKZGZm\nmsGDBxtjjPnkk09MVFSUMcaYoqIik56ebiZMmFDqvKtWrTLh4eFm3759ZX62l6vmc1OmTPF1CF5T\nl+tmjOrn7+py/aZMmXJG351ebZEEBwczZ84ckpKSKCoqIj09nbi4OM92n2PHjiU1NZWcnBwcDgdB\nQUEsXLgQgA0bNrB48WLPTnBg7eR29dVXc+utt3L8+HH69esHQLdu3XjmmWe8WRURESmDVxMJQHJy\nMsnJySVeGzt2bInnTz31VKnjevbsSVFR0SnPuXPnzuoLUEREqkQz2/1UYmKir0PwmrpcN1D9/F1d\nrt+Z1q3O7pBos9lKjQYTEZHyncl3p1okIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJS\nJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUokIiJSJUoktdyOHbBli6+jEBEpmxJJLfev\nf8HAgVBsx2IRkVrF6xtbSdUMGgQ7d8KAAfDBB3DOOb6OSESkJO1H4geMgT//GVwuWL4cApX+RcRL\ntB9JHWWzwVNPQWEhTJhgJRYRkdrCq4kkOzubyMhIwsPDmTFjxinLjB8/HofDQVxcHFt+7VXOy8uj\nV69eREZGcumll/LII494yh88eJB+/foRFRVFUlIShw4d8mYVao2GDWHpUsjNhVmzfB2NiEgxxksK\nCgpM27ZtjcvlMm6323Tp0sU4nc4SZTIzM82gQYOMMcY4nU4THR1tjDHmu+++M5999pkxxpjDhw+b\njh07mm3bthljjBk3bpx54oknjDHGPPHEE2b8+PGn/HwvVs2n9uwx5sILjVmxwteRiEhddCbfnV5r\nkWzatAmHw0FoaCiBgYGkpaWRlZVVoszKlStJT08HIDY2lsLCQlwuF61atSIiIgKAs88+m6ioKPLz\n80sdc8MNN5Q6Z13Xpg288QaMGaNhwSJSO3gtkbhcLsLCwjzP7XY7Lper0mX27NnD5s2b6dmzJwD7\n9u2jefPmALRo0YL//ve/3qpCrXX55TBnDlxzjdUBLyLiS14b/2Oz2SpUzpzUc1z8uJ9//plrr72W\nmTNnco7GvZaQmgq7dllzTN5/H84+29cRiUh95bVEYrfbySs2iy4vL69E66N4mfj4eMBqodjtdgDc\nbjepqamMGDGCwYMHe45p2bIl+/fvp0WLFuzbt4+QkJAyY5g6darncWJiIomJidVQs9pj0iRrjsnw\n4fDmm9Cgga8jEhF/k5ubS25ubpXO4bV5JAUFBXTq1IkNGzYQEhJC9+7dmTt3LnFxcZ4yy5YtY/Hi\nxbzxxhs4nU5Gjx7Ntm3bMMYwcuRImjdvzhNPPFHivLfeeivt27dnwoQJPPHEE+zevZtZpxjGVJfm\nkZTH7YaUFAgPh5kzfR2NiPi7M/nu9OqExFWrVjFp0iSKiopIT0/n7rvvZu7cuQCMHTsWgHHjxpGT\nk0NQUBDz588nLi6ODz74gF69ehEVFeW51fW3v/2Nq6++moMHD5KWlsb3339P69atWbp0KU2bNi1d\nsXqSSAAOHYIePeDmm2HcOF9HIyL+rNYlEl+qT4kEYPduK5nMmwf9+/s6GhHxV0okxdS3RAKwcaM1\nkuvddyEmxtfRiIg/0hIp9dwVV8DTT1vJ5NdpNyIiXqfl/+qYa6+Fr7+2hgWvX69hwSLifbq1VQcZ\nAzfdBPv2WbPgNSxYRCpKt7YEsFYLfvZZOHIE7rzT19GISF2nRFJHNWwImZmQnQ3PPOPraESkLlMf\nSR3WrBlkZVnDgtu1g+RkX0ckInWRWiR13MUXw+uvw8iR8Omnvo5GROoiJZJ6oFs3mD3bGsn1n//4\nOhoRqWt0a6ueSEv7fVjwunXQpImvIxKRukLDf+sRY2D0aPjxR6sjXsOCReRkGv4r5bLZ4LnnrEUe\nJ0/2dTQiUlcokdQzjRrBsmXw9tvWXBMRkapSH0k9dP75JYcFJyX5OiIR8WdqkdRT7dtb/STp6fDZ\nZ76ORkT8mRJJPdazJzz5pDWS67vvfB2NiPgrJZJ6bsQIGDPGWnr+6FFfRyMi/kjDfwVjYNQo+Pln\neO01CNDPC5F6S8N/5Yz8Nix4/3646y5fRyMi/sariSQ7O5vIyEjCw8OZMWPGKcuMHz8eh8NBXFwc\nW7Zs8byekZFBq1atiIyMLFF+w4YNxMTEEBERQXR0NB9++KE3q1BvBAVZa3K9+aa177uISIUZLyko\nKDBt27Y1LpfLuN1u06VLF+N0OkuUyczMNIMGDTLGGON0Ok10dLTnvfXr1xun02kiIiJKHNOjRw+T\nnZ1tjDFm5cqVpmfPnqf8fC9WrU7bscOYVq2MefddX0ciIr5wJt+dXmuRbNq0CYfDQWhoKIGBgaSl\npZGVlVWizMqVK0lPTwcgNjaWwsJCXC4XAAkJCTRr1qzUecPCwvjxxx8BOHToEG3atPFWFeqljh2t\nfpLrr4fPP/d1NCLiD7w2IdHlchEWFuZ5brfbyc3NPW0Zl8uF3W4v87wPP/wwPXv25M4776SoqIiP\nPvqo2mOv7xIS4O9/hwEDYONGaNXK1xGJSG3mtURis9kqVM6cNDrgdMeNGTOGWbNmMWTIEF577TUy\nMjJYvXr1KctOnTrV8zgxMZHExMQKxSRwww3WasHXXAM5OXDWWb6OSES8ITc3t9SP/MryWiKx2+3k\n5eV5nufl5ZVofRQvEx8fD3Da1gjAxo0bee+99wAYNmwYo0ePLrNs8UQilTdlipVMbrwRli7VsGCR\nuujkH9nTpk2r9Dm89tXQtWtXtm/fTn5+Pm63m6VLl5J80l6vKSkpLFmyBACn00mDBg0IDQ0t97xt\n2rRh3bp1AKxdu5Z27dp5pwKCzQYLFsD338M99/g6GhGprbzWIgkODmbOnDkkJSVRVFREeno6cXFx\nzJ07F4CxY8eSmppKTk4ODoeDoKAgFi5c6Dl++PDhrFu3jgMHDhAWFsb06dMZPXo08+bN4y9/+Qtu\nt5ugoCAWLFjgrSoI1rDgN96wdlns0AFuusnXEYlIbaOZ7VIhO3ZYnfD/+Af06ePraETEWzSzXbzm\nkkusfpLhw+GLL3wdjYjUJkokUmF/+AM89pg1LPi///V1NCJSWyiRSKXceKM1NHjQIDh2zNfRiEht\noD4SqTRjrJnvJ07Ayy9rWLBIXaI+EqkRNhs8/zzk58N99/k6GhHxNSUSOSPBwdaw4FdfhWKjtkWk\nHvLaPBKp+1q2hLfftjrh27SB3r19HZGI+IJaJFIlnTrBK69Yw4K//NLX0YiILyiRSJVdeSXMmAH9\n+8O+fb6ORkRqmkZtSbX5618hNxfWrLH6UETE/5zJd6cSiVSboiIYMcIa1bVkiYYFi/gjDf8VnwoI\nsEZw7dljLUEvIvWDEolUq8aNYflyq0Xywgu+jkZEaoKG/0q1CwmBrKzfhwVrY0qRuk0tEvGKyy6z\nlk9JS4OvvvJ1NCLiTUok4jV9+sBDD1mrBe/f7+toRMRbNGpLvO7uu+H99+G99zQsWKS20/DfYpRI\nao+iIrjuOmjYEBYvtoYHi0jtpOG/UisFBFgjuHbtgqlTfR2NiFQ3ryaS7OxsIiMjCQ8PZ8aMGacs\nM378eBwOB3FxcWzZssXzekZGBq1atSIyMrLUMbNnzyY6OprIyEgmTZrktfil+vw2LPill2DRIl9H\nIyLVynhJQUGBadu2rXG5XMbtdpsuXboYp9NZokxmZqYZNGiQMcYYp9NpoqOjPe+tX7/eOJ1OExER\nUeKYt99+2/Tv39+43W5jjDH79+8/5ed7sWpSBf/6lzEhIca8+66vIxGRUzmT706vtUg2bdqEw+Eg\nNDSUwMBA0tLSyMrKKlFm5cqVpKenAxAbG0thYSEulwuAhIQEmjVrVuq88+fPZ/LkyQQGWlNgmjdv\n7q0qiBd06gSZmdYOi9u2+ToaEakOXkskLpeLsLAwz3O73e5JEpUpc7Ivv/ySd955h5iYGLp168aH\nH35YvYGL1yUkwOzZ1rDg01xuEfEDZc5sN8awYsUKvv32W66++mratWvnee/5558nIyOj3BPbKjg0\nx5w0OuB0xxUVFXH48GG2bt3K5s2bSU1N5ZtvvjnlcVOL9ewmJiaSqCnWtUZaGuTlQUqKNTT4vPN8\nHZFI/ZSbm0tubm6VzlFmIrnjjjv4+OOPufzyy+nbty+33XYb48ePB6zO7tMlErvdTl5enud5Xl5e\nidZH8TLx8fGA1UKx2+3lnjcsLIyhQ4cC0LVrVxo1asT3339P69atS5WdqiFCtdodd1gLPKamwsqV\n0KiRryMSqX9O/pE9bdq0Sp+jzFtbWVlZrFmzhscee4xPPvmE7OxsbrvttgqPL+7atSvbt28nPz8f\nt9vN0qVLSU5OLlEmJSWFJUuWAOB0OmnQoAGhoaHlnrd///6sXbsWgB07dnD06FFCQkIqFJPULjYb\nzJwJTZrAH/8ImvYj4p/KTCSBgYE0bNgQgKZNm7JixQoOHz7MsGHDOH78+GlPHBwczJw5c0hKSiI6\nOpqhQ4cSFxfH3LlzmTt3LgCpqamEhobicDi46aabWLhwoef44cOH0717d3bs2EFYWJjnvXHjxvHv\nf/+biIgIhg4dyqJFiwjQxhd+q0EDa02uL7/UHBMRf1XmzPakpCTuv/9+evToUeL1e++9l4ceeoii\noqIaCfBMaWa7f/nvf6FbN7jnHhgzxtfRiNRf1bpEyrFjxwBo3Lhxqfcq0pfha0ok/uerr6yl5194\nAZKSfB2NSP1UrUukNG7c2HMLatasWSXeq+1JRPzTpZfCsmWQng5bt/o6GhGpqHI7F8455xweffRR\nmjRpUlPxSD3Xowc884w1x2TvXl9HIyIVUWYimTZtGjt27OC+++7jq6++OqMhYSJnYtgwmDjRmmNy\n6JCvoxGR0ykzkUyZMoWGDRvy7rvv0qhRI6ZMmVKTcUk9d/vt0Ls3DB0KFRgkKCI+VO6trV69etGr\nVy/NCJcaZ7PBE09YM97HjNEcE5HarNxE8sUXX5T4r0hNatAAliyBnTvhvvt8HY2IlEWd7VKrnXUW\nvPUWvPIKzJvn62hE5FTU2S61XsuWsGqV1SpZtcrX0YjIydTZLn6hY0d44w0YORKcTl9HIyLFlbn6\nL/ze2V6RtbVEvK1bN3j2WRg4ED78ENq08XVEIgKn6SO56qqr6NOnD3379i3xep8+fbwalEhZhg6F\n//1fSE6GH37wdTQiAuW0SI4dO8bRo0fZt28fBw8e9Lx+5MgRvvnmmxoJTuRUbrvN2sdkyBB45x0I\nCvJ1RCL1W5mLNs6cOZMnn3ySb7/9lgsvvNDzeuPGjRkzZgx33HFHjQV5JrRoY9124gT8z/9YSWTx\nYtBOAiLV40y+O8vdanf37t1Mnz6d+++/v8rBiVSnBg2sBNKnD9x7Lzz0kK8jEqm/yvwdN3/+fADe\neOONGgtGpDIaN4YVKyAzE35dqFpEfKDMFkl4eDgdO3YkPz+fyMjIEu/ZbDY+/fRTrwcncjotWlj7\nvSckQGiotWqwiNSsMvtIAL777juuuuoq3nrrrVL3zNq2bevt2KpEfST1y8aN1rDgVaugSxdfRyPi\nv6p1h8Q//elPJCcn06dPH84999xqCbAmKZHUP2++CbfcAhs2QC3/nSNSa1XrDokZGRls3bqV/v37\n07t3b2bMmMG2bdsqdfLs7GwiIyMJDw9nxowZpywzfvx4HA4HcXFxbNmypcTnt2rVqtRttd88/vjj\nBAQElBiaLPXb4MFw113WHBP9byFSg0wF7Nu3zyxZssSkp6eb6OhoM2rUKPPqq6+We0xBQYFp27at\ncblcxu12my5duhin01miTGZmphk0aJAxxhin02mio6M9761fv944nU4TERFR6tx79+41SUlJpm3b\ntubAgQOn/PwKVk3qoIkTjenVy5iCAl9HIuJ/zuS7s8wWycyZMwHYsGEDLVq0YMSIEbz44ots2bKF\nW265hZ07d5aboDZt2oTD4SA0NJTAwEDS0tLIysoqUWblypWkp6cDEBsbS2FhIS6XC4CEhASaNWt2\nynNPnDiRRx55pKK5UuqZRx+FkBAYNQqKinwdjUjdV2Yimffrmt3jxo0r8brNZqNLly789a9/LffE\nLpeLsLAwz3O73e5JEpUpc7Lly5djt9uJiooqt5zUXwEB8NJLkJcHd9/t62hE6j6vDf+12WwVCsCc\n1KlT3nFHjx7loYceYvXq1WUeX9zUqVM9jxMTE7XTYz0SHAzLl0P37tbijn/5i68jEqmdcnNzyc3N\nrdI5ykwkS5cuLXf47+nY7Xby8vI8z/Py8kq0PoqXiY+PB6wWit1uL/Ocu3btYs+ePURHR3vKd+7c\nmX/+85+EhISUKl88kUj907y5NRy4Z08IC7OGB4tISSf/yD6TvafKXaGodevWfPrpp7Rq1Yr9+/dz\n4MABLrjgggrNIenatSvbt28nPz8ft9vN0qVLSU5OLlEmJSWFJUuWAOB0OmnQoAGhoaFlnjMyMpLv\nv/+e3bt3s3v3bux2O06n85RJRATg4outYcEZGbB5s6+jEambTrvU3RtvvEGbNm244447mDhxIm3a\ntKnQsinBwcHMmTOHpKQkoqOjGTp0KHFxccydO5e5v65nkZqaSmhoKA6Hg5tuuomFCxd6jh8+fDjd\nu3dnx44dhIWFlXjvNxW9fSb12+WXw4IFMGgQ/Pvfvo5GpO4pd2Y7QPv27VmzZo2nFbJ792769u3L\nrl27aiK+M6YJiXKyp5+G2bOtCYvNm/s6GpHaqVonJP6mZcuWJW5ltWvXTreSxC/dcgtcc43VMiko\n8HU0InVHmS2SZcuWAfDee++Rl5fHsGHDPK/b7XbmzJlTc1GeAbVI5FSKimD4cDAGXnlF+5iInKxa\n19oaNWqUpw/CGFPq8an6LGoTJRIpS0EBXHUVxMdbkxdF5HfVmkj8nRKJlOfgQWuOybhx1j8RsVTr\nDom33npruR80a9asSn2QSG1y/vnWHJMePaw5JoMG+ToiEf9VZiLp3LnzKYfXFr/NJeLP2rWzdlhM\nTobWra1bXSJSebq1JfXe22/DH/8IH3wA7dv7OhoR3/LK8F+Rum7AAJgyxWqZ7N/v62hE/I9aJCK/\nuusueP99eO89aNzY19GI+IZGbRWjRCKVVVQEN9wAx4/D0qWaYyL1k1dubU2cOJEjR45w/Phxevfu\nTdOmTWv9HBKRMxEQAAsXWre37rzT19GI+I/TJpK1a9fSpEkT3nrrLS6++GK++eYbnnjiiZqITaTG\nBQXBG29Adjb8ukmoiJxGmcN/f+N2uwFrW9xhw4Zx3nnn0aBBA68HJuIrzZpZc0y6d4eLLoIhQ3wd\nkUjtdtpEkpKSQkREBA0bNmTOnDkcOHCAwMDTHibi19q0seaYXH21NcekWzdfRyRSe1Wos33fvn2c\nf/75NGjQgCNHjvDTTz9xwQUX1ER8Z0yd7VIdVq60NsV6/33o2NHX0Yh4X7V2tq9bt45OnTrRqFEj\nrrrqKrZv3w5AkyZNan0SEakuKSkwfbr13337fB2NSO1UZiK55ZZbmD17Nj/99BP33HMPEyZMqMm4\nRGqNP/0J/ud/rL1Mjh71dTQitU+Zt7aio6PZtm1bmc9rO93akupkjDXH5NgxeO010HgTqauqdfXf\nw4cP8/odAgB/AAAW+UlEQVTrr3tOWPy5zWZj6NChVYtWxI/YbPD881bn+x13wJNP+joikdqjQhtb\nQelVfys6KTE7O5tJkyZx4sQJRo4cyeTJk0uVGT9+PGvWrCEoKIgFCxYQGxsLQEZGBllZWYSEhPDZ\nZ595yk+cOJHs7GwALr74Yl544QWan7QJt1ok4g2HDllLz//xj6C7vVIXndF3p/GigoIC07ZtW+Ny\nuYzb7TZdunQxTqezRJnMzEwzaNAgY4wxTqfTREdHe95bv369cTqdJiIiosQxa9euNSdOnDDGGDN5\n8mQzYcKEUp/t5apJPfbNN8aEhhqTmenrSESq35l8d5Z5a+vxxx8vd9+RiRMnnjZJbdq0CYfDQWho\nKABpaWlkZWV5WhxgTXRMT08HIDY2lsLCQlwuF3a7nYSEBPbs2VPqvFdeeaXncY8ePXjppZdOG4tI\ndbnoInjrLWu73p9+glGjrFtfIvVVmaO2Dh8+zOHDh/n444+ZM2cO+fn5uFwunn32WZxOZ4VO7nK5\nCAsL8zy32+24XK5KlynPc889xyBtbyc1LDbWWiV49myr3+Sbb3wdkYjvlNkimTp1KgCJiYls27aN\ns846C4AHHniAlJSUCp28ojspmpPux1X0uAcffJBGjRpx/fXXn/L93+oAVj0SExMrdF6RioiOhk2b\n4LHHoHNnmDoV/vIXrRos/iU3N5fc3NwqneO0a524XC4aNmz4+wGBgRVuMdjtdvLy8jzP8/LySrQ+\nipeJ/3Wf099ua53OCy+8QFZWFmvXri2zTPFEIuINDRvC3Xdb63GNGQOvvgoLFsAll/g6MpGKOflH\n9rRp0yp9jtP+dhoxYgSdO3dm6tSpTJkyha5du5bZAjhZ165d2b59O/n5+bjdbpYuXUpycnKJMikp\nKSxZsgQAp9NJgwYNPH0qZcnOzuaRRx5hxYoVBAcHVygWEW/q1AnWr4drr7UWe5wxAwoLfR2VSM2o\n0FpbH330Ee+//z4BAQH07NmTK664osIfsGrVKiZNmkRRURHp6encfffdzJ07F4CxY8cCMG7cOHJy\ncggKCmL+/PnExcUBMHz4cNatW8eBAwcICQlh+vTpjB49mo4dO3L8+HHOP/98ALp168YzzzxTsmIa\n/is+snu3NTz40CFr7klUlK8jEqk47ZBYjBKJ+JIxVhK56y64+Wb461+tvU5Eajuv7JAoIpVns1l9\nJtu2Wf/i4qyOeZG6SC0SES8zxuqEnzABrr8e/u//4NdBkCK1jlokIrWQzQbXXQeffQb/+Y/VZ1LF\n0ZYitYpaJCI17K23rH6TAQPgkUfg3HN9HZHI79QiEfEDAwfC9u1w4gRERFi7MIr4M7VIRHxozRpr\nqHD37jBzJpy0iLVIjVOLRMTP9Olj9Z20aGG1TpYutTrnRfyJWiQitcSHH1pDhjt1gmeegQsu8HVE\nUh+pRSLix7p3hy1bwOGwFoRcuFCtE/EPapGI1EJbtkBGBoSEwHPPQZs2vo5I6gu1SETqiNhY+Oc/\nITHRWqL+qaegqMjXUYmcmlokIrXcl19afScBATB/Plx6qa8jkrpMLRKROqj4EvU9emiJeql91CIR\n8SPFl6hfsMDqlBepTmqRiNRx7drB6tXWEit9+8L998Mvv/g6KqnvlEhE/IyWqJfaRre2RPyYlqiX\n6qZbWyL1jJaol9pALRKROkRL1EtV1boWSXZ2NpGRkYSHhzNjxoxTlhk/fjwOh4O4uDi2bNnieT0j\nI4NWrVoRGRlZovzBgwfp168fUVFRJCUlcejQIW9WQcSvaIl68QWvJZJffvmFm2++mezsbD799FMy\nMzNLJAqAZcuWsXfvXj7//HMWLFjA6NGjPe+NHj2a7OzsUuedMmUK/fv359NPPyU5OZkpU6Z4qwoi\nfqlpU5g3z1qra9w4uOEGOHDA11FJXea1RLJp0yYcDgehoaEEBgaSlpZGVlZWiTIrV64kPT0dgNjY\nWAoLC3G5XAAkJCTQrFmzUuctfswNN9xQ6pwiYtES9VJTvJZIXC4XYWFhnud2u92TJCpT5mT79u2j\n+a+7/7Ro0YL//ve/1Ri1SN3SpAk8+SQsWwZTpsDQoVanvEh1CvTWiW02W4XKndypU9HjKmLq1Kme\nx4mJiSQmJlbbuUX8yW9L1D/wgDUbfsYMGDXKGvUl9Vtubi65VRzq57VEYrfbycvL8zzPy8sr0foo\nXiY+Ph6wWih2u73c87Zs2ZL9+/fTokUL9u3bR0hISJlliycSkfouONhKJKmp1hL1r7wCc+dC27a+\njkx86eQf2dOmTav0Obx2a6tr165s376d/Px83G43S5cuJTk5uUSZlJQUlixZAoDT6aRBgwaEhoaW\ne96UlBQWL14MwOLFi0lJSfFOBUTqqOJL1HfpoiXqpeq8Oo9k1apVTJo0iaKiItLT07n77ruZO3cu\nAGPHjgVg3Lhx5OTkEBQUxPz584mLiwNg+PDhrFu3jgMHDhASEsL06dMZPXo0Bw8eJC0tje+//57W\nrVuzdOlSmjZtWrpimkciclrFl6h/5hk4abS91ENn8t2pCYki9dyJE1YSeegha3TXbbdBSoqVXKT+\nUSIpRolEpHJ++cUaIvzkk3D4MNx6q9Uhf845vo5MapISSTFKJCJnxhjYsAFmzoS1a+HGG62kcvHF\nvo5MakKtWyJFRPyPzQY9e8Jrr4HTCQ0bwuWXw+DB1oKQ+n0mJ1OLRERO68gRePFFmDULGjWy+lFG\njLCGFEvdoltbxSiRiFS/oiJrh8aZM+GTT+BPf7JWG77wQl9HJtVFt7ZExKsCAiApyVpVeN06OHgQ\nHA5rU61//tPX0YmvqEUiIlVy6BAsWACzZ1stk9tus9b0atjQ15HJmdCtrWKUSERqVmEhrFhhDR/e\nvRtuuQX++Ef4dY1V8RO6tSUiPhMYaLVE1q+3EsqXX0KHDjB2LHz+ua+jE29SIhGRahcbC4sWWcnk\nwguhb1/o1w/eflvretVFurUlIl6nWfP+Q30kxSiRiNQ+J8+aHznS2g5Ys+ZrD/WRiEitdvKs+cBA\nzZqvC9QiERGfOnIEXnrJaqVo1rzv6dZWMUokIv5Fs+ZrB93aEhG/Vdas+RtugM2bfR2dlEctEhGp\ntU6eNT9hAgwZolnz3qRbW8UokYjUHb/Nmp85E/79b82a9ybd2hKROum3WfPr1mnWfG3k1USSnZ1N\nZGQk4eHhzJgx45Rlxo8fj8PhIC4uji1btpz22A0bNhATE0NERATR0dF8+OGH3qyCiNQyxWfNh4Za\ns+avugqysjRr3meMlxQUFJi2bdsal8tl3G636dKli3E6nSXKZGZmmkGDBhljjHE6nSY6Ovq0x/bo\n0cNkZ2cbY4xZuXKl6dmz5yk/34tVE5FapKDAmBdfNCYuzpiOHY2ZNcuYn37ydVT+60y+O73WItm0\naRMOh4PQ0FACAwNJS0sjKyurRJmVK1eSnp4OQGxsLIWFhbhcrnKPDQsL48cffwTg0KFDtGnTxltV\nEBE/EBQE6enw8cfw/PPWopEdO1rreknNCPTWiV0uF2FhYZ7ndrud3Nzc05ZxuVzk5+eXeezDDz9M\nz549ufPOOykqKuKjjz7yVhVExI/8Nmu+Z0/44ANrs601a+Dhh61kI97jtURis9kqVM5UYHRA8TJj\nxoxh1qxZDBkyhNdee42MjAxWr159yuOmTp3qeZyYmEhiYmKFYhIR/9azJ2zZAmPGQI8e8MorVue8\nlJabm1vqR35leS2R2O128vLyPM/z8vJKtDKKl4mPjwd+b6G43e4SxxZvuWzcuJH33nsPgGHDhjF6\n9OgyYyieSESkfjn/fHj9dXj6aejWzRo6PGKEr6OqfU7+kT1t2rRKn8NrfSRdu3Zl+/bt5Ofn43a7\nWbp0KcnJySXKpKSksGTJEgCcTicNGjQgNDS03GPbtGnDunXrAFi7di3t2rXzVhVExM/ZbNbqwqtX\nw7RpkJFhre0l1ctrLZLg4GDmzJlDUlISRUVFpKenExcXx9y5cwEYO3Ysqamp5OTk4HA4CAoKYuHC\nheUeCzBv3jz+8pe/4Ha7CQoKYsGCBd6qgojUETEx1vpd48ZBly7w6qsQFeXrqOoOzWwXkXrlpZdg\n4kSYPh3+/Ger1SK/0xIpxSiRiEhZduyAtDRrQ63586FZM19HVHtoiRQRkQq45BLYuBHsdmumvBbI\nqBq1SESkXlu+3Nr7ZMIEmDzZWs6+PtOtrWKUSESkovLyft+V8aWXoHVrX0fkO7q1JSJyBsLCICcH\nrrgC4uLg3Xd9HZF/UYtERKSYtWvhxhut9bumT69/m2ipRSIiUkW9e4PTCdu2Qa9esGePryOq/ZRI\nREROEhJirR48bBhcfjksW+briGo33doSESnHP/8Jw4dbm2f9/e/QuLGvI/Iu3doSEalml19u3eo6\neBDi4+Ff//J1RLWPEomIyGmcd561FP348Va/yfPPg254/E63tkREKuHzz63lVaKi4Nln4dxzfR1R\n9dKtLRERL3M4rH6Tc86x5px8/LGvI/I9JRIRkUo66yyYOxceeghSUuCJJ+r3rS7d2hIRqYLdu+G6\n66BlS1i0CFq08HVEVaNbWyIiNaxdO3j/fQgPt1YS/nUD13pFLRIRkWqSnQ2jR8PYsXDffdCgga8j\nqjyt/luMEomI+MK331rrdBUWwpIl1p4n/qTW3drKzs4mMjKS8PBwZsyYccoy48ePx+FwEBcXx5Yt\nWyp07OzZs4mOjiYyMpJJkyZ5swoiIpVy4YXW6sFXXQWdO8Nbb/k6ohpgvKSgoMC0bdvWuFwu43a7\nTZcuXYzT6SxRJjMz0wwaNMgYY4zT6TTR0dGnPfbtt982/fv3N2632xhjzP79+0/5+V6sWq2Qk5Pj\n6xC8pi7XzRjVz99Vpn7vv2/MRRcZM2GCMQUF3oupuuTk5JzRd6fXWiSbNm3C4XAQGhpKYGAgaWlp\nZGVllSizcuVK0tPTAYiNjaWwsBCXy1XusfPmzWPy5MkEBgYC0Lx5c29VoVbLzc31dQheU5frBqqf\nv6tM/Xr2hC1brBWEu3eHnTu9Fla1ONNr57VE4nK5CAsL8zy32+24XK4KlcnPzy/z2K+++op33nmH\nmJgYunXrxofabFlEarHzz4fXX7c64W+6qW7ONwn01oltNluFypkK/FWLlykqKuLw4cNs3bqVzZs3\nk5qayjfffFPhzxMRqWk2G4wbBzffbD2ua7yWSOx2O3l5eZ7neXl5JVoZxcvEx8cDv7dQ3G53iWOL\nt1zCwsIYOnQoAF27dqVRo0Z8//33tD5pk+X27dvX+eQybdo0X4fgNXW5bqD6+bu6Wr/o6GhGjhxZ\n6eO8lki6du3K9u3byc/PJyQkhKVLlzJ37twSZVJSUli8eDHDhg3D6XTSoEEDQkNDad68eZnH9u/f\nn7Vr1/KHP/yBHTt2cPToUUJCQkp9/tdff+2tqomISDFeSyTBwcHMmTOHpKQkioqKSE9PJy4uzpMQ\nxo4dS2pqKjk5OTgcDoKCgli4cGG5xwKMGzeOjIwMIiIiAFi0aBEBAZqgLyLiK3V2QqKIiNQMv/4p\nX5UJj/7gdPXLzc3lvPPOIzY2ltjYWB544AEfRHlmMjIyaNWqFZGRkWWW8edrd7r6+fO1A6vPs1ev\nXkRGRnLppZfyyCOPnLKcv17DitTPX69hQUEBXbt2JTY2lksuuYTbb7/9lOUqde2qeT5LjanKhEd/\nUJH65eTkmIEDB/oowqpZv369cTqdJiIi4pTv+/O1M+b09fPna2eMMd9995357LPPjDHGHD582HTs\n2NFs3bq1RBl/voYVqZ8/X8OjR48aY4xxu90mPj7erF27tsT7lb12ftsiqcqER39QkfpBxYZP10YJ\nCQk0a9aszPf9+drB6esH/nvtAFq1auXppzz77LOJiori22+/LVHGn69hReoH/nsNGzduDMDx48c5\nceIErVq1KvF+Za+d3yaSqkx49AcVid1ms/HRRx8RGRlJnz592LZtW02H6TX+fO0qoi5duz179rB5\n82Z69uxZ4vW6cg3Lqp8/X8OioiJiYmJo1aoVV155JeHh4SXer+y189qoLW870wmP/jK3pCJxdu7c\nGZfLRXBwMO+++y6DBw9m9+7dNRBdzfDXa1cRdeXa/fzzz1x77bXMnDmTc845p9T7/n4Ny6ufP1/D\ngIAAtm7dyo8//khSUhK5ubkkJiaWKFOZa+e3LZLKTHj8jcvlwu4nazpXpH5nn302wcHBAFx11VU0\natSI7777rkbj9BZ/vnYVUReundvtJjU1lREjRjB48OBS7/v7NTxd/erCNTzvvPPo378/GzduLPF6\nZa+d3yaS4hMe3W43S5cuJTk5uUSZlJQUlixZAlBiwqM/qEj99u/f73n8ySefcOTIkVNOzvRH/nzt\nKsLfr50xhjFjxhAeHl7mqB9/voYVqZ+/XsMDBw5w+PBhAI4dO8bq1atLjS6s7LXz21tbVZnw6A8q\nUr+XX36Z5557DoBGjRrxj3/8w28mZw4fPpx169axf/9+wsLCmDZtGm63G/D/awenr58/XzuADRs2\nsHjxYqKiooiNjQXgoYceYu/evYD/X8OK1M9fr+G3337LjTfeiDGGgoICRowYQf/+/av03akJiSIi\nUiW1P32KiEitpkQiIiJVokQiIiJVokQiIiJVokQiIiJVokQiIiJVokQiUkW5ubkMHDgQgKlTp/L4\n449X6Xz/+c9/SEpKqo7QRGqEEolINaqOtaSys7O5+uqrqyEakZqhRCJSzJ49e+jUqRNjxoyhU6dO\nXH/99axevZpevXrRrl07Pvzww9OeY9u2bSQkJNC+fXuefvppwGq1/OEPfyA1NZUOHTpw11138dJL\nL9GtWzcuvfRSdu7c6Tn+nXfeITk5GZfLRa9evYiNjSUyMpIPPvgAgBUrVtC5c2ciIyMZNGiQZ7mL\nDRs20KVLF2JiYujatSs///yzF/5CIqdQfVuliPi/3bt3m8DAQPOvf/3LFBUVmc6dO5ubbrrJGGPM\n8uXLTf/+/Usdk5OTYwYMGGCMMWbKlCkmOjrauN1u88MPP5jQ0FCzd+9ek5OTY5o2bWr27dtnfvnl\nF3PhhRea6dOnG2OMmTlzprnllluMMcYUFhaamJgYY4wxM2bMMDNmzPB8zs8//2y+++47061bN8/G\nRA8//LD561//an755RcTGhrq2Xzp6NGjprCw0Et/JZGS/HatLRFvadeuHZ06dQLA4XDQu3dvACIi\nIkqsiHoqNpuNwYMHExgYSNOmTenTpw8bN24kJCSErl270qJFCwA6dOhA3759Pedds2YNYG1oFh8f\nD0C3bt0YM2YMx44dY+DAgcTFxbFq1Sp27txJ9+7dAWtjovj4eD799FPatm1LdHQ08PvGRSI1QYlE\n5CRBQUGexwEBATRq1MjzuKioqNLn+20hv5PP+9vz4uddtWqVZ5XnhIQE1q9fT1ZWFjfddBMTJkzg\nrLPOIjk5mRdffLHEZ3z88ceVjkukuqiPRKQaGWNYsWIFbrebQ4cOsWbNGuLj4yu8JevatWs9LRWX\ny0VISAhjxowhIyODjz/+mISEBHJycjyr0BYUFLBr1y6ioqLYs2cPW7duBeDIkSOcOHHCO5UUOYla\nJCInOXnkVfHnpxqVZbPZPK/bbDYiIyPp3bs3+fn53HPPPdjtdnbt2lXmiK7fjt+/fz/BwcE0adIE\ngDVr1vDYY4/RsGFDzjnnHJ5//nlatWrFc889xzXXXANYW6Y++OCDtG/fnldffZWMjAyKiooIDg5m\nzZo1nnOJeJOWkRepJZYsWUJ+fj7/+7//6+tQRCpFiURERKpEfSQiIlIlSiQiIlIlSiQiIlIlSiQi\nIlIlSiQiIlIlSiQiIlIlSiQiIlIl/w/IbjDGd8tQDQAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x1c01590>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.2 Page No : 464"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\n",
      "#initialisation of variables\n",
      "psif= 10.2       \t#lbf/in**2 pressure\n",
      "usit= 3.8*10**-7 \t#lbf sec/ft**2 viscosity\n",
      "usif= 3.52*10**-7 \t#lbf sec/ft**2 viscosity\n",
      "Tsit= 530.       \t#R temperature\n",
      "Tsif= 480.          #R temperature\n",
      "wf= 15000.       \t#rev/min speed\n",
      "\t\n",
      "#CALCULATIONS\n",
      "Psit= psif*usit*math.sqrt(Tsit/Tsif)/usif\n",
      "wt= wf*math.sqrt(Tsit/Tsif)\n",
      "\t\n",
      "#RESULTS\n",
      "print  'Pressure in the test cell = %.1f lbf/in**2'%(Psit) \n",
      "print  ' Compressor speed = %.f rev.min'%(wt) \n",
      "\n",
      "# book answer is wrong."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Pressure in the test cell = 11.6 lbf/in**2\n",
        " Compressor speed = 15762 rev.min\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.3 Page No : 474"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\n",
      "#initialisation of variables\n",
      "w= 62.3 \t#lbf/ft**3 weight\n",
      "d= 0.375 \t#in diameter\n",
      "ro= 0.75 \t#ft radius\n",
      "l= 1.25 \t#ft length\n",
      "b= 120. \t#degrees angle\n",
      "do= 0.25 \t#in diameter\n",
      "p= 750. \t#lbf/in**2\n",
      "g= 32.1 \t#ft/sec**2\n",
      "f= 0.03     # friction factor\n",
      "f1= 0.9\n",
      "f2= 0.3\n",
      "w1= 60. \t#rad/sec\n",
      "\t\n",
      "#CALCULATIONS\n",
      "Q= math.sqrt(((p/w)+((60*ro)**2/(2*g))+do)*math.pi**2*g*(d/12)**4/((d/do)**4-1+(l*f/(d/12))+f1+f2))*0.353\n",
      "Vwo= w1*ro+(4*Q/(math.pi*(do/12)**2))*math.cos(math.radians(b))\n",
      "C= w*Q*Vwo*ro/g\n",
      "\t\n",
      "#RESULTS\n",
      "print  ' Flow Rate = %.4f ft**3/sec'%(Q) \n",
      "print  ' Vwo = %.2f ft/sec'%(Vwo) \n",
      "print  ' Driving Torque = %.3f lbf ft'%(C) \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Flow Rate = 0.0160 ft**3/sec\n",
        " Vwo = 21.56 ft/sec\n",
        " Driving Torque = 0.502 lbf ft\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.4 Page No : 491"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\n",
      "#initialisation of variables\n",
      "W= 38.   \t#rev/sec speed\n",
      "w= 62.4 \t#lbf/ft**3 density\n",
      "m= 2000. \t#lbm/sec flow rate\n",
      "g= 32.2 \t#ft/sec**2\n",
      "ps= 5000. \t#lbf/ft**2 pressure rise\n",
      "S3= 4.6\n",
      "e= 0.91\n",
      "\t\n",
      "#CALCULATIONS\n",
      "S1= W*(w*m**2/(g*ps)**3)**0.25\n",
      "D= S3*(m**2/(w*g*ps))**0.25\n",
      "\t\n",
      "#RESULTS\n",
      "print  ' S1 = %.3f'%(S1)  \n",
      "print  ' Diameter = %.2f ft'%(D)  \n",
      "print  ' efficiency = %.2f '%(e)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " S1 = 0.594\n",
        " Diameter = 3.65 ft\n",
        " efficiency = 0.91 \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.5 Page No : 495"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\n",
      "#initialisation of variables\n",
      "d= 6.    \t#in diameter\n",
      "f= 0.25\n",
      "l= 1200. \t#ft long\n",
      "p= 55.   \t#lbm/ft**3\n",
      "w= 740.  \t#rev/min\n",
      "g= 32.2 \t#ft/sec**2\n",
      "n= 0.87     # efficiency\n",
      "d1= 1.78 \t#ft\n",
      "\t\n",
      "#CALCULATIONS\n",
      "D= (0.13*math.pi**2*(d/12)**5/(8*f*l*0.012**2))**0.25*d1\n",
      "m= 0.012*p*(w*2*math.pi/60)*D**3\n",
      "dps= 0.13*p*(w*2*math.pi*D/60)**2/g\n",
      "P= m*10*dps/(p*n)\n",
      "\t\n",
      "#RESULTS\n",
      "print  ' Diameter = %.2f ft'%(D) \n",
      "print  ' Mass flow rate = %.1f lbm/sec'%(m) \n",
      "print  ' pressure rise = %.1f lbf/ft**2'%(round(dps,-1))\n",
      "print  ' shaft power = %.2e ft lbf/sec'%(P)\n",
      "\n",
      "# rounding off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Diameter = 1.04 ft\n",
        " Mass flow rate = 57.3 lbm/sec\n",
        " pressure rise = 1440.0 lbf/ft**2\n",
        " shaft power = 1.72e+04 ft lbf/sec\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}