{ "metadata": { "name": "", "signature": "sha256:deacbf9acb1071d19b96737be4ae4bdcb6a5696a34ffaedecc8c1b87e6d2a62b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 : External Flows" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1 Page No : 367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import *\n", "\t\n", "#initialisation of variables\n", "g= 32.2 \t#ft/sec**2\n", "u= 3.6*10**-5 \t#lbf sec/ft**2 viscosity\n", "d= 64. \t#lbm/ft**2 density\n", "l= 20. \t#ft long\n", "a= 0.5\n", "\t\n", "#CALCULATIONS\n", "sw= u*g/(a*d)\n", "sw1= u**2*g*l/(2*a*d)\n", "Re=array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])*10**5\n", "Vinf=Re*u*g/(d*a)\n", "Cd= array([1.2, 1.15, 0.94, 0.68, 0.305, 0.31, 0.32, 0.33, 0.34, 0.35])\n", "cdre=Cd*Re**2\n", "D=sw1*cdre\n", "\t\n", "#RESULTS\n", "print 'velocity = %.3e ft/sec'%(sw)\n", "print ' Force = %.3e lbf'%(sw1)\n", "print \"V (ft/sec) D(lbf)\"\n", "for i in range(len(D)):\n", " print \"%6.1f %6d\"%(Vinf[i],D[i])\n", "\n", "\n", "# note : answers are accurate. please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity = 3.623e-05 ft/sec\n", " Force = 1.304e-08 lbf\n", "V (ft/sec) D(lbf)\n", " 3.6 156\n", " 7.2 599\n", " 10.9 1103\n", " 14.5 1418\n", " 18.1 994\n", " 21.7 1455\n", " 25.4 2044\n", " 29.0 2754\n", " 32.6 3591\n", " 36.2 4564\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 Page No : 368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "from numpy import *\n", "from matplotlib.pyplot import *\n", "\t\n", "#initialisation of variables\n", "g= 32.2 \t#ft/sec**2\n", "u= 3.6*10**-5 \t#lbf sec/ft**2\n", "d= 64. \t#lbm/ft**2 density\n", "l= 20. \t#ft long\n", "a= 0.5\n", "\t\n", "#CALCULATIONS\n", "sw= u*g/(a*d)\n", "sw1= u**2*g*l/(2*a*d)\n", "Re = array([1 ,2, 3, 4, 5, 6, 7, 8, 9, 10])*10**5\n", "Vinf=Re*u*g/(d*a)\n", "Cd = array([1.2, 1.15, 0.94, 0.68, 0.305, 0.31, 0.32, 0.33, 0.34, 0.35])\n", "cdre=Cd*Re**2\n", "D=sw1*cdre\n", "\t\n", "#RESULTS\n", "plot(Vinf,D)\n", "xlabel(\"Vinf, ft/sec\")\n", "ylabel(\"D, lbf\") \n", "suptitle(\"Streamlinedbody curve\")\n", "\n", "\t#data for curves b,c,d is not given\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 1, "text": [ "<matplotlib.text.Text at 0x2683050>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEhCAYAAABoTkdHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNXdx/HPJEah4koS4pOkoqBAhgmMQFQKNmExkogs\nUglIrCAtWhfEpS6PNaAW6kIBrQsuQSVUQAWLJkY2I48CAUJYQq0LsmSCQNhkSYCEnOePK1MQokzI\n5M4k3/frlZfhMnfmO7dlfnPOuecchzHGICIicopC7A4gIiLBRYVDRER8osIhIiI+UeEQERGfqHCI\niIhPVDhERMQnKhxSp/7yl7/QqlUr2rVrR7t27Vi2bBkAEydOpLy8vE6zbNy4EZfLBcCKFSsYOXJk\nrTzvm2++yd133w3Arbfeyvvvv1/j50pMTKSgoKBWconUljPsDiANR15eHgsWLKCoqIiwsDD27t1L\nWVkZAJMmTSI9PZ3GjRufcF5VVRUhIf79jtOxY0c6duxY68/rcDhO+/zTfY5TcXQ6V128lgQ/tTik\nzpSWlhIREUFYWBgA5557LlFRUTz//PNs2bKFpKQkunfvDkCTJk144IEH6NixI0uXLuW1116jXbt2\nOJ1Ohg0bRmVlJQC33347nTp14vLLL+fhhx/2vlbz5s353//9X29BWLlyJb169aJ58+a88MILJ2TL\ny8ujd+/eAIwePZphw4bRo0cPLr74Yp577jnv46rLMXnyZFq0aEHnzp1ZvHjxcc89f/58rrrqKlq0\naMHs2bMBKC8vZ9CgQTidTlwuF5988gkAZWVl9OnTB6fTyYABAygvL8cYw5QpUxg1atRxOe67774T\n3scHH3xAfHw8brfbey1Hjx7N+PHjvY9p27YtmzdvZuPGjbRq1Ypbb72V9u3b89RTT/HnP//Z+7hj\nW07VvW9poIxIHfnhhx9M27ZtTevWrc3tt99u5s+f7/275s2bm507d3r/7HA4zKxZs4wxxqxatcqk\npqaayspKY4wxd9xxh3nttde8z2mMMZWVlSYxMdGsWLHC+3yvvvqqMcaYUaNGGZfLZcrLy01paakJ\nDw83xhizYcMG07ZtW2OMMZ9++qm5/vrrjTHGZGRkmC5dupgjR46YHTt2mAsuuMAcOnSo2hybN282\n0dHRZs+ePaaystJ07drV3H333cYYY37/+9+b1NRU7+tFRkaasrIy89e//tX88Y9/NMYY880335io\nqChTXl5uxo4d6z2+bt06c8YZZ5iCggKzf/9+06JFC+9rd+7c2RQVFR13fbds2WKioqKMx+M57tqM\nHj3aPPfcc97HtW3b1mzatMls2LDBhISEeK9ZaWmpadmypfdxvXr1Ml988cXPXn9pmNRVJXXm3HPP\nZdWqVXz22WcsWrSIIUOG8OSTTzJ8+PATHhsaGkrfvn0BmDdvHoWFhd6upPLyciIiIgB44403ePPN\nN3E4HGzZsoWvvvqKDh06AHD99dcD4HK5OHDgAI0aNaJRo0b86le/Ys+ePdXmdDgcpKSkEBISQtOm\nTYmKimLbtm0n5Dh48CAREREsXbqU7t27c9555wHwu9/9jq+//tr7XAMGDACsVlDr1q0pKiriiy++\n4MEHHwSgZcuWXHbZZRQVFfH55597j8fFxREfHw/A2WefTbdu3fjwww9p3bo1FRUVOJ3O43J//vnn\n9OjRg+joaO/1/iUXX3yx93qFh4dz6aWXkp+fT8uWLfnPf/5D586dee6556q9/tIwqXBInQoNDaVb\nt25069YNl8vF66+/ftLC0ahRo+P622+77TaeeOKJ4x7z1Vdf8eKLL7Jq1SqaNGnC0KFDj+tCOeus\nswAICQnhzDPP9B4PCQmhqqrqZ3Me+/jQ0FDv40+W47333jvuz+YXln87+r5O9jiHw1Ht+cOHD+ev\nf/0rbdq0YdiwYad87k/f78GDB72/n3322cc9Ni0tjZkzZ9K6dWv69+/vPX6y9y0Nl8Y4pM588803\nbNy40fvnwsJCYmNjAWjcuDEHDhw46Xk9e/Zk5syZ7N69G4C9e/fi8Xg4dOgQTZo04eyzz2bHjh18\n/PHHJz3/lz7IT+XxDoej2hxXXXUVCxcu5IcffuDIkSO89957xxWHo3dVbdiwga+++gqXy0XXrl2Z\nMWMGAOvXr+ebb77B5XLRpUsX7/Evv/ySNWvWeDMkJCTg8Xj45z//yaBBg07I2KVLFxYuXIjH4wHw\ntqpiYmJYuXIlAKtWrWLDhg3Vvvd+/frxwQcf8M4775CWlgZUf/2l4VKLQ+rMvn37+NOf/sSBAweo\nrKykZcuWvP7664D1jTYpKYmLL76YBQsWHNfaaNeuHY888ghdu3bljDPOICQkhFdeeYWEhARcLheX\nXXYZLVq0oEuXLid93Z/emfRLv1d3J9PP5Xjssce44ooriIqK8t7ie/S5YmJiuPrqq9m+fTsvv/wy\nZ511Fvfeey9Dhw7F6XQSEhLCW2+9xVlnncXIkSNJS0vD6XQSFxd3wp1eN910E6tXr/Z2ix0rKiqK\nl156ieuuu46wsDDCw8OZN28eN910E2+99RZt27blqquuolWrVid9/wDnn38+cXFxfPnll97Xru59\nx8TEnPR6S/3nML5+HRMR2/Tp04d77rnHe8eUiB3UVSUSBPbs2YPT6eTMM89U0RDbqcUhIiI+UYtD\nRER8osIhIiI+UeEQERGfqHCIiIhPVDhERMQnKhwiIuITFQ4REfGJ3wtH8+bNvfsDJCQkALBr1y56\n9uxJfHw8ycnJx61UOm7cOOLi4nC5XMydO9d7vKCgALfbjdPprLWd2kRExHd+LxwOh4O8vDwKCwu9\n24RmZGSQmprKmjVr6NWrFxkZGYBVHGbNmsXatWvJzc1lxIgRVFRUADB06FAyMzNZt24dmzZt8m6I\nIyIidatOuqp+Ojk9JyeH9PR0AIYMGUJ2djYA2dnZpKWlERoaSnR0NE6nk/z8fDZv3kxVVRVut/uE\nc0REpG7VSYvjaLfUP/7xD8DaQrRp06aAtXnM9u3bASgpKTluxc2YmBg8Hg8lJSXe5bcBoqOjtayz\niIhN/L6s+tKlS4mMjKS0tJTrrruO1q1b+/slRUTEj/xeOCIjIwGIiIhgwIABLF++nIiICHbs2EF4\neDilpaXex8TExFBcXOw91+PxEBsbe9LjJ9sLoGXLlqxfv97P70hEpP5o0aIF3377rU/n+LWrqqys\njLKyMgAOHDhAbm4uTqeTlJQUsrKyAMjKyiIlJQWAlJQUZsyYQWVlJR6Ph6KiIhISEoiNjSUkJITC\nwkIApk2b5j3nWOvXr8cYE9A/GRkZtmdQTuVUTmU8+lOTL9t+bXFs27aNvn374nA4KCsrIy0tjRtu\nuIEuXbowcOBAMjMziYqKYubMmQB06NCBfv36ER8fT0hICJMnTyYsLAyAKVOmMGzYMA4fPkz37t2P\n2w9ZRETqjl8LxyWXXMLq1atPOH7hhRcyb968k57z6KOP8uijj55wvEOHDt4Wh4iI2Eczx+tYYmKi\n3RFOiXLWLuWsXcGQMxgy1lS92gHQ4XBQj96OiIjf1eRzUy0OERHxiQqHiIj4RIVDRER8osIhIiI+\nUeEQERGfqHCIiIhPVDhERMQnKhwiIuITFQ4REfGJCoeIiPhEhUNERHyiwiEiIj5R4RARsdG0abBt\nm90pfKPCISJik8WL4YEHINgW9VbhEBGxwb59kJ4Or7wCUVF2p/GN9uMQEbHB8OHWf19/3d4cNfnc\n9OvWsSIicqJ//Qs+/RRWrbI7Sc2oxSEiUoe2bYP27eH996FzZ7vTaAdAEZGAZgzcdpv1EwhFo6ZU\nOERE6sirr8LWrZCRYXeS06OuKhGROvDNN1YrY9EiaNPG7jT/pa4qEZEAVFlp3XqbkRFYRaOmVDhE\nRPzsr3+F88+HO++0O0nt0O24IiJ+lJ8PL70EhYXgcNidpnaoxSEi4icHDlhdVC++CP/zP3anqT0a\nHBcR8ZM77oCyMnjrLbuTVE8zx0VEAkR2Nnz8MaxebXeS2qfCISJSy0pL4Q9/gOnT4bzz7E5T+9RV\nJSJSi4yB/v3h8svh6aftTvPL1FUlImKzKVNgwwartVFfqcUhIlJLvvsOrrzSWvm2bVu705wazRwX\nEbHJkSPWrbePPho8RaOmVDhERGrB009Do0YwcqTdSfxPXVUiIqepoAB69bL+GxtrdxrfBGRX1ZEj\nR3C73fTu3RuAXbt20bNnT+Lj40lOTmbPnj3ex44bN464uDhcLhdz5871Hi8oKMDtduN0OhnZEMq5\niASNsjIYMgQmTQq+olFTfi8ckyZNIi4uDsePi7RkZGSQmprKmjVr6NWrFxk/LkxfUFDArFmzWLt2\nLbm5uYwYMYKKigoAhg4dSmZmJuvWrWPTpk3Mnj3b37FFRE7Jww+D2w2DBtmdpO74tXB4PB5ycnIY\nPny4tymUk5NDeno6AEOGDCE7OxuA7Oxs0tLSCA0NJTo6GqfTSX5+Pps3b6aqqgq3233COSIidpo7\nFz74wFqLqiHxa+EYNWoUzz77LCEh/32Z0tJSmjZtCkB4eDjbt28HoKSkhJiYGO/jYmJi8Hg8lJSU\nEHtM+y86OhqPx+PP2CIiv2jnThg2zJq3ccEFdqepW36bAPjRRx8RGRmJ2+0mLy/PXy9zgtGjR3t/\nT0xMJDExsc5eW0QaBmPg9tvhppuge3e70/gmLy/vtD+T/VY4Fi9ezJw5c8jJyeHgwYPs3buX9PR0\nIiIi2LFjB+Hh4ZSWlhIZGQlYLYzi4mLv+R6Ph9jY2JMeP7Zl8lPHFg4REX/IyoIvv4SpU+1O4ruf\nfqEeM2aMz8/ht66qsWPHUlxczIYNG5g+fTrdunVj6tSppKSkkJWVBUBWVhYpKSkApKSkMGPGDCor\nK/F4PBQVFZGQkEBsbCwhISEUFhYCMG3aNO85IiJ1bdMmuO8+mDbNmrfRENXZWlVH76oaM2YMAwcO\nJDMzk6ioKGbOnAlAhw4d6NevH/Hx8YSEhDB58mTCwsIAmDJlCsOGDePw4cN0796d/v3711VsERGv\nI0fgllvgwQehXTu709hHEwBFRE7RM89Y+2wsXAihoXanqR01+dxU4RAROQWrV0OPHrB8OTRvbnea\n2hOQM8dFRILdwYNw880wfnz9Kho1pRaHiMgvuO8+KC6GmTPhx+HaekMbOYmI1LIFC6yCsXp1/Ssa\nNaWuKhGRauzeDUOHwhtvwI8LXgjqqhIRqdbgwVbBeOEFu5P4j7qqRERqyTvvQGGhtceGHE8tDhGR\nnyguhg4d4OOPrf/WZ7odV0TkNFVVwa23WlvA1veiUVMqHCIix5g0yZq38dBDdicJXOqqEhH5UVER\nJCXB0qXQooXdaeqGuqpERGro0CFr7/C//a3hFI2aUotDRASra+rrr2HWrIY10U+344qI1EBurrUp\nk2aHnxoVDhFp0L7+2tpjY9YsiIiwO01w0BiHiDRYe/dCnz7w1FPQpYvdaYKHxjhEpEGqqrKKRmws\nvPSS3Wnso7uqRERO0eOPWy2OiRPtThJ8NMYhIg3Ou+9ag+HLl8OZZ9qdJvioq0pEGpSjW8B+8glc\ncYXdaeynrioRkZ+xYwf07Wstk66iUXNqcYhIg1BRAddeC1deac0OF0tNPjdVOESkQbjnHvj2W/jw\nQwgNtTtN4NDMcRGRk3jjDWtMIz9fRaM2qMUhIvXakiXWfI1Fi6B1a7vTBB4NjouIHKOkBAYMgClT\nVDRqkwqHiNRLBw9Cv35w112Qmmp3mvpFXVUiUu8YY23/eugQvPOOVrz9ORocFxHB2v519Wr44gsV\nDX9Q4RCRemX+fHj6aWtQ/Oyz7U5TP6lwiEi9sX493HwzzJwJzZvbnab+0uC4iNQL+/ZZt91mZMBv\nf2t3mvpNg+MiEvSqqqzbbps2hVdf1biGLzQ4LiIN0pNPwrZtuoOqrqhwiEhQmz3bWlJk2TI46yy7\n0zQM6qoSkaBVVARJSfDxx9Cxo91pglNALTly8OBBOnXqhNvt5vLLL2fUqFEA7Nq1i549exIfH09y\ncjJ79uzxnjNu3Dji4uJwuVzMnTvXe7ygoAC3243T6WTkyJH+iiwiQWTXLmtvjb//XUWjrvmtcDRq\n1IhFixZRWFjIv//9b5YsWcKnn35KRkYGqamprFmzhl69epGRkQFYxWHWrFmsXbuW3NxcRowYQUVF\nBQBDhw4lMzOTdevWsWnTJmbPnu2v2CISBCorYeBAq3Ckp9udpuHx6+24jRs3BuDw4cMcOXKEyMhI\ncnJySP/xf+khQ4aQnZ0NQHZ2NmlpaYSGhhIdHY3T6SQ/P5/NmzdTVVWF2+0+4RwRaZgeeghCQrQh\nk138Wjiqqqpo3749zZo1IykpCafTSWlpKU2bNgUgPDyc7du3A1BSUkJMTIz33JiYGDweDyUlJcTG\nxnqPR0dH4/F4/BlbRALY22/DnDkwfTqcodt7bOHXyx4SEsKqVav44YcfSE5O5tNPP/XnywEwevRo\n7++JiYkkJib6/TVFpG4sWwb33w95eXDBBXanCU55eXnk5eWd1nPUSb0+77zzSE1NJT8/n4iICHbs\n2EF4eDilpaVERkYCVgujuLjYe47H4yE2Nvakx49tmfzUsYVDROqP77+HG2+E118Hp9PuNMHrp1+o\nx4wZ4/Nz+K2raufOnezbtw+A8vJy5s2bh8vlIiUlhaysLACysrJISUkBICUlhRkzZlBZWYnH46Go\nqIiEhARiY2MJCQmhsLAQgGnTpnnPEZGG4dAhq2j84Q/WsiJiL7+1OLZs2cItt9yCMYaDBw8yePBg\nUlNTufrqqxk4cCCZmZlERUUxc+ZMADp06EC/fv2Ij48nJCSEyZMnExYWBsCUKVMYNmwYhw8fpnv3\n7vTv399fsUUkwBgDd94JF10Ejz1mdxoBTQAUkQD34ovwyivWMulNmtidpv6pyeemCoeIBKy8PEhL\ng8WL4dJL7U5TPwXUzHERkdOxcaNVNKZNU9EINCocIhJwDhywBsEfeQS6d7c7jfyUuqpEJKAYYy0n\ncvbZkJmpZdL9TftxiEjQGzcONm2Czz5T0QhU1XZVdf+xffjnP/+5zsKISMP2wQfw0kvWHhuNGtmd\nRqpTbYujuLiYxYsXM2fOHNLS0jDG4Dim/F9xxRV1ElBEGoa5c+GPf7T21vif/7E7jfycasc4ZsyY\nwZQpU/jiiy/oeJLF7uti3SlfaYxDJDgtWmTtGT57NvzmN3anaVj8Mo/jiSee4PHHHz+tYHVFhUMk\n+OTnQ+/e1n7huoOq7vmlcBhjmD59Op9//jkhISH85je/IS0t7bSC+osKh0hwWbUKkpOtu6dSU+1O\n0zD5pXAMHTqU77//noEDB2KM4d133+Wiiy4iMzPztML6gwqHSPD48kvo1g1eeMHqphJ7+KVwtGrV\niv/85z/egXFjDK1bt+arr76qeVI/UeEQCQ7r10NiIowdq61f7eaXJUdatWp13I57Ho+H1q1b+55O\nRATYvBl69LBWulXRCE7V3o7bu3dvAPbu3cvll19OQkICDoeDZcuW0alTpzoLKCL1x9atVtG45x4Y\nMcLuNFJT1RaO+++/v9qTHJrOKSI+2rHDKhq33AKjRtmdRk6H1qoSEb/bs8e61fbaa61xDX33DBy1\nOjjepEmTalsWDoeDvXv3+p7Qz1Q4RALP/v1WwejUCSZOVNEINNrISYVDJKCUl1vzMy69FF59FUK0\nkUPAUeFQ4RAJGIcPQ79+cP758PbbEBpqdyI5GRUOFQ6RgFBZae2pYQzMmAFhYXYnkupoPw4Rsd2R\nI3DrrVBWZi2TrqJR/6hwiEitMQbuuANKSiAnB846y+5E4g8+D1X16NGD6667jo8++sgfeUQkSBlj\nzc9YuxbmzIHGje1OJP7ic4vjrbfe4vvvvyc/P98feUQkSD32mLWvxsKFcM45dqcRfzqlwfHS0lIA\nIiIi/B7odGhwXMQeY8fCtGnWPuHh4XanEV/U6iKHxhhGjx5NeHg48fHxuFwuIiIiGDNmzGkHFZH6\nY+JEmDIF5s9X0Wgoqi0cEyZMYMWKFaxZs4bvv/+erVu3snr1agoKCvj73/9elxlFJEC99ppVOBYs\ngIsusjuN1JVqu6o6dOjAggULOP/88487vmfPHrp3705BQUGdBPSFuqpE6k5WFjz8MOTlQcuWdqeR\nmqrVeRzGmBOKBsD555+vD2eRBm7WLHjwQauloaLR8Pxs4ajJ34lI/ZaTY83VyM2FuDi704gdqu2q\nCg0N5Ve/+tVJTyovL6eystKvwWpCXVUi/rVwobWUyIcfwlVX2Z1GakOtdlUdOXLktAOJSP2xeDGk\npcF776loNHRa5FhEflFBAfTtC1Onwm9/a3casZsKh4j8rKIia0+N116D5GS700ggUOEQkWp9/bVV\nLCZMgD597E4jgcKvhaO4uJhrrrkGl8tFq1ateOaZZwDYtWsXPXv2JD4+nuTkZPbs2eM9Z9y4ccTF\nxeFyuZg7d673eEFBAW63G6fTyciRI/0ZW0SAjRuhZ0948kkYNMjuNBJQjB9t3brVrF271hhjzL59\n+8xll11mVq1aZe666y4zYcIEY4wxEyZMMPfcc48xxpgVK1aYjh07msrKSuPxeEzz5s3N4cOHjTHG\nuFwus3LlSmOMMX369DGzZs064fX8/HZEGgyPx5hLLzXmhRfsTiL+VpPPTb+2OJo1a0bbtm0BaNKk\nCfHx8ZSUlJCTk0N6ejoAQ4YMITs7G4Ds7GzS0tIIDQ0lOjoap9NJfn4+mzdvpqqqCrfbfcI5IlK7\nvv0WkpLgj3+Eu+6yO40Eojob49i4cSPLly+nS5culJaW0rRpUwDCw8PZvn07ACUlJcTExHjPiYmJ\nwePxUFJSQmxsrPd4dHQ0Ho+nrqKLNBhLlkDXrvDAA/DQQ3ankUBVJzsA7t+/nwEDBjBp0iTOPffc\nunhJEfHRe+/Bn/4Eb78N111ndxoJZH4vHBUVFdx4443cfPPN9O3bF7D29dixYwfh4eGUlpYSGRkJ\nWC2M4uJi77kej4fY2NiTHj+2ZXKs0aNHe39PTEwkMTGx9t+USD1iDIwfD5Mmwdy50L693YnEn/Ly\n8sjLyzut5ziljZxqyhjD73//e5o2bcqECRO8x++++25atGjBvffey4QJE9iwYQPPP/88BQUF3H77\n7SxZsoStW7fSpUsXvvnmG8LCwoiPj+ett97C7XbTt29fbrnlFvr373/8m9GSIyI+qayEe+6BL76A\n7Gyo5vuY1GM1+dz0a+H4/PPPueaaa4iPj8fhcADW7bYJCQkMHDiQbdu2ERUVxcyZM70r8Y4dO5as\nrCxCQkIYP348yT/OOCooKGD48OEcPnyY7t278/zzz5/4ZlQ4RE7Z/v3WulOVlfDuu6Be5IYp4ApH\nXVPhEDk1W7bA9ddDhw7w0ksQFmZ3IrFLrW4dKyL109q1cPXV8LvfwauvqmiI7+rkrioRCQzz58Pg\nwdZAuGaDS02pxSHSQGRmwpAh8P77KhpyetTiEKnnjIHHH4d//hM++wxatbI7kQQ7FQ6ReuzQIbjt\nNmsZkSVL4McpUyKnRV1VIvXU7t3Wkujl5fDppyoaUntUOETqoe++s+6c6tjRmqPRuLHdiaQ+UeEQ\nqWfy86FLF7j7bnjuOQjRv3KpZRrjEKlHZs+2lkOfMsWa4CfiDyocIvWAMTBxotXCyM21ZoSL+IsK\nh0iQO3IERo2ChQth8WK4+GK7E0l9p8IhEsQOHLAm8x04AJ9/Dj+uFSriVxo2EwlSW7fCb38LTZvC\nxx+raEjdUeEQCULr1sFVV0GfPtZSImeeaXciaUjUVSUSZBYuhLQ0a9e+9HS700hDpBaHSBB5+22r\naMyYoaIh9lGLQyQIGANPPAFvvgl5eRAXZ3ciachUOEQC3OHD8Ic/wL//bS1UGBVldyJp6FQ4RALY\nnj3Qvz+cc47V0jj7bLsTiWiMQyRgFRXBb34DbdvCrFkqGhI4VDhEAsyRI/D005CUBPfdB88/D6Gh\ndqcS+S8VDgl4O3daA8PNmkHfvlBcbHci//n6a+jaFT75BJYvtzZhEgk0KhwSsDZtgpEj4bLLrN/n\nzgW32/qZOBEqK+1OWHuqqqyWRefO1hIi8+dD8+Z2pxI5OYcxxtgdorY4HA7q0dtpsNauhWeegexs\n6xv3vfdCdPR///6rr+D222HvXnj11eBfCXbjRhg6FA4ehLfegssvtzuRNCQ1+dxUi0MCgjGwaBGk\npsK111rzFL77Dp599viiAdCqlTV7euRI6/H33gv79tmT+3QYA6+/Dp06Qa9e1iKFKhoSDNTiEFtV\nVcGcOdZg8I4d8MAD8PvfQ6NGp3b+jh3w4INW184LL1hjIMGgpMSam7Ftm9XKaNvW7kTSUNXkc1OF\nQ2xx6BBMm2a1KM4+Gx56yJqvUNO7h/LyrO6r1q2tAhIbW6txa40x1vu+7z6480549FEIC7M7lTRk\nKhwqHAHv6LjExIngdFoFIykJHI7Tf+5Dh+Bvf7MKx2OPwV13wRkBNMV1+3aruH39tdXKCPaxGakf\nNMYhAWvbNuvb9aWXQkEBfPihdctpt261UzQAzjoLMjLgiy/gX/+CK6+0XisQzJoF8fHWHWIrVqho\nSHALoO9jUh99+621D/bMmdZtpsuWWcXDn44Onk+dag2ep6XBk09ay3bUtd274e67rfc9a5Z1u61I\nsFOLQ/yioABuugmuvhoiIuA//4EXX/R/0TjK4YBbbrGW7fjhB+surQ8+qJvXPurjj8HlggsvhMJC\nFQ2pPzTGIbXGGOvupqeftuZa3HefdedQkyZ2J6vbwfO9e+H++2HePGt3vm7d/PdaIqdLYxxii8pK\na2OhDh2sORXp6bB+PYwaFRhFAyAxEVavhiuu8O/M84ULrbEMgDVrVDSkflKLQ2qsvBymTLG2ML3o\nIusOqdRUCAnwryNffQV33GF1YdXWzPOyMnj4YWsc49VXISXl9J9TpC6oxSF1YvdueOopuOQS686o\nt9+2Zj337h34RQOswfMFC2pv5vnixdC+PezaZbUyVDSkvguCf+YSSKZNs24pXb/e6pb517+sPSOC\nzbGD53uGO/ipAAAPhElEQVT31mzw/NAhq5XRvz+MGwdZWdZAuEh959fCMWzYMJo1a4bL5fIe27Vr\nFz179iQ+Pp7k5GT27Nnj/btx48YRFxeHy+Vi7ty53uMFBQW43W6cTicjR470Z2SpxoED1oKDTzxh\nfVufMqV+7HsdHm4NYE+dahWBU122vaDA6uL6+murlXHjjf7PKhIo/Fo4hg4dSm5u7nHHMjIySE1N\nZc2aNfTq1YuMjAzAKg6zZs1i7dq15ObmMmLECCoqKrzPk5mZybp169i0aROzZ8/2Z2z5iaIiSEiA\nigrrA7NdO7sT1b5THTyvqIDRo61FCR95BN5/HyIj6zqtiL38Wji6du3KBRdccNyxnJwc0tPTARgy\nZAjZ2dkAZGdnk5aWRmhoKNHR0TidTvLz89m8eTNVVVW43e4TzhH/Orp6a1IS/PnP1lhGoNwl5Q9n\nnQWPP27NPJ8zx5p5vmLFf/++qAiuugry8615GTffXHuz3kWCSZ3PHC8tLaVp06YAhIeHs337dgBK\nSkrodsy9izExMXg8HkJDQ4k95qb76OhoPB5P3YZugPbuteY9rF1rLXfepo3dierO0cHzY2eeX3SR\ndffY2LEwfLgKhjRs9W7JkdGjR3t/T0xMJDEx0bYswWrlShg4ELp3t5bKaNzY7kR17+jgeUqKdZvx\n559bW7lqVz4Jdnl5eeTl5Z3Wc9R54YiIiGDHjh2Eh4dTWlpK5I8dxDExMRQfMyrp8XiIjY096fGY\nmJhqn//YwiG+MQb+8Q9rXacXXrCKR0MXHg5vvGF3CpHa89Mv1GPGjPH5Oer8dtyUlBSysrIAyMrK\nIuXHm95TUlKYMWMGlZWVeDweioqKSEhIIDY2lpCQEAoLCwGYNm2a9xypPbt3W7eVvvUWLFmioiEi\n1fNri2PQoEF89tln7Nixg9jYWJ544gnGjBnDwIEDyczMJCoqipkzZwLQoUMH+vXrR3x8PCEhIUye\nPJmwH3e4mTJlCsOGDePw4cN0796d/v37+zN2g7NkibVybb9+MH26NUgsIlIdLTnSgFVVWUuejx9v\nLZPRp4/diUSkrtXkc7PeDY7Lqdm+3Rr83bfPGvT99a/tTiQiwUJLjjRAeXn/neiWl6eiISK+UYuj\nATlyxFqc8JVX4M03ITnZ7kQiEoxUOBqILVv+O9N55UprQpuISE2oq6oByM21FuRLSrJ2pVPREJHT\noRZHPVZRAX/5i7Xc9/Tp8Nvf2p1IROoDFY56atMma27G+edbC/JFRNidSETqC3VV1UMffGAtg96v\nH3z0kYqGiNQutTjqkUOH4MEHrSXB//UvawlwEZHapsJRT3z7rbW+1MUXW11TP9kGRUSk1qirqh54\n5x24+moYNszakU5FQ0T8SS2OIFZWBiNHWrO/5861ZoKLiPibWhxBas0aawC8rMya0KeiISJ1RYUj\nyBw+DBkZ1u58999vzdE45xy7U4lIQ6KuqiCybJk1jnHppbBqFURH251IRBoiFY4gUFZmtTLefhsm\nToS0NGvNKRERO6irKsAtWgTt2kFxMaxda80GV9EQETupxRGg9u2Dhx6yJvK99JJ25xORwKEWRwDK\nzYW2ba2Z4EVFKhoiEljU4gggu3bBqFHw2Wfw2mtw7bV2JxIROZFaHAHi/fetVsZ551mtDBUNEQlU\nanHYbNs2uOsua0LfzJnQpYvdiUREfp5aHDYxBqZOhfh4aNHCmpehoiEiwUAtDhsUF8OIEVBSAjk5\n1rauIiLBQi2OOlRVBZMnwxVXWKvZLl+uoiEiwUctjjry7bfwhz9Ys8A//dQaCBcRCUZqcfjZkSMw\nfry1G9/118PixSoaIhLc1OLwo3Xr4LbboFEjWLoUWra0O5GIyOlTi8MPKirgySchMRFuvRUWLlTR\nEJH6Qy2OWlZQYC19Hh1tbbAUG2t3IhGR2qUWRy05eBAeeQRSUuCBByA7W0VDROontThqweefW2MZ\nLhesXg1RUXYnEhHxHxWO0zRmjDU344UX4MYb7U4jIuJ/DmOMsTtEbXE4HNT121m2zBr4vvDCOn1Z\nEZFaUZPPTRUOEZEGrCafm0E1OJ6bm4vL5SIuLo6nn37a7jgiIg1S0BSOQ4cOcccdd5Cbm8uaNWt4\n7733KCwstDuWz/Ly8uyOcEqUs3YpZ+0KhpzBkLGmgqZw5Ofn43Q6iY6O5owzzmDgwIFkZ2fbHctn\nwfJ/JuWsXcpZu4IhZzBkrKmgKRwej4fYYyZGxMTE4PF4bEwkItIwBU3hcDgcdkcQEREAEyQWLVpk\nUlNTvX9+5plnzFNPPXXcY1q0aGEA/ehHP/rRzyn+tGjRwufP46C5HffgwYO0bt2aL774gsjISDp3\n7szkyZO54oor7I4mItKgBM3M8UaNGvHyyy+TnJxMVVUV6enpKhoiIjYImhaHiIgEhqAZHP85wTIx\nsHnz5sTHx+N2u0lISLA7jtewYcNo1qwZLpfLe2zXrl307NmT+Ph4kpOT2bNnj40JLSfLOXr0aGJi\nYnC73bjdbnJzc21MCMXFxVxzzTW4XC5atWrFM888AwTe9awuZ6Bdz4MHD9KpUyfcbjeXX345o0aN\nAgLvelaXM9Cu51FHjhzB7XbTu3dvoAbX87RGrAPAwYMHTfPmzY3H4zEVFRWmY8eOZuXKlXbHOqnm\nzZubnTt32h3jBIsWLTIrV640bdu29R676667zIQJE4wxxkyYMMHcc889dsXzOlnO0aNHm/Hjx9uY\n6nhbt241a9euNcYYs2/fPnPZZZeZVatWBdz1rC5noF1PY4wpKyszxhhTUVFhrrzySrNw4cKAu57G\nnDxnIF5PY4wZP368GTx4sOndu7cxxvd/70Hf4gi2iYEmAHsGu3btygUXXHDcsZycHNLT0wEYMmRI\nQFzTk+WEwLqmzZo1o+2Pm8o3adKE+Ph4SkpKAu56VpcTAut6AjRu3BiAw4cPc+TIESIjIwPuesKJ\nOZs1awYE3vX0eDzk5OQwfPhwbzZfr2fQF45gmhjocDi8zcF//OMfdsf5WaWlpTRt2hSA8PBwtm/f\nbnOi6r344ou0adOGIUOGsGvXLrvjeG3cuJHly5fTpUuXgL6eR3N27doVCLzrWVVVRfv27WnWrBlJ\nSUk4nc6AvJ4/zRkXFwcE3vUcNWoUzz77LCEh//349/V6Bn3hCKaJgUuXLmXlypUsWLCAKVOmMH/+\nfLsjBb0777yT9evX8+9//5sWLVpwzz332B0JgP379zNgwAAmTZrEueeea3ecau3fv5/f/e53TJo0\niXPOOScgr2dISAirVq3C4/GwaNEiPv30U7sjndRPc+bl5QXc9fzoo4+IjIzE7XafVkso6AtHTEwM\nxcXF3j8XFxcf1wIJJJGRkQBEREQwYMAAli9fbnOi6kVERLBjxw7A+jZyNHugCQ8Px+Fw4HA4GDFi\nREBc04qKCm688UZuvvlm+vbtCwTm9Tyac/Dgwd6cgXg9jzrvvPNITU0lPz8/IK/nUUdzLl26NOCu\n5+LFi5kzZw6XXHIJgwYNYuHChaSnp/t8PYO+cHTq1ImioiJKSkqoqKhg5syZ9OrVy+5YJygrK6Os\nrAyAAwcOkJubi9PptDlV9VJSUsjKygIgKyuLlJQUmxOd3LFN6vfff9/2a2qM4bbbbiMuLs57Zw0E\n3vWsLmegXc+dO3eyb98+AMrLy5k3bx4ulyvgrmd1OUtLS72PCYTrOXbsWIqLi9mwYQPTp0+nW7du\nTJ061ffr6bdh+zqUk5NjnE6nadOmjRk7dqzdcU7qu+++M/Hx8aZdu3bmsssuM3/5y1/sjuSVlpZm\nLrroIhMWFmZiYmJMZmam2blzp+nRo4dxuVymZ8+eZvfu3XbHPCHnG2+8YYYMGWLi4+NN69atTXJy\nsvF4PLZm/L//+z/jcDhMu3btTPv27U379u3Nxx9/HHDX82Q5c3JyAu56rlmzxrRv3960a9fOtGrV\nyowZM8YYYwLuelaXM9Cu57Hy8vK8d1X5ej01AVBERHwS9F1VIiJSt1Q4RETEJyocIiLiExUOERHx\niQqHiIj4RIVDRER8osIhDVq3bt2YO3fucccmTpzIn/70Jz788MNTWqb//vvvp02bNjz00EM/+7ib\nbrqJtm3bMnHiRCZNmkR5eflxf/+3v/2Nf/7zn76/CZE6pnkc0qC99tprLFmyhMzMTO+xq6++mmef\nfZYuXbqc0nOcf/757N69+2fXTdu6dStdu3blm2++AeCSSy5hxYoV3oXlwCpi77777nHHRAKRWhzS\noN14441kZ2dTWVkJWCvFbtmyhS5duvDmm29y9913A3DrrbcycuRIrrnmGn796197WwY33HAD+/fv\n54orrmDmzJnVvs61115LSUkJbrebJ554gi1btpCUlET37t0B2Lt3L4cPH6Zp06a88847uFwu3G63\nd8XayspK7rrrLtq1a0ebNm14/vnnvc89ZswY2rRpQ/v27X+x1SNSG4Jmz3ERf7jwwgtJSEggJyeH\nG264genTpzNw4EDgxJWXt2/fzqJFi/jyyy/p1asXgwcPZs6cOZxzzjkUFhb+7Ot8+OGHXH/99d7H\nTZkyhby8PC688EIA5s+fT48ePQB46qmnyMvLIyIiggMHDgDw0ksvcdFFF7F69WoOHTpE586d6dWr\nF0VFRcybN481a9YQFhbGDz/8UKvXR+Rk1OKQBm/QoEFMnz4dgBkzZjBo0CDg+A14HA4HN9xwAwBt\n2rTxriR6qn6pR/iTTz7xLs55zTXXMGTIEF599VXvOMjcuXN5++23cbvdXHXVVezZs4f169ezYMEC\nhg4dSlhYGGCtzCribyoc0uDdcMMNLFiwgMLCQsrKynC73cCJLY4zzzzT+3tt7wOzbNky7z70L7/8\nMk8++STff/89HTp08G7+88orr1BYWEhhYSHr16/nuuuuAwJvhzmp/1Q4pMFr0qQJSUlJDB06lMGD\nB3uP1+QDefbs2Tz66KO/+LjGjRt7u6HWrVtH69atvcVo48aNJCQkkJGRQbNmzdiwYQPJyclMnjyZ\nqqoqADZs2EB5eTk9e/bkzTff5PDhwwDqqpI6oTEOEazuqv79+x83wH10A55j//xLv69fv77a7qJj\nH3fbbbeRlJTEr3/9a1JTU4/bQ2bUqFF89913VFVVkZSURIcOHXC73WzcuBGn08mZZ57JBRdcwIcf\nfkifPn1YtWoV8fHxNG7cmF69ejF27NjTuxgiv0C344rUovT0dCZOnOjTLbXXXnstU6dOpVmzZn5M\nJlJ7VDhERMQnGuMQERGfqHCIiIhPVDhERMQnKhwiIuITFQ4REfGJCoeIiPhEhUNERHzy/xEUA+vK\n3v8VAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x2682fd0>" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3 Page No : 373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "v1= 10. \t#ft/sec\n", "v2m= 9 \t #ft/sec wide\n", "a= 1.02\n", "hbyd= 5.95\n", "\t\n", "#CALCULATIONS\n", "ca= (v1/v2m)**2\n", "Cd= hbyd*(ca-1+2-2*ca)+2*a*ca\n", "\t\n", "#RESULTS\n", "print 'Drag coeffcieicnt = %.2f'%(Cd)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Drag coeffcieicnt = 1.12\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 Page No : 387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\n", "#initialisation of variables\n", "A= 320. \t#ft/**2 area\n", "w= 18000. \t#lbf weighs\n", "v= 230. \t#ft/sec normal speed\n", "ad= 0.0765 \t#lbm/ft**3 density\n", "p= 5. \t#per cent of the total lift force\n", "c= 0.055\n", "n= 1.75 # total drag\n", "g= 32.2 \t#ft/sec**2\n", "\t\n", "#CALCULATIONS\n", "CL= 2*w*(1-(p/100))*g/(ad*v**2*A)\n", "D= w*(1-(p/100))*c*n/CL\n", "\t\n", "#RESULTS\n", "print ' lift coefficient = %.2f'%(CL)\n", "print ' Drag force = %.f'%(D)\n", "\n", "# note : answer is accurate" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " lift coefficient = 0.85\n", " Drag force = 1935\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 Page No : 396" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "bi= 70. \t#degrees outlet angels\n", "i= 8. \t#degrees incidence angle\n", "bo= 130. \t#degrees outlet angels\n", "s= 5. \t#degrees\n", "vi= 1200. \t#ft/sec\n", "g= 32.2 \t#ft/sec**2\n", "a= 0.48\n", "s1= 1.4 \t#in\n", "b= 5. \t#in\n", "Cx= 0.06 # co-efficient \n", "\t\n", "#CALCULATIONS\n", "O= bo-s-bi+i\n", "Vo= vi*math.sin(math.radians(bi-i))/math.sin(math.radians(bo-s))\n", "Fy= -a*vi*math.sin(math.radians(bi-i))*(s1/12)*(b/12)*(Vo*math.cos(math.radians(bo-s))-vi*math.cos(math.radians(bi-i)))/g\n", "dp= a*(Vo**2*(1+Cx)-vi**2)/(2*g)\n", "\t\n", "#RESULTS\n", "print 'Fluid deflection angle = %.f degrees'%(O)\n", "print ' Vo = %.f ft/sec'%(Vo)\n", "print ' Force on each blade = %.f lbf'%(Fy)\n", "print ' Pressure difference = %.f lbf/ft**2'%(dp)\n", "\n", "# note : answer is accurate. please check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fluid deflection angle = 63 degrees\n", " Vo = 1293 ft/sec\n", " Force on each blade = 1002 lbf\n", " Pressure difference = 2485 lbf/ft**2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6 Page No : 397" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\t\n", "#initialisation of variables\n", "ari= 62. \t#degrees\n", "aro= 125. \t#degrees\n", "vri= 1200. \t#ft/sec\n", "vro= 1294. \t#ft/sec\n", "vrr= 550. \t#ft/sec velocity\n", "\t\n", "#CALCULATIONS\n", "v1= vri*math.sin(math.radians(ari))\n", "v2= vrr+vri*math.cos(math.radians(ari))\n", "vi= math.sqrt(v1**2+v2**2)\n", "ai= round(math.degrees(math.atan(v1/v2)),1)\n", "vo= round(vro*math.sin(math.radians(aro)))\n", "vo1= round(vro*math.cos(math.radians(aro))+vrr)\n", "vo2= round(math.sqrt(vo**2+vo1**2))\n", "ao= math.degrees(math.atan(vo/vo1))+180\n", "\n", "#RESULTS\n", "print ' absolute velocity = %.f ft/sec'%(vi)\n", "print ' direction = %.1f degrees'%(ai)\n", "print ' absolute velocity = %.f ft/sec'%(vo2)\n", "print ' direction = %.1f degrees'%(ao)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " absolute velocity = 1537 ft/sec\n", " direction = 43.6 degrees\n", " absolute velocity = 1077 ft/sec\n", " direction = 100.3 degrees\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }