{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13 - Steam turbines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1: pg 380" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 13.1\n", " The power developed for a steam flow of 1 kg/s is (kW) = 52.8\n", " The energy of steam finally leaving the wheel is (kW/kg) = 8.778\n" ] } ], "source": [ "#pg 380\n", "print('Example 13.1');\n", "\n", "# aim : To determine \n", "# the power developed for a steam flow of 1 kg/s at the blades and the kinetic energy of the steam finally leaving the wheel\n", "\n", "# Given values\n", "alfa = 20;# blade angle, [degree]\n", "Cai = 375;# steam exit velocity in the nozzle,[m/s]\n", "U = 165;# blade speed, [m/s]\n", "loss = .15;# loss of velocity due to friction\n", "\n", "# solution\n", "# using Fig13.12,\n", "Cvw = 320;# change in velocity of whirl, [m/s]\n", "cae = 132.5;# absolute velocity at exit, [m/s]\n", "Pds = U*Cvw*10**-3;# Power developed for steam flow of 1 kg/s, [kW]\n", "Kes = cae**2/2*10**-3;# Kinetic energy change of steam, [kW/kg] \n", "\n", "#results\n", "print ' The power developed for a steam flow of 1 kg/s is (kW) = ',Pds\n", "print ' The energy of steam finally leaving the wheel is (kW/kg) = ',round(Kes,3)\n", "\n", "# End\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2: pg 382" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 13.2\n", " (a) The angle of blades is (degree) = 41.5\n", " (b) The work done on the blade is (kW/kg) = 150.45\n", " (c) The diagram efficiency is (percent) = 83.6\n", " (d) The End-thrust is (N/kg) = -90\n" ] } ], "source": [ "#pg 382\n", "print('Example 13.2');\n", "\n", "# aim : To determine\n", "# (a) the entry angle of the blades\n", "# (b) the work done per kilogram of steam per second\n", "# (c) the diagram efficiency\n", "# (d) the end-thrust per kilogram of steam per second\n", "\n", "# given values\n", "Cai = 600.;# steam velocity, [m/s]\n", "sia = 25.;# steam inlet angle with blade, [degree]\n", "U = 255.;# mean blade speed, [m/s]\n", "sea = 30.;# steam exit angle with blade,[degree] \n", "\n", "# solution\n", "# (a)\n", "# using Fig.13.13(diagram for example 13.2)\n", "eab = 41.5;# entry angle of blades, [degree]\n", "print ' (a) The angle of blades is (degree) = ',eab\n", "\n", "# (b)\n", "Cwi_plus_Cwe = 590;# velocity of whirl, [m/s]\n", "W = U*(Cwi_plus_Cwe);# work done on the blade,[W/kg]\n", "print ' (b) The work done on the blade is (kW/kg) = ',W*10**-3\n", "\n", "# (c)\n", "De = 2*U*(Cwi_plus_Cwe)/Cai**2;# diagram efficiency \n", "print ' (c) The diagram efficiency is (percent) = ',round(De*100,1)\n", "\n", "# (d)\n", "# again from the diagram\n", "Cfe_minus_Cfi = -90;# change invelocity of flow, [m/s]\n", "Eth = Cfe_minus_Cfi;# end-thrust, [N/kg s]\n", "print ' (d) The End-thrust is (N/kg) = ',Eth\n", "\n", "# End\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3: pg 384" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 13.3\n", " (a) The power of turbine is (kW) = 806.625\n", " (b) The diagram efficiency is (percent) = 78.7\n" ] } ], "source": [ "#pg 384\n", "print('Example 13.3');\n", "\n", "# aim : To determine\n", "# (a) the power output of the turbine\n", "# (b) the diagram efficiency\n", "\n", "# given values\n", "U = 150.;# mean blade speed, [m/s]\n", "Cai1 = 675.;# nozzle speed, [m/s]\n", "na = 20.;# nozzle angle, [degree]\n", "m_dot = 4.5;# steam flow rate, [kg/s]\n", "\n", "# solution\n", "# from Fig. 13.15(diagram 13.3)\n", "Cw1 = 915.;# [m/s]\n", "Cw2 = 280.;# [m/s]\n", "\n", "# (a)\n", "P = m_dot*U*(Cw1+Cw2);# power of turbine,[W]\n", "print ' (a) The power of turbine is (kW) = ',P*10**-3\n", "\n", "# (b)\n", "De = 2*U*(Cw1+Cw2)/Cai1**2;# diagram efficiency\n", "print ' (b) The diagram efficiency is (percent) = ',round(De*100,1)\n", "\n", "# End\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4: pg 386" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 13.4\n", " (a) The power output of the stage is (MW) = 11.6\n", " (b) The specific enthalpy drop in the stage is (kJ/kg) = 82.0\n", " (c) The increase in relative velocity is (percent) = 52.2\n" ] } ], "source": [ "#pg 386\n", "print('Example 13.4');\n", "import math\n", "# aim : To determine\n", "# (a) the power output of the stage\n", "# (b) the specific enthalpy drop in the stage\n", "# (c) the percentage increase in relative velocity in the moving blades due to expansion in the bladse\n", "\n", "# given values\n", "N = 50.;# speed, [m/s]\n", "d = 1.;# blade ring diameter, [m]\n", "nai = 50.;# nozzle inlet angle, [degree]\n", "nae = 30.;# nozzle exit angle, [degree]\n", "m_dot = 600000.;# steam flow rate, [kg/h]\n", "se = .85;# stage efficiency\n", "\n", "# solution\n", "# (a)\n", "U = math.pi*d*N;# mean blade speed, [m/s]\n", "# from Fig. 13.17(diagram 13.4)\n", "Cwi_plus_Cwe = 444;# change in whirl speed, [m/s]\n", "P = m_dot*U*Cwi_plus_Cwe/3600;# power output of the stage, [W]\n", "print ' (a) The power output of the stage is (MW) = ',round(P*10**-6,1)\n", "\n", "# (b)\n", "h = U*Cwi_plus_Cwe/se;# specific enthalpy,[J/kg]\n", "print ' (b) The specific enthalpy drop in the stage is (kJ/kg) = ',round(h*10**-3)\n", "\n", "# (c)\n", "# again from diagram\n", "Cri = 224.;# [m/s]\n", "Cre = 341;# [m/s]\n", "Iir = (Cre-Cri)/Cri;# increase in relative velocity\n", "print ' (c) The increase in relative velocity is (percent) = ',round(Iir*100,1)\n", "\n", "# End\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5: pg 389" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 13.5\n", " (a) The blade height at this stage is (mm) = 65.0\n", " (b) The power developed is (kW) = 218.7\n", " (a) The specific enthalpy drop in the stage is (kJ/kg) = 19.059\n" ] } ], "source": [ "#pg 389\n", "print('Example 13.5');\n", "\n", "# aim : To determine\n", "# (a) the blade height of the stage\n", "# (b) the power developed in the stage\n", "# (c) the specific enthalpy drop at the stage\n", "from math import sqrt,pi\n", "# given values\n", "U = 60.;# mean blade speed, [m/s]\n", "P = 350.;# steam pressure, [kN/m**2]\n", "T = 175.;# steam temperature, [C]\n", "nai = 30.;# stage inlet angle, [degree]\n", "nae = 20.;# stage exit angle, [degree] \n", "\n", "# solution\n", "# (a)\n", "m_dot = 13.5;# steam flow rate, [kg/s]\n", "# at given T and P\n", "v = .589;# specific volume, [m**3/kg]\n", "# given H=d/10, so\n", "H = sqrt(m_dot*v/(pi*10*60));# blade height, [m]\n", "print ' (a) The blade height at this stage is (mm) = ',round(H*10**3)\n", "\n", "# (b)\n", "Cwi_plus_Cwe = 270;# change in whirl speed, [m/s]\n", "P = m_dot*U*(Cwi_plus_Cwe);# power developed, [W]\n", "print ' (b) The power developed is (kW) = ',P*10**-3\n", "\n", "# (c)\n", "s = .85;# stage efficiency\n", "h = U*Cwi_plus_Cwe/s;# specific enthalpy,[J/kg]\n", "print ' (a) The specific enthalpy drop in the stage is (kJ/kg) = ',round(h*10**-3,3)\n", "\n", "# End\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }