{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 , Semiconductor Physics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1 , Page Number 54" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Velocity of electron at fermi level is 859007.52 m/s.\n" ] } ], "source": [ "#Variables\n", "\n", "m = 9.107 * 10**-31 #Mass of electron (in kilogram)\n", "E = 2.1 #Energy associated (in electon-volt)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "\n", "#Calculation\n", "\n", "E = E * e #Energy associated (in Joules)\n", "v = (2 * E / m)**0.5 #Velocity of electron (in meter per second)\n", "\n", "#Result\n", "\n", "print \"Velocity of electron at fermi level is \",round(v,2),\" m/s.\"\n", "\n", "#Slight variation due to higher precision." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2 , Page Number 63 " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Drift velocity is 0.0003 m/s.\n" ] } ], "source": [ "#Variables\n", "\n", "J = 2.4 * 10**6 #Current Density (in Ampere per meter-square) \n", "n = 5.0 * 10**28 #Electron density \n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "\n", "#Calculation\n", "\n", "v = J / (e * n) #Drift velocity (in meter per second) \n", "\n", "#Result\n", "\n", "print \"Drift velocity is \",v,\" m/s.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3 , Page Number 64" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Magnitude of current is 0.24 A.\n" ] } ], "source": [ "#Variables\n", "\n", "n = 10**24 #Electron density \n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "v = 1.5 * 10**-2 #Drift velocity (in meter per second)\n", "A = 1.0 * 10**-4 #Area of cross-section (in meter-square)\n", "\n", "#Calculation\n", "\n", "I = e * n * v * A #Current (in Ampere) \n", "\n", "#Result\n", "\n", "print \"Magnitude of current is \",I,\" A.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4 , Page Number 64" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Concentration of electrons is 4.44600943977e+16 /cm**3.\n", "Concentration of holes is 14057550000.0 \\cm**3.\n" ] } ], "source": [ "#Variables\n", "\n", "p = 0.039 #Resistivity of doped material (in ohm-centimeter)\n", "e = 1.602 * 10**-19 #Charge on electron (in Coulomb)\n", "ue = 3600.0 #Carrier mobility (in centimeter-square per volt-second)\n", "ni = 2.5 * 10**13 #Intrinsic concentration (in per cubic-centimeter)\n", "\n", "#Calculation\n", "\n", "\n", "sign = 1/p #Conductivity (in per ohm-centimeter)\n", "ND = sign /(e * ue) #Concentration of donor atoms (in per cubic-centimeter)\n", "n = ND #Concentration of electron (per cubic-centimeter)\n", "p = ni**2 / n #Concentration of hole (per cubic-centimeter)\n", "\n", "#Result\n", "\n", "print \"Concentration of electrons is \",n,\" /cm**3.\\nConcentration of holes is \",p,\" \\cm**3.\"\n", "\n", "#Slight variation due to higher precision." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5 , Page Number 64 " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Resulting donor concentration is 50000000000000000 /cm**3.\n", "Resulting mobile electron concentration is 50000000000000000 /cm**3.\n", "Resulting hole concentration is 4205.0 /cm**3.\n", "Conductivity of doped silicon sample is 10.413 (ohm-cm)**-1.\n", "Resistivity is 0.096033803899 ohm-cm and Resistance is 1920.67607798 ohm.\n" ] } ], "source": [ "#Variables\n", "\n", "N = 5.0 * 10**22 #Number of silicon atoms (per cubic-centimeter)\n", "N1 = 10**-6 #Donor impurity \n", "ni = 1.45 * 10**10 #Intrinsic concentration (in per cubic-centimeter) \n", "l = 0.5 #Length (in centimeter)\n", "A = (50.0 * 10**-4)**2 #Area of cross-section (in centimeter-square)\n", "ue = 1300.0 #Mobility of electron (in ) \n", "\n", "#Calculation\n", "\n", "ND = 5 * 10**16 #Donor concentration (in per cubic-centimeter)\n", "n = ND #Mobile electron concentration (in per cubic-centimeter)\n", "p = ni**2 / ND #Hole concentration (in centimeter-square per volt-second)\n", "sig = n * e * ue #Conductivity of doped silicon sample (in per ohm-cetimeter)\n", "p1 = 1/sig #Resistivity (in ohm-centimeter)\n", "R = p1 * l / A #Resistance (in ohm)\n", "\n", "#Result\n", "\n", "print \"Resulting donor concentration is \",ND,\" /cm**3.\\nResulting mobile electron concentration is \",n,\" /cm**3.\\nResulting hole concentration is \",p,\" /cm**3.\"\n", "print \"Conductivity of doped silicon sample is \",sig,\" (ohm-cm)**-1.\\nResistivity is \",p1,\" ohm-cm and Resistance is \",R,\" ohm.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6 , Page Number 65 " ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ratio of electron to hole concentration is 1e+12 .\n" ] } ], "source": [ "#Variables\n", "\n", "ni = 1.4 * 10**18 #intrinsic concentration (in per cubic-centimeter)\n", "ND = 1.4 * 10**24 #Donor concentration (in per cubic-centimeter)\n", "n = ND #Concentration of electrons (in per cubic-centimeter)\n", "\n", "#Calculation\n", "\n", "p = ni**2 / ND #Concentration of holes (in per cubic-centime) \n", "ratio = n / p #Ratio of electron to hole concentration \n", "\n", "#Result\n", "\n", "print \"Ratio of electron to hole concentration is \",ratio,\".\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.7 , Page Number 65" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Relaxation time is 4.004e-14 s.\n", "Resistivity of conductor is 1.53066222571e-08 ohm-meter.\n", "Velocity of electrons with fermi energy is 1390706.99073 m/s.\n" ] } ], "source": [ "#Variables\n", "\n", "Ef = 5.5 #Fermi energy (in electron-volt)\n", "ue = 7.04 * 10**-3 #Mobility of electrons (in meter-square per volt-second)\n", "n = 5.8 * 10**28 #Concentration of electrons (in per cubic-centimeter)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "m = 9.1 * 10**-31 #Mass of electron (in kilogram) \n", "\n", "#Calculation\n", "\n", "tau = ue * m / e #Relaxation time (in seconds)\n", "p = 1 / (n * e * ue) #Resistivity (in ohm-meter) \n", "vf = (2 * Ef * e / m)**0.5 #Velocity of electron with fermi energy (in meter per second)\n", "\n", "#Result\n", "\n", "print \"Relaxation time is \",tau,\" s.\\nResistivity of conductor is \",p,\"ohm-meter.\\nVelocity of electrons with fermi energy is \",vf,\" m/s.\"\n", "\n", "#Slight variation due to higher precision." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.8 , Page Number 68" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Conductivity is 0.0224 (ohm-cm)**-1.\n", "Resistivity is 44.64 ohm-cm.\n" ] } ], "source": [ "#Variables\n", "\n", "ni = 2.5 * 10**13 #Intrinsic concentration (in per cubic-centimeter)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "uh = 1800.0 #Mobility of holes (in per cubic-centimeter)\n", "ue = 3800.0 #Mobility of electrons (in per cubic-centimeter)\n", "\n", "#Calculation\n", "\n", "sigi = ni * e * (ue + uh) #Conductivity (in per ohm-centimeter)\n", "pi = 1/sigi #Resistivity (in ohm-centimeter)\n", "\n", "#Result\n", "\n", "print \"Conductivity is \",sigi,\" (ohm-cm)**-1.\\nResistivity is \",round(pi,2),\" ohm-cm.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.9 , Page Number 68 " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Density of electrons is 2.29273661042e+19 /m**3.\n", "Drift velocity of electrons is 3900.0 m/s.\n", "Drift velocity of holes is 1900.0 m/s.\n" ] } ], "source": [ "#Variables\n", "\n", "pi = 0.47 #intrinsic resistivity (in ohm-meter)\n", "ue = 0.39 #Electron mobility (in meter-square per volt-second)\n", "uh = 0.19 #Hole mobility (in meter-square per volt-second)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "E = 10**4 #Electric field (in volt per meter)\n", "\n", "#Calculation\n", "\n", "sigi = 1 / pi #Conductivity (in per ohm-meter)\n", "ni = sigi/(e * (ue + uh)) #Intrinsic concentration (in per cubic-meter)\n", "vn = ue * E #Drift velocity of electrons (in meter per second)\n", "vh = uh * E #Drift velocity of holes (in meter per second) \n", "\n", "#Result\n", "\n", "print \"Density of electrons is \",ni,\" /m**3.\\nDrift velocity of electrons is \",vn,\" m/s.\\nDrift velocity of holes is \",vh,\" m/s.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.10 , Page Number 69 " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Conductivity of intrinsic silicon is 4.2e-06 /ohm-cm.\n", "Conductivity of P type silicon is 72.0 ohm-cm.\n" ] } ], "source": [ "#Variables\n", "\n", "ni = 1.5 * 10**10 #Intrinsic concentration (in per cubic-centimeter)\n", "uh = 450.0 #mobility of holes (in centimeter-square per volt-second)\n", "ue = 1300.0 #mobility of electrons (in centimeter-square per volt-second)\n", "NA = 10**18 #Doping level (in per cubic-centimeter)\n", "\n", "#Calculation\n", "\n", "sigi = ni * e * (ue + uh) #Conductivity of silicon (in per ohm-centimeter)\n", "sigp = e * NA * uh #COnductivity of P-type silicon (in per ohm-centimeter)\n", "\n", "#Result\n", "\n", "print \"Conductivity of intrinsic silicon is \",sigi,\" /ohm-cm.\\nConductivity of P type silicon is \",sigp,\" ohm-cm.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.11 , Page Number 69 " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Conductivity of intrinsic semiconductor is 0.0224 /ohm-cm.\n", "Conductivity of N-type semiconductor is 2.68 /ohm-cm.\n" ] } ], "source": [ "#Variables\n", "\n", "ni = 2.5 * 10**13 #Intrinsic concentration (in per cubic-centimeter)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "uh = 1800.0 #mobility of holes (in centimeter-square per volt-second)\n", "ue = 3800.0 #mobility of electrons (in centimeter-square per volt-second)\n", "ND = 4.41 * 10**22 * 10**-7 #Number of Germanium atoms (in per cubic-centimeter)\n", "\n", "#Calculation\n", "\n", "sigi = ni * e * (uh + ue) #Intrinsic concentration (in per ohm-centimeter)\n", "n = ND #Concentration of electrons (in per cubic-centimeter)\n", "p = ni**2 / ND #Concentration of holes (in per cubic-centimeter)\n", "sign = e * ND * ue #Conductivity of N-type germanium semiconductor (in per ohm-meter)\n", "\n", "#Result\n", "\n", "print \"Conductivity of intrinsic semiconductor is \",sigi,\" /ohm-cm.\\nConductivity of N-type semiconductor is \",round(sign,2),\" /ohm-cm.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.12 , Page Number 69" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Electron drift velocity is 152.0 m/s.\n", "Holes drift velocity is 72.0 m/s.\n", "Intrinsic conductivity of Ge is 2.24 /ohm-m.\n", "Total current is 5.376 mA.\n" ] } ], "source": [ "#Variables\n", "\n", "V = 10.0 #Voltage (in volts)\n", "l = 0.025 #Length (in meter)\n", "uh = 0.18 #mobility of holes (in meter-square per volt-second)\n", "ue = 0.38 #mobility of electrons (in meter-square per volt-second)\n", "ni = 2.5 * 10**19 #Intrinsic concentration (in per cubic-imeter)\n", "a = 4.0 * 1.5 *10**-6 #Area of cross-section (in meter-square)\n", "\n", "#Calculation\n", "\n", "E = V / l #Electric field (in volt per meter)\n", "ve = ue * E #Drift velocity of electrons (in meter per second)\n", "vh = uh * E #Drift velocity of holes (in meter per second)\n", "sigi = ni * e * (ue + uh) #Conductivity of intrinsic semiconductor (in per ohm-meter)\n", "I = sigi * E * a #Total current (in Ampere) \n", "\n", "#Result\n", "\n", "print \"Electron drift velocity is \",ve,\" m/s.\\nHoles drift velocity is \",vh,\" m/s.\\nIntrinsic conductivity of Ge is \",sigi,\" /ohm-m.\\nTotal current is \",I * 10**3,\" mA.\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.13 , Page Number 70 " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Diffusion constant of electron is 93.0 cm**2/s.\n", "Diffusion constant of holes is 43.9875 cm**2/s.\n" ] } ], "source": [ "#Variables\n", "\n", "ni = 2.5 * 10**13 #Intrinsic concentration (in per cubic-centimeter)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "uh = 1700.0 #mobility of holes (in centimeter-square per volt-second)\n", "ue = 3600.0 #mobility of electrons (in centimeter-square per volt-second)\n", "k = 1.38 * 10**-23 #Boltzmann constant (in Joule per kelvin)\n", "T = 300.0 #Temperature (in kelvin)\n", "\n", "#Calculation\n", "\n", "De = ue * k * T / e #Diffusion constant of electrons (in centimeter-square per second)\n", "Dh = uh * k * T / e #Diffusion constant of holes (in centimeter-square per second)\n", "\n", "#Result\n", "\n", "print \"Diffusion constant of electron is \",round(De),\" cm**2/s.\\nDiffusion constant of holes is \",Dh,\" cm**2/s.\"\n", "\n", "#Slight variation in Dh due to higher precision." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.14 , Page Number 72" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mobility of charge carriers is 4e-08 m**2/V-s.\n", "Density of charge carriers is 1.73611111111e+22 /m**3.\n" ] } ], "source": [ "#Variables\n", "\n", "p = 9.0 * 10**3 #Resistivity (in ohm-meter)\n", "RH = 3.6 * 10**-4 #Hall coefficient (in cubic-meter per Coulomb) \n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "\n", "#Calculation\n", "\n", "sig = 1/p #Conductivity (in per ohm-meter)\n", "P = 1/ RH #Charge density (in Coulomb per cubic meter)\n", "n = P / e #Density of charge carriers (in per cubic-meter)\n", "u = sig * RH #Mobility (in meter-square per volt-second)\n", "\n", "#Result\n", "\n", "print \"Mobility of charge carriers is \",u,\" m**2/V-s.\\nDensity of charge carriers is \",n,\" /m**3.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.15 , Page Number 73" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current density in the specimen is 2482.76 A/m**2\n" ] } ], "source": [ "#Variables\n", "\n", "E = 100.0 #Electric field (in volt per meter)\n", "RH = 0.0145 #Hall coefficient (in cubic-meter per Coulomb)\n", "un = 0.36 #Mobility of electrons (in meter-square per volt-second)\n", "\n", "#Calculation\n", "\n", "n = 1/(e * RH) #Concentration (in per cubic-meter)\n", "J = n * e * un * E #Current density (in Ampere per cubic-meter) \n", "\n", "#Result\n", "\n", "print \"The current density in the specimen is \",round(J,2),\" A/m**2\"\n", "\n", "#Slight variation due to higher precision." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.16 , Page Number 73" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hall coefficient is 0.00027 m**3/C.\n" ] } ], "source": [ "#Variables\n", "\n", "p = 9.0 * 10**-3 #Resistivity (in ohm-meter)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "u = 0.03 #Mobility of carrier ion (in meter-square per volt-second)\n", "\n", "\n", "#Calculation\n", "\n", "sig = 1/p #Conductivity (in per ohm-meter)\n", "RH = u / sig #Hall coefficient (in cubic-meter per Coulomb) \n", "\n", "#Result\n", "\n", "print \"Hall coefficient is \",RH,\" m**3/C.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17 , Page Number 73" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Hall coefficient is 0.0003049 m**3/C.\n" ] } ], "source": [ "#Variables\n", "\n", "p = 9.0 * 10**3 #Resistivity (in ohm-meter)\n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "n = 2.05 * 10**22 #Charge carrier density (in per cubic-meter) \n", "\n", "#Calculation\n", "\n", "RH = 1/(n * e) #Hall coefficient (in cubic-meter per Coulomb) \n", "\n", "#Result\n", "\n", "print \"Hall coefficient is \",round(RH,7),\" m**3/C.\"\n", "\n", "#Slight variation due to higher precision." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.18 , Page Number 73" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hall voltage is 76.0 mV.\n" ] } ], "source": [ "#Variables\n", "\n", "Ex = 5.0 * 10**2 #Applied Electric field (in volt per meter)\n", "ue = 3800.0 * 10**-4 #Mobility of electron (in meter-square per volt-second) \n", "Bz = 0.1 #Magnetic flux density (in Weber per meter-square) \n", "d = 4.0 * 10**-3 #width (in meter) \n", "\n", "#Calculation\n", "\n", "v = ue * Ex #Drift velocity (in meter per second)\n", "VH = Bz * v * d #Hall voltage (in volts) \n", "\n", "#Result\n", "\n", "print \"Hall voltage is \",VH * 10**3,\" mV.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.19 , Page Number 74" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mobility of holes is 0.075 m**2/V-s.\n" ] } ], "source": [ "#Variables\n", "\n", "p = 200.0 * 10 #Bar resistivity (in ohm-meter) \n", "VH = 50.0 * 10**-3 #Hall voltage (in volts)\n", "BZ = 0.1 #Magnetic flux density (in Weber per meter-square) \n", "w = 3.0 * 10**-3 #width (in meter)\n", "d = w #length (in meter)\n", "I = 10.0 * 10**-6 #Current (in Ampere)\n", "\n", "#Calculation\n", "\n", "RH = VH * w / (BZ * I) #Hall coefficient (in cubic-meter per Coulomb)\n", "uh = RH / p #Mobility of holes (in meter-square per volt-second) \n", "\n", "#Result\n", "\n", "print \"Mobility of holes is \",uh,\" m**2/V-s.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.20 , Page Number 74" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hall voltage is 3.0 mV.\n" ] } ], "source": [ "#Variables\n", "\n", "ND = 1.0 * 10**21 #Concentration of donor atoms (in per cubic-meter)\n", "BZ = 0.2 #Magnetic field density (in Tesla)\n", "J = 600.0 #Current density (in Ampere per meter-square)\n", "n = ND #Concentration of electrons (in per cubic-meter)\n", "d = 4.0 * 10**-3 #Length (in meter) \n", "e = 1.6 * 10**-19 #Charge on electron (in Coulomb)\n", "\n", "#Calculation\n", "\n", "VH = BZ * J * d / (n * e) #Hall voltage (in volts) \n", "\n", "#Result\n", "\n", "print \"Hall voltage is \",VH * 10**3,\" mV.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.21 , Page Number 82 " ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New position of Fermi level is 0.328 eV\n" ] } ], "source": [ "#Variables\n", "\n", "T = 300.0 #Temperature (in kelvin)\n", "Ec_Ef = 0.3 #Energy level (in electron-volt) \n", "T1 = 273 + 55 #New temperature (in kelvin)\n", "\n", "#Calculation\n", "\n", "logencbyND = Ec_Ef/T #Value of loge(nc / ND)\n", "Ec_Ef1 = T1 * logencbyND #New position of Fermi level (in electron-volt) \n", "\n", "#Result\n", "\n", "print \"New position of Fermi level is \",Ec_Ef1,\" eV\"\n", "\n", "#Unit in the book should be eV instead of V." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.22 , Page Number 83" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Potential barrier is 0.19 eV.\n" ] } ], "source": [ "import math\n", "\n", "#Variables\n", "\n", "ND = NA = 8.0 * 10**14 #Concentration (in per cubic-meter)\n", "ni = 2.0 * 10**13 #Intrinsic concentration (in per cubic-meter)\n", "k = 8.61 * 10**-5 #Boltzmann constant (in electron-volt per kelvin)\n", "T = 300.0 #Temperature (in kelvin)\n", "\n", "#Calculation\n", "\n", "Vo = k * T * math.log(ND * NA/ni**2)\n", "\n", "#Result\n", "\n", "print \"Potential barrier is \",round(Vo,2),\" eV.\"\n", "\n", "#Unit in the book should be eV instead of V." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.23 , Page Number 83" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R1 is 250.0 ohm.\n", "R2 is 40.0 ohm.\n", "R3 is 10.0 Mega-ohm.\n" ] } ], "source": [ "#Variables\n", "\n", "ID1 = 2.0 * 10**-3 #Diode current1 (in Ampere)\n", "VD1 = 0.5 #Diode voltage1 (in volts)\n", "ID2 = 20.0 * 10**-3 #Diode current2 (in Ampere)\n", "VD2 = 0.8 #Diode voltage2 (in volts)\n", "ID3 = -1.0 * 10**-6 #Diode current3 (in Ampere)\n", "VD3 = -10.0 #Diode voltage3 (in volts)\n", "\n", "#Calculation\n", "\n", "R1 = VD1 / ID1 #Resistance1 (in ohm)\n", "R2 = VD2 / ID2 #Resistance2 (in ohm)\n", "R3 = VD3 / ID3 #Resistance3 (in ohm)\n", "\n", "#Result\n", "\n", "print \"R1 is \",R1,\" ohm.\\nR2 is \",R2,\" ohm.\\nR3 is \",R3 * 10**-6,\" Mega-ohm.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.24 , Page Number 83" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fraction of the total number of electrons in the conduction band at 300 K is 8.85 e-7 .\n" ] } ], "source": [ "import math\n", "\n", "#Variables\n", "\n", "k = 8.61 * 10**-5 #Boltzmann constant (in electron-volt per kelvin)\n", "T = 300.0 #Temperature (in kelvin)\n", "EG = 0.72 #Energy band gap (in electron-volt) \n", "\n", "#Calculation\n", "\n", "EF = 1.0/2 * EG #Fermi level (in electron-volt)\n", "ncbyn = 1/(1 + math.exp((EG-EF)/(k*T))) #Ratio\n", "\n", "#Result\n", "\n", "print \"Fraction of the total number of electrons in the conduction band at 300 K is \",round(ncbyn*pow(10,7),2),\"e-7 .\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.25 , Page Number 83" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Since electron concentration 5.32 e+16 is more than hole concentration 1.33 e+16 .Therefore , Si is of n-type.\n" ] } ], "source": [ "import math\n", "\n", "#Variables\n", "\n", "Ao = 4.83 * 10**21 #Constant\n", "T = 300.0 #Temperature (in kelvin)\n", "EG = 1.1 #Energy level (in electron-volt)\n", "kT = 0.026 #Product of k and T (in electron-volt)\n", "ND = 5.0 * 10**15 #Donor concentration (in per cubic-meter) \n", "NA = 2.0 * 10**16 #Acceptor concentration (in per cubic-meter) \n", "\n", "#Calculation\n", "\n", "ni = Ao * T**1.5 * math.exp(-EG/(2*kT)) #Intrinsic concentration (in per cubic-meter)\n", "h = ni**2 / NA #Hole concentration (in per cubic-meter)\n", "n = ni**2 / ND #Electron concentration (in per cubic-meter)\n", "\n", "#Result\n", "\n", "print \"Since electron concentration\",round(n*10**-16,2),\"e+16 is more than hole concentration \",round(h*10**-16,2),\"e+16 .Therefore , Si is of n-type.\"\n", "\n", "#Slight variations due to higher precision." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }