{ "metadata": { "name": "", "signature": "sha256:a058a43eb8f17e03501b9b96349ed2d08d5db7b72234021ac10c6272f4188cf4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12: Polyphase System" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.1: page 248:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "L=30 #load in kW\n", "pf=0.8#power factor\n", "Vl=250#line voltage in volts\n", "\n", "#calculations:\n", "I=((L*10**3)/(Vl*pf*math.sqrt(3)))#line current in ampers\n", "Ip1=I # in star connection\n", "Ip2=I/(math.sqrt(3))#phase current\n", "Il=math.sqrt(3)*Ip2#line current in amperes\n", "\n", "#Results\n", "print \"(a)line current (star connection) in amperes is\",round(I,2)\n", "print \"phase current (start connection) in amperes is\",round(Ip1,2)\n", "print \"(b)phase current in ampere is\",round(Ip2,2)\n", "print \"line current (delta connection ) in amperes is\",round(Il,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)line current (star connection) in amperes is 86.6\n", "phase current (start connection) in amperes is 86.6\n", "(b)phase current in ampere is 50.0\n", "line current (delta connection ) in amperes is 86.6\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.2: page 248:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "R=11.88#coil resistance in ohms\n", "L=0.07#inductance in henry\n", "f=50 # in hertz\n", "pf=0.48#power factor\n", "Vl=433#line voltage in volts\n", "\n", "#calculations:\n", "Vp1= Vl/(math.sqrt(3))#phase voltage\n", "Xl1=(2*math.pi*f*L)#in ohms\n", "Zb1=math.sqrt(R**2+Xl1**2)# in ohms\n", "Ie1=Vp1/Zb1#current in each winding in amperes\n", "Il1=Ie1#line current in amperes\n", "W1=math.sqrt(3)*Vl*Il1*pf#power in watts\n", "\n", "Vp2= Vl#phase voltage\n", "Xl2=(2*math.pi*f*L)#in ohms\n", "Zb2=math.sqrt(R**2+Xl2**2)# in ohms\n", "Ie2=Vp2/Zb2#current in each winding in amperes\n", "Il2=math.sqrt(3)*Ie2#line current in amperes\n", "W2=math.sqrt(3)*Vl*Il2*pf#power in watts\n", "\n", "#Results\n", "print \"(a)line current in ampere is\",round(Il1)\n", "print \"power taken in connection in kW is\",round(W1*10**-3,1)\n", "print \"(b)line current in ampere is\",round(Il2)\n", "print \"power taken in connection in kW is\",round(W2*10**-3,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)line current in ampere is 10.0\n", "power taken in connection in kW is 3.6\n", "(b)line current in ampere is 30.0\n", "power taken in connection in kW is 10.8\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.3: page 250:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "\n", "#given data:\n", "Vl=1100#line voltage in volts\n", "n=99 #motor efficiency in percentage\n", "pf= 0.8#power factor\n", "\n", "#calculations:\n", "Mo=n*735.5#output of the motor\n", "Mi=(Mo*100)/75# INPUT OF THE MOTOR IN WATTS\n", "Il=(Mi)/(math.sqrt(3)*Vl*pf)#line current in amperes\n", "Ip=Il/(math.sqrt(3))#phase current in amperes\n", "Ipm=Il#phase curent of the motor\n", "Ac1=Ip*pf#active component of phase current in the motor\n", "Rc1=Ip*(math.sqrt(1-pf**2))#reactive component of phase current of motor\n", "Ac2=Ipm*pf#active component of phase current in the generator\n", "Rc2=Ipm*(math.sqrt(1-pf**2))#reactive component of phase current of generator\n", "#Results\n", "print \"(a)phase current of motor in amperes is\",round(Ip,2)\n", "print \"active component of phase current in the motor in amperes\",round(Ac1,2)\n", "print \"reactive component of phase current in the motor in amperes\",round(Rc1,2)\n", "print \"(b)phase current of generator in amperes is\",round(Ipm,2)\n", "print \"active component of phase current in the generator in amperes\",round(Ac2,3)\n", "print \"reactive component of phase current in the generator in amperes\",round(Rc2,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)phase current of motor in amperes is 36.77\n", "active component of phase current in the motor in amperes 29.42\n", "reactive component of phase current in the motor in amperes 22.06\n", "(b)phase current of generator in amperes is 63.7\n", "active component of phase current in the generator in amperes 50.957\n", "reactive component of phase current in the generator in amperes 38.218\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.4: Page 253:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "ni=74.6#efficiency\n", "Mo=40#HP OF MOTOR\n", "tw=40#total in kW\n", "pf=0.8#power factor\n", "\n", "#calculations:\n", "mo=Mo*ni#output of motor in watts\n", "mi=(mo*100)/(ni*1000)#input of motor in kW\n", "theta=math.acos(pf)#in degree\n", "v=math.tan(theta)#\n", "dw=(v*tw)/(3**0.5)#\n", "w1=(tw+dw)/2#FIRST READING IN kW\n", "w2=tw-w1#second reading in kW\n", "\n", "#Results\n", "print \"first reading in kW is\",round(w1,2)\n", "print \"second reading in kW is\",round(w2,2) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "first reading in kW is 28.66\n", "second reading in kW is 11.34\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.5: page 253:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "w1=4.5#first reading in kW\n", "w2=3 #second reading in kW , this value is given wrong in question\n", "\n", "#calculations:\n", "tw1=w1+w2#in kW\n", "dw1=w1-w2#in kW\n", "pfa1=math.atan(math.sqrt(3)*(dw1/tw1));\n", "pf1=math.cos(pfa1)#//power factor when both the eadings are positive\n", "\n", "tw2=w1-w2#in kW\n", "dw2=w1+w2#in kW\n", "pfa2=math.atan(math.sqrt(3)*(dw2/tw2));\n", "pf2=math.cos(pfa2)#//power factor when second reading is obtained by reversing the connection\n", "#Results\n", "print \"(a)power factor when both the readings are positive\", round(pf1,3)\n", "print \"(b)power factor when second reading is obtained by reversing the connections \",round(pf2,3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)power factor when both the readings are positive 0.945\n", "(b)power factor when second reading is obtained by reversing the connections 0.115\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }